APU-H
ARITHMETIC PROCESSOR CARD

CCM,INC. P.O.BOX 2308 RESTON, VA. 22091

Introduction

The APU-H is a high performance math processor card that adds a wide
range of 16 and 32 bit fixed point and 32 bit floating point operations to
the H8 system capabilities. The APU-H is well suited for virtually any
application, scientific or business, where a computational capability is
required.

Specifications

Fixed point operations 16 and 32 bit

Floating point operations 32 bit

Fixed point range (16 bit) -32768 to +32767

Fixed point range (32 bit) -2147483648 to +2147483647
Floating point range + (2.7 x 10720 t0 9.2 x 1018)
Card size 6.25" x 12" (standard)

Clock frequency 2 Mhz but will accept up to 8 Mhz
Power requirements 100 ma at 18v DC

250 ma at 8v DC

Circuit operation

The APU-H 1is built around the Advanced Micro Devices AM9511A. This
processor handles 16 and 32 bit fixed point and 32 bit floating point num-
bers in the basic arithmetic operations of addition, subtraction, multi-
plication and division as well as trigonometric, logarithmic and other com-
plex operations.

The APU-H is viewed as 2 I/0 ports by the H8. The operands for an
operation (e.g., 2 addends in an addition) are first placed on a data stack
addressable as one of the I/0 ports. The command (addition, multiplication,
etc) is placed on the other port, the operation is performed by the 9511
and the result in placed on the data stack. The result may be read in
or left on the stack to be used in another operation.

Two methods are possible for determining when an operation is complete.
The program may query a status bit on the APU-H and read in the result
when completion of the operation is indicated. Or the end indication in
the 9511 may be tied to one of the interrupt lines on the H8 and an interrupt
service routine may input the result.

Operation of the APU-H is now described.

The APU-H is configured to appear as port 200 (octal) for data and port
201 for commands and status. Ul functions as an address decoder, activating
the chip select (CS pin on the 9511) on I/0 operations to address 200
or 201. The AO, or least significant address bit is not decoded, but tied
directly to the command/data (C/D) pin on the 9511. This allows the 9511
to distinguish between commands and data. U2, along with U4 and U5 also
serves an address decoding function for the inverting buffers U6 and U7
allowing data to be passed from the H8 bus to the 9511.

The PAUSE signal (pin 17 on the 9511) is tied to the READY line on
the H8 bus and allows the 9511 to place the 8080A in a wait state while
the data from the 9511 is placed on the data bus. This occurs after
completion of a 9511 operation, an event which is marked by the END signal
(pin 24 on the 9511) going from high to low. The RD and WR signals for
the 9511 are taken (after inversion) from the IOR and IOW signals. The
clock signal for the 9511 is taken from the H8 @2 signal.

A typical operation, such as an addition, begins by outputting the
operands (2 addends) to port 200. For each operand the data should be
output in the order of least significant to most significant byte. The
operands will then sit on the data stack of the 9511. The addition
command is then output to port 201. It is now necessary to determine when
the operation is complete. Status from an operation is available by in-
putting the status byte on port 201 and completion may be tested by
inspecting the high order bit. When this bit is 0 the operation is com-
plete and the result may be input or another operation initiated. The
result may be input by executing the appropriate number of IN 200
commands. The most significant byte of the result will be the top
byte available in the data stack of the 9511 on 200. As indicated earlier
the END signal may be used to generate an interrupt on one of the H8
interrupt lines. However, an interrupt service routine such as the
sample in Appendix B must be provided.

Data considerations

Three data formats are supported on the APU-H: 32 bit floating point,
32 bit fixed point and 16 bit fixed point. Operands, consisting of
data in these formats, for an operation must be placed in the data stack
(port 200) in the order least significant byte first, most significant
byte last. After an operation, data may be retrieved from the stack in
the order most significant byte first, least significant byte last. The
size of the stack is such that it will accommodate 8 of the 2 byte operands
and 4 of the 4 byte operands.

The fixed point data operands are signed integers in binary 2's
complement notation. The most significant or high order bit is the sign
and 0 represents a positive number and 1 represents negative.

For floating point operands, the 32 bit operand is broken up into
a 24 bit mantissa and 8 bits for exponent and sign bits. The mantissa is
normalized which means that the most significant bit of the mantissa must
be a 1 except in the special case of a 0 value, where all 32 bits are 0.
The least significant (right most) 7 bits of the remaining 8 bits are de-
voted to the exponent and its sign. The exponent is an unbiased 2's comple-
ment number having a value between -64 and +63. The sign of the mantissa
occupies the remaining and most significant bit and 0 indicates positive
and 1 represents negative.

Command set

The 9511 IC on the APU-H has an extensive command set. These commands
can generally be broken into arithmetic (add, subtract, sine, cosine, etc)
and manipulation (housekeeping such as push or pop stack, sign change, etc).
We strongly recommend the programmer become familiar with the commands as
explained 1in pages 9-21 of the enclosed 9511 manual. All commands use
data previously placed in the operand (data) stack, in the top of stack
(and next on stack position). The result will always be placed on the top
of stack position and will have the same precision and format as the data
used as the operands.

Addressing the APU-H

As indicated previously, the APU-H responds to port addresses 200/201
for data and commands, respectively. However, the address decoding logic
includes jumpers to alter the port addresses if necessary.

The least significant bit of the 8 bit port address is directly connected
to the C/D pin on the 9511 and, of course, is not subject to alteration or
jumpering. The 7 most significant bits of the port address may be altered
through the use of jumper pads below Ul0 and U11.

khen rejumpering to make the APU-H respond to an address other than
the 200/201, keep in mind that for any address, all inputs to Ul must
be high for a select signal to be generated and enable the 9511 data lines.
Also, remember that because of inverted buffering on the address lines
of the H8 CPU board, all address signals are presented to the APU-H
in an inverted state.

The jumper pads are in groups of 3 and each group of 3 is in a triangular
pattern. The left most group represents the A7 line and the right most
group represents the Al line, Within each group of pads the pad at the
top of the triangle will always be jumpered to 1 of the 2 pads forming
the base of this triangle. Connecting to the Tefthand pad passes the
signal to Ul without inversion. Connecting the top pad of any group to
the right hand bottom pad inverts the signal before before it reaches Ul

The address furnished, 200/201, is configured as shown below:

5N D AR PR FTREE S

A7 A6 A5 A4 A3 A2 Al

To make the APU-H respond, for example, to the 202/203 address range,
change the right most group of pads to \\ and leave the others the same.

Basic interface

The source listings to assembly language code that allows two
different interfaces with the APU-H for BASIC are provided at Appendix A.

The first interface method involves replacement of the Heath provided
math routines in the Extended BASIC. This method of APU-H usage involves
no differences in operation or programming aside from entering a high
memory limit at BASIC 1initialization time. The second method utilizes
the USR function of BASIC and any (not just the BASIC arithmetic operations)
APU-H operation may be executed through USR. The USR method is substantially
sTower than the replacement method in terms of execution time.

The use of the 2 interfaces is described below. The discussion assumes
a 16K memory configuration with the BASIC interface code near the top of
available memory.

Replacement

This method simply "front ends" all calls to the Heath BASIC arith-
metic routines and transfers control to APU-H based routines. The code
at Appendix A should be keyed in or loaded. This code takes approximately
530 bytes of memory. The "patches" Tisted in Appendix Al should “= entered
after BASIC is loaded in. Three bytes of the existing code for BASIC are
included under the "Existing Code" column as a check to ensure the proper
code is being overlaid.

The "patches" are provided for version 10.05.00 of the Extended BASIC.
CCM will assist users in determining the appropriate locations for patches
for other versions of Extended BASIC and the regular BASIC. CCM will re-
quire a cassette of the version of BASIC in question as well as a list of
the utility routine entry points as generally provided in the BASIC manual.
A11 material will be returned. Users wishing to develop their own patch
lists can do so with 1ittle difficulty by using the BASIC source listing
now available from Heath.

Once the patches are correctly implemented and the APU-H routines
are in place, the operation of the APU-H should be transparent except for

faster execution. Error codes, though taken from the 9511, remain essentially
the same as in the BASIC math routines.

A high memory 1imit of 23839 (decimal) is appropriate for an H8 with
16K of memory.

USR interface

This interface accommodates floating point operations and is executed
through the USR and POKE functions. As before, this discussion also assumes
a 16K configuration with the BASIC interface code near the top of available
memory. Usage of this method requires the UINT routines as well as the other
code required for the replacement method.

Floating point numbers are transmitted to the APU-H data stack as
arguments to the USR function. Only 1 value can be transmitted per function
execution. Commands to the APU-H are transmitted by "POKE"ing them into
location 23840 (decimal) or 135040 (octal) prior to the USR execution.

There are basically 2 types of operations which are callable from
BASIC: those which use 1 data operand, such as square root and exponential;
and those which require 2 data operands such as addition, subtraction,
etc. (Note that all succeeding examples will assume that the service
request bit in the command is off).

For thosecommand operations involving 1 data element the BASIC
program should POKE the decimal value of the appropriate command
(e.g., 1 for square root and 9 for natural log) into 23840. (See the 9511
manual, page 4, for a command summary.) Then execute the USR function in the
form X=USR(ARG) where ARG is the data (e.g., ARG would be a 2 when the
square root of 2 was desired). I!lhen control is returned to 3ASIC from USR, X
will contain the square root of 2. ARG may be a variable or the actual
value of the number to be passed. The sequence

POKE 23840,1
X=USR(2.00)

will perform the previously mentioned square root operation.

For those operations involving 2 data elements the BASIC program
should POKE a 0 into location 23840 and then execute X=USR(AR5)
where ARG contains the appropriate variable or data value. (Note that
for certain operations a specific operand such as the dividend or :
minuend must be passed first. The 9511 manual contains the details on
this.) With a 0 in location 23840 the interface will simply place the
data in the argument on the 9511 stack. When control returns to BASIC
from USR, POKE the appropriate command into 23840 and place the other
data value in ARG and execute X=USR(ARG). When control returns this time

from BASIC, X will contain the desired result. For example, to execute
a 32 bit floating point add of 5.22 and 6.86 perform the following sequence
of instructions:

POKE 23840,0
X=USR(5.22)
POKE 23840,16
X=USR(6.86)

After the second USR call is executed X should contain the value 12.08.

To use the BASIC USR interface, key or load in the Appendix A
subroutines. BASIC requires that the location of the routine to be
called by execution of USR be placed in USRFCN. In version 10.05.00
of Extended BASIC, USRFCN is at 111303, but will be different for
other versions of BASIC. The address of the first instruction in the
BASIC interface is 135052. Place this value in 111303, Teast significant
byte first. Therefore, the contents of 111303 will be 052135. Loading
in the Appendix A routines and placing the address at USRFCN should take place
after loading in BASIC but before starting it. Care should be taken to
place the high memory limit for BASIC (at BASIC initialization time) below
the address of the interface routines (below 135040 octal).

The BASIC interfaces were written specifically for the Heath imple-
mentations and are highly dependent on their method of representing
floating point numbers. Their representation includes a mantissa that
uses 2's complement notation and has 24 bits with the most significant
bit being the sign bit. Other implementations of the BASIC language for
the H8 may not use this structure and the furnished BASIC interfaces may
not function correctly with them.

Assembly language usage

Unlike the BA,IC usage of the APU-H, assembly Tanguage usage is not
limited to just 32 bit floating point operations; fixed point 16 and 32
bit operations are also available.

Developing the code to use the APU-H is relatively straightforward.
The numbers, or operands, must be placed on the data stack of the 9511 on
the APU-H using the OUT instruction. Once the data (1 or 2 operands) has
been placed on the stack the command may then be output, again using the
OUT instruction.

As sold, the APU-H comes with the data stack configured as I/0
port 200 and the command stack as port 201.

The following sequence of instructions illustrates assembler usage
of the APU-H. Assume the address of the least significant byte of the
second operand is in register pair BC. This sequence multiplies 2 16 bit

fixed point numbers:

LDAX 8 LSB of multiplier
ouT 200Q to 9511
DCX B8 MSB of multiplier

LDAX B

ouT 200Q to 9511

DCX B LS3 of multiplicand
LDAX B

ouT 200Q to 9511

DCX 8 MSB of multiplicand
LDAX]

ouT 200Q to 9511

MVI A,156Q SMUL CMD

ouT 201Q

The next step is to determine when the operation is complete. The 9511
contains a status register, accessible through port 201. The high order
bit of the register indicates if the 9511 is busy (1=busy). The following
code determines when the results may be read off the stack:

IN IN 201Q read 1in status
ANI 200Q busy?
JNZ IN jmp to IN if not thru

The data is now ready to be removed from the stack, most significant byte
first. Assume register pair BC points to the location where the most sig-
nificant byte of the result is to be placed.

IN 200Q read MSB

STAX B store it

INX 8 bump to next store place
IN 200Q read LSB

STAX B

Appendix C contains a listing of a subroutine for performing a multiply.

Interrupts

When the 9511 has completed an operation a high to low transition occurs
on one of its pins, END (pin 24). This pin may be tied to one of the in-
terrupt lines on the H8 thus generating an interrupt every time an operation
completes. In this case, the interrupt is cleared by any read or write
operation.

As sold, the APU-H has all interrupt logic disabled. To provide for
interrupt usage, the following steps should be taken.

Jumper pad W to END
Jumper pad Y to X
Jumper pad INT to the desired interrupt 1ine (1 to 7)

Jumper pad Z is provided to invert the interrupt transition if necessary.
Jumper pad Y to pad Z to have a low to high transition generate an interrupt.
Use of the service request facility (explained below) of the 9511 may re-
quire the use of the inverter.

An interrupt service routine must be furnished and a JMP instruction
to it placed in the proper UIVEC location (see the H8 manual for the description
and listing of the panel monitor code and UIVEC). For example, to use the
interrupt number 7 with a service routine at 42300, place a 303,300,042 at
location 040061.

An interrupt service routine which begins at 042300 is Tisted in
Appendix B.

Another use of interrupts which can control operation of the APU-H
involves the use of the service request and acknowledge facilities. The
high order bit in the command issued to the APU-H, if turned on, causes
a low to high transition to occur on the SVREC pin at the completion of
an operation. The SVREC pad is available for connection to pad W to allow
it to generate an interrupt. The SVREC can be cleared by driving the SVACK
line Tow or issuing another command where the high order bit is O.

Interrupts should only be used where the input of the results must truly
be asynchronous. For those applications where the program must have the
results of an operation to continue, the routines of the Assembly language
section are faster. Consult the H8 manuals for further discussions of
interrupts.

Other selectable features

U8, the 9511, operates at a clock frequency of 2 Mhz. The source
for this signal is the @2 clock on the system bus. The APU-H as sold
is set for 2Mhz systems. However, should an H8 CPU upgrade occur which
includes higher frequencies, the jumpers in the vicinity of U9 should be
reconfigured as follows:

4 Mhz jumper E to C
jumper D to A
8 Mhz jumper E to C
Jumper D to B
jumper F to A

Other APU-H operating considerations

The APU-H has a floating point range less than that supported by the
Heath BASIC (see Specifications). In most applications this will not be
a consideration, but it will impact computations involving very large
numbers.

Slightly different results from those returned by the Heath BASIC
may be noted when raising numbers to a power or using the LOG or EXP
functions. Discussion of the accuracy of PWR (used by APU-H for ex-
ponentiation) LOG and EXP may be found in the 9511 manual under the
respective headings.

References

A number of interesting and informative references exist on the
AMD9511. Included are articles appearing in the April 24, 1980 issue
of Electronics, the May 1978 issue of Kilobaud, and the September 1980
issue of Interface Age.

COMPONENTS

Integrated Circuits

Ul 74LS30

u2 74LS90

U3-us 74L.504

ue,u7 7415240

us AMD9511A

U9 7474

u10 7805

U1l 7812

Capacitors

C1,C3 2.2 ufd 35v tantalum
c2,C4 10 ufd 35v electrolytic
C5-C14 .1 ufd 25v disc ceramic
Resistors

R1 3.3K Lwatt

R2 10K Lwatt

Miscellaneous

Printed circuit board 6.25"x12"
Molex edge connectors (2) 22-15-2251
Bracket

6-32 4% screw (4)

6-32 nut (2)

#6 lockwasher (2)
4-70 4 screw (2)
4-40 nut (2)
Connector key (1)

10

The following code of Appendix A performs both the USR functions as well
as replacing the BASIC math routines.

The tasks of each routine (or group of routines) are now described.

Routines UINT to loc 135167 are branched to by a USR call in BASIC and
and set things up for the 9511 operation.

Routine STUP takes a 4 byte floating point number, Toads it into ACCX and
calls APU.

Routine SAVE saves and restores register contents upon entry/exit to
the APU based routines (not used by USR).

Routine PUSHA saves 4 bytes in a specified work area.

Routines PWR through FPADD are APU based routines that take the place of
the original BASIC routines.

Routine CMDIN reads the result from a 9511 operation and checks err status.
Routines APU through PLS perform the interfacing with the 9511 as well as
reformatting data between 9511 and BASIC formats. APU through loc

137030 is the driver for this section of code.

Routine ROUND rounds the 9511 answer to the Heath BASIC precision.

Appendix A |

* BASIC USR interface routine

135040
135041
135042
135046
135052
135055
135057
135062
135064
135067
135072
135075
135076
135101
135103
135106
135111
135114
135117
135121
135124
135125
135130
135133
135135
135140
135143
135146
135151
135154
135157
135162
135164
135167

009

000
000,000,000
000,000,000
072,040,135
376,000
302,076,135
076,190
062,041,135
001,042,135
315,236,135
all
072,041,135
376,100
312,125,135
072,040,135
362,000,137
315,001,137
076,000
062,041,135
311
001,046,135
315,236,135
076,000
062,000,137
041,042,135
315,172,135
072,040,135
062,000,137
041,046,135
315,172,135
076,000
062,041,135
311

FLG
FLG3
DATAA
DATAB
UINT

SEC

TW9

23
N3
03
D3
LDA
CP1
JINZ
MVI
STA
LXI
CALL
RET
LDA
CPI
JE
LDA
STA
CALL
MVI
STA
RET
LXI
CALL
MVI
STA
LXI
CALL
LDA
STA
LXI
CALL
MVI
STA
RET

A-2

000Q
000Q
0,9,0,9
0,0,0,0
FLG
200Q
SEC
A,100Q
FLG3

3 ,DATAA
PUSH

FLGB
100Q
TWO

FLG
137000A
APU
A,000Q
FLG3

B8 ,DATAB
PUSH
A,000Q
137000A
H,DATAA
STUP
FLG
137000A
H,DATA3
STUP
A,0009Q
FLG3

9511 CMD area
1st time flg
Store 1st oprnd
Store 2nd oprnd
See if cmd there

CMD, take branch

Set flag to indicate
1st oprnd there

Store oprnd

1st or sec pass
2nd, take brnch

Single op cmd (SQRT)

Clr flg before leave

Save 2nd oprnd

Set APU routine

for operation

Get 1st oprnd

Put oprnd on 9511 stck
Do second oprnd

Do cmd
Clr flg

Leave

* Move an operand to ACCX and call APU

135172
135173
135176
135200
135201
135202
135203
135204
135205
135210
135213
135216
135217
135220
135221
135222
135225
135226
135227
135230
135231
135232
* Save
135233
135236
135241
135243
135244
135245
135246
135247
135250
135253

3583 STUP
001,066,040

046,004

032 LDA
002

003

023

045

302,200,135
001,066,040
315,001,137

311

343 SAVE
325

305

001,227,135

305

351

301 LVA
321

341

311

XCHG
LXI
MOV
LDAX
STAX
INX
INX
DCR
JNZ
LXI
CALL
RET
XTHL
PUSH
PUSH
LXI
PUSH
PCHL
POP
POP
PIP
RET

bytes of data in a work area

901,210,137 PUSHA
021,066,040 PUSH

046,004

032 LDAA

002

003

023

045

302,243,135

311

LXI
LXI
MOV
LDAX
STAX
INX
INX
DCR
JNZ
RET

A-3

B,WORK
D,ACCX
H,004Q

O W wo

1

LDAA

HtoD
llork area

Thru?
No
Repoint to wk area

Thru

Save reg status

Set for future exit
Status saved

Restore exit addr
Status restd for BASIC
Get work addr

Get accx addr
4 bytes

135254
135755
135260
135261
135263
135266
135271
135274
135276
135301
135304
135305
135310
135312
135315
135320
135321
135324
135326
135331
135334
135335
135340
135342
135345
135350
135351
135354
135356
135361
135364
135365
135370
135372
135375
136000
136001
136004
136006
136011
136014

325
315,233,135
341

076,000
062,000,137
316,172,135
041,210,137
076,013
062,000,137
315,172,135
311
001,066,040
076,004
062,000,137
315,001,137
311
001,066,040
076,003
062,000,137
315,001,137
311
001,066,040
076,002
062,000,137
315,001,137
311
001,066,040
076,011
062,000,137
315,001,137
311
001,066,040
076,012
062,000,137
315,001,137
311
001,066,040
076,001
062,000,137
315,001,137
311

PR

TAN

CoS

SIN

LOG

EXP

SQRT

PUSH
CALL
POP
MOV
STA
CALL
LXI
MOV
STA
CALL
RE
LXI
MOV
STA
CALL
RET
LXI
MOV
STA
CALL
RET
LXI
MoV
STA
CALL
RET
LXI
MoV
STA
CALL
RET
LXI
MOV
STA
CALL
RET
LXI
MOV
STA
CALL
RET

A-4

D

PUSHA

H
A,000Q
137000A
STUP
H,WORK
A,013Q
137000A
STUP

B,ACCX
A,004Q
FLAG
APU

B,ACCX
A,003Q
FLAG
APU

B,ACCX
A,002Q
FLAG
APU

B,ACCX
A,011Q
FLAG
APU

B,ACCX
A,012Q
FLAG
APU

B,ACCX
A,001Q
FLAG
APU

Save D

Save curr ACCX
Bring D to H
Put op on stck

Get prev ACCX

Store cmd
Do PWR

Bk to BASIC
Accx addr
Tan cmd

Dc tan

Bk to BASIC
Accx addr
Cos cmd

Do cos

Bk to BASIC
Accx addr
Sin cmd

Do sin

Bk to BASIC
Accx addr
Ln cmd

Do Tn

Bk to BASIC
Accx addr
Exp cmd

Do exp

Bk to BASIC
Accx addr
Sgr cmd

Do sqr
Bk to BASIC

136015 345 FPSUB PUSH H

136016 315,2335135 CALL PUSHA Put current ACCX on wk
136021 341 POP H

136022 076,000 MOV A,000Q Indic operand on stck
136024 062,000,137 STA FLAG

136027 315,172,135 CALL STUP Plac op on stck
136032 041,210,137 LXI H,WORK Get orig ACCX
136035 076,021 MOV A,021Q Sub cmd
136037 062,000,137 STA FLAG

136042 315,172,135 CALL STUP Do sub

136045 311 RET

136046 001,066,040 ATN LXI B,ACCX Accum Addr
136051 075,007 MVI A,007Q Atan cmd
136053 062,000,137 STA FLAG Store cmd
136056 315,001,137 CALL APU Do atan
136061 311 RET Leave

136062 000 NOP

136063 001,266,040 FPMUL LXI B,ACCX Accx addr
136066 345 PUSH H Save H

136067 376,000 MOV A,000Q Multiplicand
136071 062,000,137 STA FLASG on 9511
136074 315,001,137 CALL APU

136077 076,022 MOV A,022Q Mul cmd
136101 962,000,137 STA FLAG

136104 341 POP H

136105 315,172,135 CALL STUP Do mul

136110 311 RET Bk to BASIC
136111 345 FPDIV PUSH H Save H

136112 001,066,040 LXI B,ACCX Get Accx addr
136115 076,000 MOV A,000Q

136117 062,000,137 STA FLAG Put operand on 9511
136122 315,001,137 CALL APU

136125 341 POP H Restore H
136126 076,023 MOV A,0230Q Div cmd
136130 062,000,137 STA FLAG

136133 315,172,135 CALL STUP Do div

136136 311

136137 001,066,040 FPADD LXI B,ACCX Accx addr
136142 345 PUSH H Save H

136143 076,000 MOV A,000Q Put

136145 062,000,137 STA FLAG Addend on
136150 315,001,137 CALL APU 9511
136153 076,920 MOV A,020Q Add cmd
136155 062,000,137 STA FLAG

136160 341 POP H

136161 315,172,135 CALL STUP Do add

136164 311 RET Bk to BASIC

A-5

* This code rounds 9511 answer before passing it back to BASIC

136165
136167
136172
136173
136174
136176
136200
136201
136202
136203
136205
136206
136207
136212
136213
136216
136217
136220
136221
136222
136223
136224
136225
136226
136227
136230
136231
136232
136233
136234
136235
136236
136237
136240
136243
136244
136245
136247
136250
136251
136253
136256
136257
136261
136263

136277

346,001
312,235,136
140

151

006,002
076,001

206

167

043

076,000

216

005
302,201,136
167
334,243,136
104

115

067

077

037

002

013

012

037

002

013

012

037

002

311

003

203

012
303,220,136
043

176

346,100

064

206

346,100
302,220,070
053

066,200
076,200

311

Patch area

ROUND

RN

SHF

NORD

SO

ANI
Jz
MoV
MOV
MVI
MVI
ADD
MOV
INX
MOV
ADC
DCR
JNZ
MOV
CC
MOV
MOV
STC
cMC
RAR
STAX
DCX
LDAX
RAR
STAX
DCX
LDAX
RAR
STAX
RET
INX
INX
LDAX
JMP
INX
MOV
ANI
INR
ADD
ANI
JINZ
DCX
MVI
MVI
RET

A-6

001Q
NORD

Do o W

[selivs Ros)

HF

LWL oW W

M
100Q

M

M

100Q
ERR.QV
H
M,200Q
A,200Q

Need round?
No
Set

to use H and L
Set to

Add 001

In 1sb

Propogate
Carry
If there
Thru 3 bytes

Leave if carry on
3ack to BC rp

Clear carry

Back to 23 bits
Save first byte

Next byte

Next byte

Leave
No rnd requ'd; set

This code handles
Mantissa ovfl caused
By round

Ovflio?

Set to ret to mainline

136300 333,201 CMDIN IN 201Q Read status
*This code determines when APU op complete and checks for errors

136302 147 MOV H,A Save A

136303 346,200 ANI 200Q Busy?

136305 302,300,136 JNZ CMDIN No

136310 174 MOV ALH Restore a
136311 376,000 CPI 000Q Err free?
136313 310 RZ Yes

136314 346,077 ANI 077Q Only err bite
136316 376,020 CPI 020Q Div by 0
136320 312,161,070 JZ ERR.DD Yes

136323 376,010 CPI 010Q Invalid num?
136325 312,166,070 JZ ERR. IN Yes

136330 376,030 CPI 030Q Ovrflw?

136332 312,220,070 JZ ERR.OV Yes

136335 346,002 ANI ~ 002Q Ovrflw?

136337 302,220,070 JNZ ERR.QV Yes

136342 174 MOV ALH Restore a
136343 346,004 ANI ~ 004Q Undrflw?
136345 310 RZ No

136346 001,000,000 LXI B,O Yes, make O
136351 |- 120 Mov D,B

136352 130 MOV E,B

136353 041,066,040 LXI H,ACCX

136356 163 MOV M,E Move in O
136357 043 INX H Nxt

136360 162 MOV M,D

136361 043 INX H

136362 161 MOV M,C

136363 043 INX H Nxt

136364 160 MOV M,B

136365 341 POP H Simulate ret
136366 303,030,137 JMP EN Leave

137000 009 FLAG DB 000Q

137001 315,035,137 APU CALL NEGA Chk 2's compl
137004 315,066,137 CALL NFRM Qutput operands
137007 072,000,137 LDA FLAG Chk for presence
137012 376,000 CPI ~ 000Q 0f cmd

137014 310 RZ No cmd, Teave
137015 ' 323,201 ouUT 201Q Output cmd
137017 315,300,136 CALL CMDIN Wait to finish
137022 . 315,115,137 CALL NFRA Read in data result
137025 315,145,137 CALL NNGA Chk for 2's compl

A-7

137030 311 EN RET

137035 003 NEGA INX B
137036 003 INX B
137037 - 012 LDAX B
137040 346,200 ANI ~ 200Q
137042 312,057,137 JZ PLUS
137045 315,123,102 CALL FPNEG
137050 003 INX B
137051 012 LDAX B
137052 366,200 OR 200Q
137054 002 STAX B
137055 013 DCX B
137056 311 RET

137057 003 PLUS INX B
137060 012 LDAX B
137061 346,177 ANI 177Q
137063 002 STAX B
137064 013 DCX B
137065 311 RET

137066 013 NFRM DCX B
*Upon entry to NFRM, BC points to MSB in ACCX
137067 013 DCX B
137070 012 LDAX B
*Set to shft mantissa to conform to 9511

137071 067 STC

137072 077 CMC

137073 027 RAL

137074 323,200 OUT 200Q
137076 003 INX B
137077 012 LDAX B
137100 027 RAL

137101 323,200 ouT 200Q
137103 003 INX B
137104 012 LDAX B
137105 027 RAL

137106 323,200 OUT 200Q
137110 003 INX B
137111 012 LDAX B
137112 323,200 ouUT 200Q
137114 311 RET

137115 333,200 NFRA IN 200Q
137117 002 STAX B
*BC pair points to exp address in ACCX

137120 333,200 IN 200Q
137122 =~ 013 DCX B
137123 0D2 STAX B
137124 013 DCX B
137125 333,200 IN 200Q

A-8

Thru APU op, leave
Bump to MSB
O0f mantissa
Get MSB
Heath minus?
No
Call BASIC neg
To make pos
Now at exponent
Make 9511 neg
Put in accx

Thru
Handle pos case

Conform to 9511
Leave ptr at MSB
Leave

Get to LSB

Get LSB in a

Set carry to O

Left shft LSB

Put LSB on 9511 stac

Next byte

Left shft
Put on stack
MSB

Left shft
MSB on stack
Now do exp

Exp on stack
Leave

Read result
Have exp

Get MSB

0f mantissa
Store in ACCX
Next to MSB

137127 002 STAX
137130 013 DCX
137131 333,200 IN
137133 002 STAX
137134 - 315,165,136 CALL
137137 003 INX
137140 003 INX
137141 003 INX
137142 311 RET
137145 012 NNGA LDAX
*Assume BC points to exponent of mantissa
137146 346,200 ANI
137150 312,174,137 JE
137163 1 012 LDAX
137154 346,177 ANI
137156 002 STAX
137157 346,100 ANI
137161 302,170,137 JNE
137164 012 LDAX
137165 306,200 ADI
137167 002 STAX
137170 - 315,123,102 NNG CALL
127173 - 311 RET
137174 012 PLS LDAX
137175 346,100 ANI
137177 302,206,137 JNZ
137202 012 LDAX
137203 306,200 ADI
137205 002 STAX
137206 311 END RET
137219 WORK DS

A-9

200Q
PLS

177Q

100Q
NNG

200Q
FPNEG
100Q
END
200Q
B

4

Store in accx
LSB

ACCX

Round off
Point to
Exp

Leave
Get exp

Neg?

No

Get exp

Turn off 9511 sign
Store in accx

Neg exp

Yes

Put into BASIC fmt

Make neg

Leave

Get exp

Neg exp?

Yes

No

Make BASIC fmt

Return to mainline

MODULE

ATAN
PWR
TAN
CoS
SIN
LOG
EXP
SQRT
FPDIV
FPMUL
FPSUB
FPADD

Appendix Al

LOC

064163
062003
064000
063262
063254
062362
062232
063115
103101
102144
102007
101201

EXISTING CODE

305,072,079
315,015,100
315,007,065
305,315,007
021,336,111
305,041,070
305,072,070
305,315,175
315,036,104
315,036,104
315,036,104
315,036,104

3ASIC 10.05.00 Replacements

PATCH

315,217,135,303,046,136
315,217 ,135,303,254,135
315,217,135,303,305,135
315,217,135,303,321,135
315,217,135,303,335,135
315,217,135,303,351,135
315,217,135,303,365,135
315,217,135,303,001,136
315,217,135,353,303,111,136
315,217,;135,353,303,063,136
315,217,135,353,303,015,136
318,217 3135,353,303,137,136

042300
042301
042302
042304
042307
042311
042314
042315
042316

365 IRP
363

333,200

062, XXX, XXX

333,200

062, XXX, XXX

373

361

311

PUSH
DI
IN
STA
IN
STA

POP
RET

PSW
200Q
200Q

PSW

Save status
Lock others out
Read MSB

Store it

Read LSB

Store it

Unlock

Restore

Leave

This interrupt service routine inputs a 16 bit result after the APU-H
has completed the requested operation and generated an interrupt to

the CPU

Appendix B

040100 052,152,040 SMUL LHLD 040152A Get op addr

040103 353 XCHG Use de

040104 032 LDAX D Get 1sb
040105 323,200 OUT 200Q Output

040107 033 DCX D Get to msb
040110 032 LDAX D Get msb
040111 323,200 OUT 200Q Output

040113 033 DCX D Next op 1sb
040114 032 LDAX D Get 1sb
040115 323,200 OuT 200Q Qutput

040117 033 DCX D Msb

040120 032 LDAX D Get msb
040121 323,200 OuT 200Q

040123 076,156 MVI A,156Q Get cmd
040125 323,201 ouT 201Q Qutput

040127 333,201 IN IN 201Q Now get status
040131 346,200 ANI ~ 200Q Status thru?
040133 302,127,040 JNZ IN No

040136 333,200 IN 200Q Msb of result
040140 022 STAX D Store

040141 333,200 IN 200Q LSB of result
040143 023 INX D

040144 022 STAX D Store it
040145 311 RET

040146 000,000 DB 0,0 1st oprnd
040150 000,000 DB 0,0 2nd oprnd
040152 151,040 D3 1510,040Q Pointer

This software performs a fixed point multiplication between 2 16 bit num-
bers. The least significant byte of tle second number is pointed to by
the value in location 040152

Appendix C

