;i!ﬂ data
systems

Model Z-89/90 SERIES
DIGITAL COMPUTERS

595-2690

Copyright ©1981
Zenith Data Systems

ZEN'TH DATA SYSTEMS orinted | mALI ?iiiggttst Refs/frved
SAINT JOSEPH, MICHIGAN 49085 o ed Pisies ahAmene

Page 1-2

TABLE OF CONTENTS
INTRODUCTION.......ooeieiieiieieieeeeeeeeane 1-3 REPLACEMENT PARTS LISTcccoooveeenene. 9-1
Power Supply .ooocveeeeiieieeeeeeee 9-1
SPECIFICATIONS ..., 2-1 Video Circuit Boardcc.coovviiiiiciiceieeen. 9-1
Video Driver Circuit Boardccoccoeeveriinnn. 9-3
SETUP AND TESTINGccoceoviivininciecnnens 3-1 Terminal Logic Circuit Boardcccceeeeneeee. 9-3
Power Line Considerationsc..ccccceceeeeeenne. 3-1 CPU Logic Circuit Boardccecevenenenenee. 9-4
Cabinet Removalccceceiiinineiiiceece 3-2 Chassis Parts.......ccceceeeevenieieeneceeeeeeeenen 9-5
TESHNG wovieiieiieieeieee ettt 3-3 Serial Interface Circuit Boardccceennenneen. 9-6
SYSTEM CONFIGURATIONcccoveiennne 4-1 SEMICONDUCTOR IDENTIFICATION10-1
ZDS System Configurationcc.cccvvveeenn... 4-1 Component Number Indexcccecveeennen. 10-1
Terminal Logic Circuit Boardcccc........ 4-1 Part Number Indexccccoevvevienienienieieenen. 10-4
CPU Logic Circuit Boardcccovevvveirennnne 4-4
Serial Interfaceccccvvvieiiiiiiiiiiiiennenn, 4-7 APPENDIX ..ot 11-1
Memory Mapcceeeviieiiniiiiiiiceeeee e 4-8 ASCII Characterscceceereereeneeneeneeneennes 11-1
I/O Port USEagecccvvvveevieiieiieieeieeieeneeen 4-8 Graphic Symbols.......cceccveviicieiieiieiieieeies 11-5
Transmitted Codesccevieviierierieneenieennen. 11-7
ZDS Escape Sequencesccceeeveereveenenenns 11-10
OPERATIONooiiiiiiieieieeeeese e 5-1 7ZDS Escape Sequences Defined 11-12
Command SUMMATYoeeeeeeeeeeeeeeeeeeeeeeennns 5-1
. ANSI Escape Sequencesc..ccecuevvereernene 11-17
Keyboard Operationc.ccecceeveereeneeneennenne 5-2
ANSI Mode Summaryc.ccceceeeverevereeennenne 11-19
Normal Modes and Keys........ccccceevvenurennnnee. 5-4
. ANSI Escape Sequences Defined 11-20
Special Modes and Keys........c.ccecveeevieennnns 5-7 .
. The Functions of a Computer 11-27
Use as a Terminalcccceeevvviiiiiiieeneennn. 5-16 .
Instruction Set......cccoevevveiiieninnenieneeneee 11-31
READJUSTMENT 6-1 Demonstration Programscccccceeveeenieene 11-50
TROUBLESHOOTING 7_1 280 CPU ... 12'1
Troubleshooting Chartscccceeeeirierieennene 7-2
FOUDTESHOOHAS TAars INS8250 ASYNCHRONOUS
SERVICE INFORMATION.....ooccccorrerrre 7.5 COMMUNICATIONS ELEMENT 13-1
INDEX ..o 14-1
CIRCUIT DESCRIPTION 8-1 CIRCUIT BOARD X-RAY
Power Supply Circuit Boardccccoevueennnne. 8-2 VIEWS Ilustration Booklet. P 10
Video Circuit Board...........cccocevvvieviiiieeninnnn.n. &3 TITTTE e (Hlustration Booklet, Page 10)
Video Driver Circuit Boardccccoeceevienennne 8-6
Terminal Logic Circuit Boardcc..coocvee 8-6 SCHEMATIC ..ot Fold-in

CPU Logic Circuit Boardcccccveeiveiennnne. 8-15

INTRODUCTION

This Zenith Data Systems Digital Computer is a ver-
satile, 8-bit microcomputer and a professional
video terminal, both built into the same cabinet.
The computing functions and terminal operations
are both controlled by separate Z-80
microprocessors. The high quality keyboard, video
display, state-of-the art logic circuitry, and plug-in
accessories make this Computer outstanding. Note
that, because this Operation Manual was designed to
be used with more than one Computer system, your
Computer may vary slightly in some respects with
the descriptive material that is presented.

Some features of the Computer are:
e Up to 64k bytes of user-addressable memory.

e Wired and tested CPU and terminal logic
circuit boards.

e An internal monitor that automatically sizes the
memory and initializes the unit at power-
up. The monitor resides in 2k or 4k bytes
(depending on the exact configuration) of
ROM which contains load and dump routines
that eliminate the need for bootstrap and
loader programs at turn-on.

e A floppy disk drive unit and its interface
circuit board (optional, depending on the
configuration).

e A multiport serial interface circuit board.

The information is displayed on a 12" (diagonal),
high-quality cathode-ray tube (CRT) that can
display 2000 characters at one time (25 rows of 80
characters). = The phosphor used in the CRT
provides superb character definition. Upper-case
characters are formed by a 5 x 7 dot matrix.

Page 1-3

Lower-case characters that have descenders use a 5
x 9 dot matrix. The Computer can also display 33
special graphic characters that can be arranged and
grouped to form any number of graphic displays
and effects. The graphic symbols are formed on an
8 x 10 dot matrix.

Special keyboard and software-controllable escape
sequences allow you to select and use many special
functions. These include:

o Using either ZDS or ANSI escape sequences.

e Fight user-defined special function keys.

e Alternate keypad output (for sending more
user-defined special codes to your computer).

e Shifted keypad (so you can obtain the

shifted keypad functions without using

SHIFT key).

Keyboard enable/disable.

Key-click enable/disable.

Cursor-type select (underline or block).

Auto LF (line feed), auto CR (carriage re-

turn).

e Hold screen mode (for scrolling lines and
pages).

o Cursor control (left, right, up, down, home).

o Direct cursor addressing.

e Access and use of 25th line.

and you can also:

Transmit page.

Transmit 25th line.

Insert and delete characters and lines.

Enter and exit the graphics and reverse
video modes.

Erase lines or page or text.

e Modify baud rates.

Page 1-4

The highly reliable, standard-size electronic
keyboard uses the universally accepted, standard
typewriter format. Each key stroke is affirmed by an
audible click.

A 12-key keypad duplicates the numeric key in a
calculator format. This lets you rapidly enter numbers
in programs that call for just numbers. In addition, the
shifted keypad functions allow you to insert and
delete lines and characters, and move

the cursor. Plus, an alternate mode allows you to
interchange the shifted and unshifted functions
and send special codes to your Computer.

These features, along with the stylish molded cabinet,
make this Zenith Data Systems Digital Computer a
versatile and powerful computing center.

WARNING

This equipment generates, uses, and can radiate radio frequency energy and if not installed and used
in accordance with the instructions manual, may cause interference to radio communications. As
temporarily permitted by regulation it has not been tested for compliance with the limits for Class
A computing devices pursuant to Subpart J of Part 15 of FCC Rules, which are designed to provide
reasonable protection against such interference. Operation, of this equipment in a residential area is
likely to cause interference in which case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

If this equipment does cause interference to radio or
television reception, which can be determined by
turning the equipment off and on, the user is encour-
aged to try to correct the interference by one or more
of the following measures:

e Move the computing device away from the
receiver being interfered with.

e Reorient the receiving antenna.

e Plug the computing device into a different AC
outlet so that the computing device and
receiver are on different branch circuits.

e Disconnect and remove any I/O cables that are
not being used. (Unterminated I/O cables
are a potential source of high RF emission
levels).

e Unplug and remove any serial 1/O circuit
board cards that are not being used. (Here
again, unterminated cards can be a source
potential interference).

e Be certain that the computing devices are
plugged into grounded outlet receptacles.
(Avoid using A/C cheater plugs. Lifting of the
power cord ground may increase RF
emission levels but also presents a lethal
shock hazard to the user).

If additional help is needed, consult the dealer or ask
for assistance from the manufacturer. Customer ser-
vice information may be found on the inside back
cover of this manual or on an insert sheet supplied
with this equipment. The user may also find the fol-
lowing booklet helpful: "How to Identify and Resolve
Radio-TV Interference Problems." This booklet is
available from the US Government Printing Office,
Washington, D.C. 20402 — Stock No. 004-000-00345-4.

Page 2-1

SPECIFICATIONS

CPU AND MEMORY

PrOCESSOT ... ettt Z-80

CIOCK. ..c.vviieeieeeee et e 2.048 MHz.

IMEIMOTY .evveeiiieeiieeeteeeteeesve e et e e sveeeteeeeaeeseveeesneenns 48 k bytes user RAM (expandable to 64k), Z-89 series
64k bytes user. RAM, Z-90 series 8k System for ROM
and RAM. 8k reserved.

CRT .ottt ettt et bee e 12" diagonal.

Display FOrmatccccccvevvervenienierienieseeeeeeieeieens 24 lines of 80 characters (with access to 25th line).

Display SiZe ...ccceceeeviirieieirereeeee s 6.5" high x 8.5" wide.

Character SiZe.......c.eeevvieeiiieeiieeciee et 0.2" high x 0.1" wide (approximate).

Character TYPE ...cccveeveerieiieieeriierre e ereereereeseeeseee s 5 x 7 dot matrix (upper case); 5 x 9 dot matrix (lower
case with descenders); 8 x 10 dot matrix (graphics).

Keyboardc.coocvieiiiieiiieciee e 84 keys (60 alphanumeric, 12 function/control) plus a
12-key numeric/control pad.

(0131 410) OO Blinking, nondestructive, underline, block, or dis-
abled (DIP switch selectable).

Cursor CONtIOLSocovvvveveiiiieeieeeeeeeeeee e Up, down, left, right, home, CR, LF, back space, and
tab, and cursor off.

Cursor AddresSing.........cccveeeeveeerveeririeerieeesreeeereeesneenns Relative and direct.

TAD. o Standard 8-column tab.

Refresh Rateccocoevieeiiiiiiiieceee e 60 Hz at 60 Hz/50 Hz at 50 Hz line frequency.

Edit Functionsccoooeeniiiiiiiiiieeeececeeeee, Insert and delete character or line.

Erase FUNCHONSc.cccveevvieniieiiecre e Erase page, erase to end of line, and erase to end of
page.

Bell oo Audible alarm on receipt of ASCII BEL.

VIO ittt Normal and reverse by character.

Page 2-2

Serial Interface

Channelsooccoeeiveiieiierieee e 3 EIA RS-232C.
Each channel provides serial data and primary
R S-232C handshake.

OUtPUt LeVelS ..ooooeveeeiiieiieeee et RS-232C.

INPUL LeVEIS...uiiiierieeieciecie et RS-232C compatible.

Character Lengthccoooiiiiiniiniinieeeeeeeeeiee 5, 6,7, or 8 bits.

Parity ooeeeieeeie e Even, odd, stick, or none.

StOP BItS .vvevieiieciecie et 1,1-1/2, or 2.

Baud RAtescevvviiiiiiiiieieeeeeeeeeeeeeee e All standard rates to 57,600 baud.

GENERAL
Power Requirementscccoeeeereenienieeieeieeseeieans 115/230 volts at 90 watts max.
SIZE it 13" high x 17" wide x 20" deep.
(33x43.2 x 50.8 cm).

WEIZHE ..ot 46 lbs. (20.7 kg)

Operating Temperaturecccccceeeveeerveencveeeerveenneenns 10° to 35° Celsius.

Storage Temperatureccecceeeeereereeneereeseeeneeenne 0° to 50° Celsius.

T

Zenith Data Systems reserves the right to discontinue products and to change
specifications at any time without incurring any obligation to incorporate new
features in products previously sold.

Page 3-1

SET-UP AND TESTING

POWER LINE CONSIDERATIONS

If you need to change the position of the 115/230 switch
(located on the bottom of the Computer), be sure you
change rear panel fuse F1 to the proper value as follows:

For 115 VAC, use a 1.5-ampere, 125 volt, slow-
blow fuse.
For 230 VAC, use a l-ampere, 250 volt, slow-
blow fuse.

The plug on the power cord is for standard 115 VAC
outlets. For 230 VAC operation in the U.S.A., cut off
and replace in a manner such that your power connec-
tion conforms with section 210-21 (b) of the National
Electric Code, which reads, in part:

"Receptacles connected to circuits having diffe-
rent voltages, frequencies, or types of current (AC
or DC) on the same premises shall be of such
design that attachment plugs used on such
circuits are not interchangeable."

When you install the new plug, make sure it is
connected according to your local electrical code.
Units with three-wire line cords must always
have the green wire connected to chassis ground.

Be sure the NORM/LOW switch (on the bottom of the
Computer) is set in its proper position to match
your line voltage as follows:

NORMrange - 110 V to 130 V rms or
220 V0260 V rms.
LOW range — 100 V to 120 V rms or

200 V to 240 V rms.

NOTE: If you do not know the value of the line
voltage in your area, set the NORM/LOW
switch to NORM.

Page 3-2

CABINET REMOVAL

Whenever you need to remove the cabinet top:

o Refer to the inset drawing on Pictorial 3-1,
insert the blade of a small screwdriver into the
notch in the latch plate, and then, as you lift
upward on the front, slide the latch plate toward
the front of the Computer about 1/4".

« Likewise, open the latch plate on the other side
of the cabinet top.

INSET

WARNING: When the line cord is connected
to an AC outlet, hazardous voltages can be
present inside your Computer. See Pictorial 3-1.

Carefully tilt the cabinet top back.

Unplug the fan.

When the top is tilted straight up, carefully lift
the hinges out of the rear panel.

Simply reverse this procedure to close and lock the
cabinet top back on the Computer.

Warning: Boxed-in areas show
hazardous voltage locations.

CABINET
TOP

TILT
BACK

PICTORIAL 3-1

Page 3-3

TESTING

The purpose of the "Testing" is to verify that your
Computer is working properly. Therefore, it is not
necessary, at this time, to have a working knowledge
of your Computer. If, at any time during the "Test-
ing," you fail to obtain the proper results, refer to
Pictorials 4-1 (Page 4-2) and 4-2 (lllustration
Booklet, Page 1) to make sure the circuit board
switches are properly set. Then, if necessary, refer
to the "Troubleshooting" section on Page 7-1.

INITIAL TESTS

WARNING: Never turn the Computer on and off in
rapid succession.

() Push the OFF LINE switch once or twice to
be sure it is in the out (up) position.

() Plugin the line cord and push the rear panel
POWER switch to ON. The speaker should pro-
duce one or two "beeps."

After a minute or so, the prompt (H:) should
appear and the cursor (short line) should blink
on and off at the upper left-hand corner of the
screen.

() Pushthe OFF LINE key to the down position.
Then simultaneously push down the CTRL and
G keys. Again, the speaker should "beep."

() Pressthe G key. This time, you should hear only
a "tick." (You should hear a tick each time you
press a key.) Also, the letter "g" will appear on
the screen.

() Release the OFF LINE key to its out position.

() Push the right-hand SHIFT and RESET keys.
This clears the screen to "H:".

MEMORY TEST

This test will test the user RAM in your Computer.
[All other memory is reserved and will not be tested.
See the "Memory Map" (Page 4-8) under "ZDS Sys-
tem Configuration" on Page 4-1.] The routine will
first load a number into each byte of RAM (example:
000 is loaded into each memory location first). Then it
will go back and read the number at each location,
check it to be sure it is correct, add 001 to the number,

place the new number back into the memory location
it just read from, and then go on to the next address.
This procedure is repeated until all of the user RAM
is tested for all possibilities, and then starts over.

The test routine first clears the CRT and then displays
the memory test message, the last working address
(LWA) in the user RAM area (16k = 137377, 32k =
237377, 48k = 337377, and 64k =377377), and the
pass value (current value stored and read out of

Example:

Dynamic RAM test
LWA=337377 (for 48k of user RAM)
Pass = 015 (current value stored and read
out of RAM)

If the memory test detects an error before it reaches
the end of the memory (LWA), the address where the
error occurred and the actual contents that was read
will be displayed.

Example:

Dynamic RAM test
LWA =337377
Pass =015
ERROR @ 132241 =017

This means that there is a problem with bit 1(of 0-7) at
address 132241. If the test is successful, the PASS
number will reach 377 and then start over. This
will take approximately 5, 10, or 15 minutes;
depending on how much memory you have
installed.

() To start the test, be sure that you have the "H:"
prompt. (If not, simultaneously push down the
right-hand SHIFT key and the RESET key. The
Computer will reset.) Then type
G7375(cr) (shown as underlined below). [(CR)
means to push the RETURN (carriage return)
key).] The Computer will automatically insert
the "o" and spaces, so the entire entry will be:

H: Go 7375 (cr)

To stop the test, simultaneously push the right-hand
SHIFT and RESET keys.

Page 3-4

Memory failures usually fall into two categories: data
and address. A data failure constitutes a
particular number or group of numbers from 000 to
377 that cannot be written into or recalled from
memory. This type of failure may be due to a solder
bridge or defective cells in a memory chip. Since
there are eight memory IC's, one for each bit of a byte,
it is possible to write a combination of bytes at the
address where the test routine failed to determine
which, if any, of the memory IC's are at fault. If the
memory IC's are interchanged between bits, the
difficulty should move with the faulty IC. Be
careful when you interchange memory IC's since
these IC's are MOS devices. The following chart will
helo vou locate each memorv IC.

HIGHEST
16k
(H88-2)
MIDDLE
16k
(H88-2)

LIRS |US33 [U532 U531 | US30 | U529 | U528 | U527 | U526

U549 | U548 U547 |US46 | US45| U544 (US43 | U542

U541 | U540 | U539 U538 | U537 | U536 | U535 | U534

D7 D6 D5 D4 D3 D2 D1 DO

—

MOST LEAST
SIGNIFICANT SIGNIFICANT
DATA DIGIT DATA DIGIT

Address faults are the most difficult to isolate. They
may be caused by solder bridges between address
lines on the circuit board or by a faulty memory IC.
When address lines are shorted together (held high or
low), the CPU cannot access the memory locations
requested. Often, more than one address will access
the location. Therefore, recalling how the "Memory
Test" functions, you can see that a given memory
location will be incremented too often.

The most practical approach for locating an address
failure is to substitute memory IC's or address buffers
(U513 and U514), one at a time, until you locate the
problem.

COMPUTING TEST

This test will test the computing portion of your
Computer. You will first enter a short program into
the Computer and then run it. If you make a mistake
entering a number, just start over. It is a very short
program.

() Simultaneously press down the right-hand
SHIFT key and the RESET key. The Computer
will reset and then give you the "H:" prompt.

() Type S; the Computer will finish the word
"Substitute." Type 040100 and push the RE-
TURN key. The computer will respond with:

040100 XXX __ (Each X can be any digit 0-7).

() Enter 076 and push the SPACE bar. The new
display should be:

040100 XXX 076
040101 XXX __

() Enter 011 and push the SPACE bar. The new
display should be:

040100 XXX 076
040101 XXX 011
040102 XXX

() Enter 315 and push the SPACE bar.

() Continue by making the following entries. Push
the SPACE bar only once after each entry.

302 (SPACE)
003 (SPACE)
074 (SPACE)
376 (SPACE)
155 (SPACE)
312 (SPACE)
100 (SPACE)
040 (SPACE)
303 (SPACE)
102 (SPACE)
040 (SPACE)

() Push the RETURN key. The Computer will
respond with the "H:" prompt.

() Type P; the Computer will print the words
"Program Counter."

Enter 040100 and then push the RETURN key. Again
the computer will respond with the "H:" prompt.

In the next step, the Computer will print several
symbols, the numbers 0 through 9, several more

Page 3-5

symbols, the alphabet in capitol letters, some more
symbols, and part of the alphabet in lower case
letters -- all on one line. Then it will keep printing
this line, and soon will rapidly scroll the top line of
the page. (NOTE: The bottom line will be
flashing.) To stop the program, again push the
right-hand SHIFT and RESET keys.

() Type G; the computer will print the word "Go".
Then push the RETURN key

Page 3-6

Page 4-1

ZDS SYSTEM CONFIGURATION

This section of the Manual shows you the normal
switch and jumper positions. If you like, check them
to be sure they are in their proper positions, or set
them (as explained) for the operation that you desire.

Your Computer communicates with your peripherals
at RS-232C signal levels. The 25-pin ”D” connec-

tors on the rear panel conform to RS-232C standards
and mate with most equipment that conforms to this
standard.

Refer to the following sections that pertain to your
Computer.

TERMINAL LOGIC CIRCUIT BOARD

Carefully tilt back the cabinet top. See Pictorial 4-1.

Be sure the POWER switch is off. Then remove the
screws that hold the terminal logic circuit board (the
rear circuit board). Remove the two screws that hold
the top of the CPU logic circuit board. Disconnect the
cables, as necessary, and lift the circuit boards up out of
the Computer.

SWITCH S402 (Secondary power-up con-
figuration)

Push all of the switches on S402 up (0) as shown in
Pictorial 4-1.

If you ever want to change these switch positions,
they are defined as follows:

SWITCH

SECTION DESCRIPTION
0 0 = underscore cursor; 1 = block cursor
1 0 =key click; 1=no key click
2 0 = discard past end of line; 1 = wrap

around

3 0 =no auto LF on CR; 1 = auto LF on CR
4 0 =no auto CR on LF; 1=auto CR on LF
5 0=Z7ZDS mode; 1 = ANSI mode
6 0 = keypad normal; 1 = keypad shifted
7 0 =60 Hz refresh; 1 = 50 Hz refresh

0
PICTORIAL 4-1 | &I
: o l

¥

SWITCH S401
(Primary power-up configuration)

Refer to Pictorial 4-1 for the following steps.

This switch (located on the terminal logic circuit
board) sets the following power-up and reset modes:

SWITCH DESCRIPTION
SECTION
0-3 Baud Rate
4 Parity Enable
5 Odd/Even Parity
6 Normal/Stick Parity
7 Half/Full Duplex

The particular configuration that you select is in-
itialized when you power-up the Computer or when
you perform a Computer Reset, Pictorial 4-1 shows
the location of switch 5401. Remember that, as you
look at switch S401 from the front of the
Computer, you select the one (1) positions of the
switch by pushing the switches down, and you select
the zero (0) positions by pushing the switches up.

| BBBEHBBH

TERMINAL LOGIC
$402 CIRCUIT BOARD

L Z AE'...'.Z'.T,"___ o .
T s B

i #A4a%20a |

01234567
Gy s o= (QN) s
!

() Set switch S401 for:

MODE SWITCH SECTION
012 3 4567
9600 Baud 001
No Parity O
Odd Parity 0 0
Normal Parity 1
Full Duplex

When no parity is selected, you can set the even and
normal parity switch sections to either position since
they will be ignored.

Each function of switch S401 is explained in the fol-
lowing text.

Baud Rate

When used as a Computer, the baud rate must be set to
9600. If you use your Computer as a terminal (see Page
5-18), you can reset the baud rate as explained below.

You can select any of 12 different baud rates (110-
9600). To do this, place sections 0, 1, 2, and 3 of
switch S401 to the proper positions as shown below.
The baud rate will be initialized (or updated) upon
Reset or during power-up.

BAUD
RATE

SWITCH SECTION
3

N/7A
110
150
300
600
1200
1800
2000
2400
3600
4800
9600
19200*

RPORPORFRPOORORrRORrRQIO
OORrRFRPOOFROORRFROOR
PRPOOOORRFRPFRPROOOOIN
PRPRRPRPRPRPOOOOOOO

Parity

You can program the ACE (Asynchronous Communi-
cation Element) to either generate or eliminate the
parity bit. Section 4 of switch S401 selects the parity
bit.

Down (1)
Up (0)

ZDS Software does not check parity.

= Parity
= No Parity

* Not currently supported (may drop characters).

Page 4-3

Odd/Even Parity

If section 4 =1, then section 5 of switch S401 selects
odd or even parity.

Down (1)
Up (0

Normal/Stick Parity

= Even Parity
= 0dd Parity

If section 4 = 1, then section 6 of switch S401 sets
the ACE to transmit and receive either stick or
normal parity.

Down (1)
Up (0

= Stick Parity
= Normal

Half/Full Duplex

Section 7 of switch S401 selects either full or half
duplex communications between the computer and
the terminal sections.

Down (1)
Up (0

= Full Duplex
= Half Duplex

ZDS Software supports full duplex operation. Set sec-
tion 7 to 1 for full duplex operation.

() Replace the circuit boards and reconnect their
cables.

Page4-4

CPU LOGIC CIRCUIT BOARD

Refer to Pictorial 4-2 (Illustration Booklet, Page 1) for
the following steps.

Switch SW501

The functions that switch SW501 selects are deter-
mined by integrated circuit U518.

CASSETTE 1/0 USAGE

When you use the cassette I/O, part number 444-40
must be installed at U518. Set 5W501 switch sections
as directed in the next two steps. Then proceed di-
rectly to "Programming Jumpers."

() Set section 5 for sSws01 to "1."

() Set the remaining seven sections of SW501 to
6‘0”

5-1/4" HARD-SECTORED FLOPPY USAGE

When you use a 5-1/4" hard-sectored floppy disk,
integrated circuits part numbers 444-40, 444-62, or
444-84 must be installed at U518. Set SW501 switch
sections as directed in the next two steps. Then pro-
ceed directly to "Programming Jumpers."

() Set SW501 section 5 to "1."

() Set the remaining seven SW501 sections to "0."

8" FLOPPY DISK (Z-47) USAGE

When you use an 8" floppy disk (Z-47), integrated
circuit part numbers 444-62 or 444-84 must be in-
stalled at U518.

e When you boot-up from a 5-1/4" hard-
sectored floppy disk to enable your 8"
floppy disk, set SW501 switch sections as
directed the next two steps. Then proceed
directly to "Programming Jumpers."

() Set sws01 switch sections 2 and 5 to "1."

() Set the remaining six SW501 sections to "0."

e When you boot-up from the left hand 8"
floppy disk drive, set SW501 switch sections
as directed in the next two steps. Then proceed
directly to "Programming Jumpers."

() Set SW501 switch sections 2,4, and 5to "1."

() Set the remaining five SW501 switch sections
to HO.H

ALTERNATE I/O APPLICATIONS

DIP switch SW501 is used to program the initial
power-up configuration. Its setting definitions de-
pend on, and vary with, the monitor ROM IC installed at
CPU circuit board location U518. The following
paragraphs define the sections of this switch for these
selected ROM's.

Definition of SW501 with MTR-88 (#444-40)

When IC part number 444-40 is installed at U518, the
following able describes the function of each SW501
switch section. Only the three most significant ad-
dress bits, SW501 sections 5, 6, and 7, are defined.
Set switch SW501 sections 0 through 4 to "0."

SW501 switch 6 and 7 select the power-up baud
rate used for communication with the terminal
(which is usually the internal terminal logic circuit
board). The four options for switch sections 6 and 7
are:

SECTION7 SECTIONG6 BAUDRATE
0 0 9600
0 1 19200
1 0 38400
1 1 57600

The selected baud rate must match the baud rate set at
S401 on the terminal logic circuit board. The terminal
logic circuit board firmware supports only the 9600
baud at this time (19200 can be selected and used, but
characters may be lost). Therefore, when you use your
H-89/90-Series Computer, you should set SW501 sec-
tions 6 and 7 to "0."

You can use SW501 section 5 to force a memory test
on RESET or power-up. To force the test, set section 5
to "0." Since the test will not stop until the switch is
reset, the switch must be set to "1" before you can use
your Computer for normal operation.

Definitions of SW501 with MTR-89
(#444-62)

When IC part number 444-62 is installed at U518, the
following table describes the functions of each
SW501 switch section.

Page 4-5

SWITCH
SECTIONS SETTING* DESCRIPTION
1 and 0 00 Port 174/177Q (7CH-7FH) has a 5-1/4" hard-sectored floppy disk (normal).
01 Port 174/177Q has a Z-47, 8" floppy.
10 Undefined.
11 Undefined.
3 and 2 00 Port 170/173Q (78H-7BH) is not in use (normal with Z-47, 8" floppy
disk).
01 Port 170/173Q has a 8" floppy disk (normal with Z-47).
10 Undefined.
11 Undefined.
4 0 Boots from device at port 174/177Q (7CH-7FH) (5-1/4" hardsectored
floppy disk).
1 Boots from device at port 170/173Q (78H-7BH) (Z-47, 8" floppy disk).
5 0 Performs memory test upon power-up or SHIFT-RESET.
1 Does not perform memory test (normal).
6 0 Sets console to 9600 baud (normal).
1 Sets console to 19200 baud (not currently supported).
7 0 Normal boot (normal).
1 Auto boot on power up or SHIFT-RESET (not recommended).

*
Right-hand value is for switch section 0 or 2, depending on respective Switch Section column.

Page4-6
Definition of SW501 with MTR-90 (#444-84)

When IC part number 444-84 is installed at U518, set
the sections of SW501 as described in "Definition of
Sw501 with MTR-89, except for sections 0, 1, 2, and
3, which are defined as follows:

SWITCH
SECTIONS SETTING* DESCRIPTION
00 Port 174/177Q (7CH-7FH) is 5-1/4" hard-sectored floppy disk.
1 and 0 01 Port 174/177Q is Z-47, 8" floppy disk.
10 Port 174/177Q is Z-67, 8" hard disk.
11 Undefined.
00 Port 170/173Q (78H-7BH) is Z-37 soft-sectored disk.
3 and 2 01 Port 170/173Q is Z-47, 8" floppy disk.
10 Port 170/173Q is Z-67, 8" hard disk.
11 Undefined.

Programming Jumpers

The positions of jumpers JJ501, JJ502, and JJ503, are
determined by the amount of memory installed in
your Computer. Position these jumpers as directed in
the following chart. This determines the
addresses supplied to the memory decoder IC
us17.

MEMORY 1503 Js02 JJ501

16k bytes B 0 0

32k bytes B 0 1
() 48kbytes B 1 0
() 64kbytes B 1 1

The position of programming jumpers JJ504
through JJ507 are determined by the types and
locations of the system PROM's. These jumpers
will be set correctly for the PROM(s) supplied with
your Computer. Instructions for changing these
jumpers will be supplied with any product
which requires these changes.

JUMPER LOCATION

() J504 Voltage to U519 pin 22;
0=-5V,1=+5V.

() JI505 Input to U514 and U519 pins 19;
0=+12V, 1=A10.

() 11506 Input to U518 and U519 pins 20;
0=A10, 1=gnd.

() 11507 Chip select of U519:

A =Bit 1 of U516 decoder.
B =Bit 4 of U516 decoder.

HARD-SECTORED 5-1/4" SINGLE-
DENSITY FLOPPY DISK

The single-density floppy disk interface circuit board
1s installed at P506 and P512 on the CPU circuit
board.

Page 4-7

SERIAL INTERFACE

() Refer to Pictorial 4-3 (Illustration Booklet, Page 3)
and set all three programming jumpers to OFF if
this has not already been done.

NOTE: These jumpers determine the interrupt priority
of the ports. When a jumper is in the "OFF" position,
no interrupt exists for that port. When you install the
jumper at 3, 4, or 5, an RST 3, an RST 4, or an RST 5
(respectively) instruction is executed when the inter-
rupt for that port occurs.

The first port on the circuit board is located at address
340/347Q (OEOH-0E7H) and is normally used as the line
printer port. However, it is not restricted only to that
use, as it is a standard RS-232C interface with a "DCE"
connector.

The second port on the circuit board is located at
address 320/327Q (0DOH-OD7H) and is a general pur-
pose port. It is a standard RS-232C interface with a
"DCE" connector.

The third port on the circuit board is located at ad-
dress 330/337Q (OD8H-ODFH) and is a general pur-
pose port. It is a standard RS-232C interface with a
"DTE" connector, suitable for use with a MODEM.

Assembly language programmers who wish to prog-
ram the ACE may refer to Chapter 13, Page 13-4.

Page4-8

MEMORY MAP

The Memory Map (Illustration Booklet, Page 2) illus-
trates the use of the specified memory locations.

1/0 PORT USAGE

PORT LOCATION

USE HEX OCTAL
Not specified, available 0-77 0-167
Cassette 1/0 (if used) 78-79 170-171
Disk I/0 #1 78-7B 170-173
Disk 1/0 #2 7C-TF 174-177
Not specified, reserved 80-C7 200-317
DCE Serial I/O DO0-D7 320-327
DTE Serial /O D8-DF 330-337
DCE Serial I/O EO-E7 340-347
Console /0O E8-EF 350-357
NMI* FO-F1 360-361
General purpose port F2 362
NMI* FA-FB 372-373

GENERAL PURPOSE PORT (0F2H) BIT DEFINITIONS

BIT

INPUT BIT OUTPUT

(SW501 SWITCH SECTION)

NNk W~ O

NN N R WD~ O

Hardware single step enable

2 mSec clock enable

Latched bit at memory expansion connector
Not used

Latched bit at memory expansion connector
Selects HDOS map or CP/M map

Latched bit at I/O expansion connector
Latched bit at I/O expansion connector

NN DN DW= O

*
Ports labeled "NMI" are not used. Rather, an NMI is generated if the
port is accessed for either input or output. This is done for
compatibility with earlier computer products, specifically the

Heathkit Model H-8.

OPERATION

Page 5-1

COMMAND SUMMARY

CARE OF YOUR FLOPPY DISKETTE - Do not
turn your Computer on or off when a floppy
disk is installed in the disk drive with its door
closed. Errant power signals can cause the
disk head to bounce. If the drive door is closed,
the drive head is engaged on the diskette and can
possibly damage the diskette.

This summary is a list of the commands that
your computer will respond to and the
responses that it will make. You may enter
commands in either upper or lower case
characters. In all cases, pushing the DELETE
or RUBOUT key prior to pushing the RETURN
key (which terminates the command) will cancel
the current command and cause the Computer
to respond with the prompt (H:) All byte
entries are in octal, and all address entries are in
split octal. NOTE: Split octal is two 3-bit bytes
as shown in Figure 5-1.

HIGH ORDER LOW ORDER
BYTE BYTE
15,14,13,12,11,10,9 , 8|7 /6,5 ,4 ,3,2,1,0
0‘0‘1‘0‘0‘0‘0‘0 1‘0‘1'0'1‘0'1'1
0 4 0 2 5 3
Figure 5-1

1. Turn on the Computer power. Then wait a few
seconds until the CRT becomes illuminated.

2. Boot:

After you see the prompt (H;), enter "B". The
Computer will complete the "Boot" message and
then wait for a Carriage Return.

Insert a diskette in the floppy disk drive and close
the door.

Now press the RETURN key and the system should
begin booting up. If the system seems to stop after
a second or two of disk activity, depress the space
bar two or three times. (You may be directed to do
this by a message on the screen, depending on the
firmware installed).

3. Go to the user routine; (G) or (G ADDR)

A. After the prompt, enter "G". The Computer
will complete the "Go" message.

B. Enter either a Carriage Return or a new address
and a Carriage Return.

C. If you did not enter a new address above (in
Step B), control will be given to the routine at
the address specified by the user program
counter. However, if you entered a new
address and a Carriage Return, control will
be given to the address you specified.

Page 5-2

4. Set the user Program Counter values: (P) or (P
ADDR)

After the prompt, enter "P". The Computer will
complete the "Program Counter" message.
Now you may enter a new program counter
value (in split octal) and terminate it with a
Carriage Return. If no new value is entered
and you enter a Carriage Return, the current
contents of the user Program Counter will be
displayed. Again, a new value may be entered
and terminated with a Carriage Return, or just
entering a Carriage Return will cause a return to
the prompt and the current value to be unaltered.

5. Substitute memory: (S) or (S ADDR)

After the prompt, enter "S". The Computer will
complete the "Substitute" message and wait for
an address to be specified (in split octal
notation) and ended with a Carriage Return. The
address specified will then be displayed,
followed by its contents. At this point, you
can change the contents by entering the octal
value to be placed into memory. If you do not
want a change, or after you have entered the new
value, there are three options.

A. To view the contents of the next address;
enter a SPACE.

B. To view the contents of the previous
address; enter the minus sign (-).

C. To exit the Substitute mode; enter a
Carriage Return.

KEYBOARD OPERATION

Pictorial 5-1 (Illustration Booklet, Page 3) shows the
keyboard of the Computer. The power ON/OFF
switch is located on the right rear corner of the
back panel. Whenever you turn on the Computer, allow
the tube about 30 seconds to warm up. You should
then see a flashing line (cursor) or block cursor (if it
was selected) in the upper left-hand corner of the
screen.

The keyboard allows you to send data to the Computer
or the screen. Most of the keys are the same as they are
on most typewriters; they type the same al-
phanumeric characters. A clicking sound tells you
that each keystroke has been processed. You
cannot damage the Computer by typing on the keys.

Page 5-3

SCREEN
FULL
DUPLEX
o ens COMPUTER
SWITCH UP PORT 10N
KEYBOARD
SCREEN
OFF LINE
OFF LIME o——o
SWITCH DOWN
COMPUTER
PORTION
KEYBOARD -—
SCREEN
COMPUTER CAN SEND)
DU;tg; (TO TERMINAL
q:'.-
OFF LINE
SWITCH UP COMPUTER
PORTION
KEYBOARD
—i-

PICTORIAL 5-2

The screen contains 2000 normal character positions;
25 lines of 80 characters. Only one character can oc-
cupy a character position at any given time and it will
remain there until it is erased or replaced.

When the Computer is initially turned on, it clears the
screen by placing spaces in all character positions.
The cursor is the blinking horizontal line that appears at
the home position. It underlines the character position
where the next character will be written. (The
block cursor will fill the character position.)

As shown in Pictorial 5-2, you can use the Computer
in any one of three different modes; full duplex, off
line, or half duplex. (However, half duplex is not a
normal ZDS mode.)

When the Computer is on line, the keyboard can
transmit any one of the 128,, ASCII characters (see the
"ASCII Characters" chart on Page 11-1) to the
computer section. However, some of these characters
will not be displayed if the Computer sends them back
to the Terminal section. (See the chart.)

Page 5-4

In the off line mode, the terminal is effectively dis-
connected from the Computer and the keyboard con-
trols the screen directly. This way, you can position
the cursor (1, | ,—, «—, and HOME), insert or delete
characters or lines (IC, DC, IL, and DL), or erase
(ERASE), without sending the codes to the Computer -
which could otherwise disrupt a program, etc.

Another way of controlling the screen without sending
code to the Computer is to use the CTRL key.
Example; you want to erase the screen, but you do not
want to transmit a code to the Computer. Press and
hold the CTRL key and then type SHIFT ERASE. This
tells the terminal section to erase the screen, but not to
send the code to the Computer section. Again, you
can use this procedure with the cursor keys (1, | ,—, «,
and HOME), the Insert Line, Delete Line, and Insert
Character, and Delete Character keys, and
ERASE.

Whenever you use the special escape codes to enter
and exit the special modes, make sure you enter the
lower-case and upper-case letters just as they are called
for in this Manual. For instance, type ESC p (not
ESC P) to enter the reverse video mode. See "Special
Modes" on Page 5-7.

The "ASCII Characters" and "Escape Sequences" (see
the "Appendix," Page 11-1) show the commands and
special escape sequences that the terminal section
sends and responds to.

Your computer must contain the proper software for
it to respond to and generate the codes that use these
special features. Different versions of software may
support different features.

The Computer has a 128 character input FIFO (first in,
first out buffer) for receiving and holding
characters until the terminal section can process
them. In some cases (such as when the terminal
section is operating at 9600 baud in the "insert
character" mode), the FIFO can be filled faster than
the terminal section can process the characters. In this
case, the terminal section will send XOFF (control S)
when the FIFO has received 112 characters. After
the terminal section has processed enough
characters so that only 96 characters remain in
FIFO, it will send XON (control Q) to the computer
section to indicate that it is ready to accept more
characters.

When the terminal section sends XOFF, this is only an
indication that the buffer is nearly full. Characters will
not be lost until after the FIFO has received a full 128
characters. At this point more incoming characters
will be lost and the bell will sound.

Three BASIC demonstration programs are included
in the "Appendix" to show you how some of the
Computer features are implemented in BASIC. Enter
and run them if you wish.

NORMAL MODES AND KEYS

The following descriptions are for switch S402 set to all

ZEros8.

For the operation of special functions, refer to

"Special Modes and Keys" on Page 5-7.

ALPHABETIC KEYS

The Computer has the standard 26 letters of the al-
phabet. These keys can transmit either lower-case or
upper-case codes as well as display them on the
screen. You can either hold the SHIFT key down or
you can push the CAPS LOCK key to obtain
uppercase letters.

NONALPHABETIC KEYS

The non-alphabetic keys are those with double mark-
ings. These include the numbers 0 through 9, punctu-
ation marks, and special characters. The lower mark-
ing is generated when both of the SHIFT keys are
released, while the upper marking is generated when
either (or both) SHIFT key is held down. The CAPS
LOCK key will not shift these keys.

MISCELLANEQOUS

The characteristics in the following description apply
only to the terminal's internal key handling of the
listed codes, which can be overridden by the
software.

RETURN — Moves the cursor to the first character
position of the line that it is currently in. If the cursor
is already at the first character position, it remains
there. RETURN is a non-displayable character. Nor-
mally, there is no automatic line feed.

LINE FEED — Moves the cursor down one line. LINE
FEED is a non-displayable character. If the cursor is at
the bottom line, a LINE FEED causes it to remain there,
but all of the data on the screen moves up one line.
Data on the top line is lost as it is scrolled up and off the
screen. Normally, there is no CR.

SPACE BAR — Causes the cursor to move one charac-
ter position to the right. A Space is a non-
displayable character. If you type the Space Bar when
the cursor is positioned below a displayed character, the
character is replaced by a space and the cursor moves
one character position to the right. If you type the
Space Bar when the cursor is at the right end of a
line, the cursor will remain there since neither a
carriage return nor a line feed is generated.

BACK SPACE — Moves the cursor one space to the
left. If the cursor is at the start (left end) of a line, it will
not move when you type a BACK SPACE. ZDS
software uses this key to delete the last input charac-
ter.

DELETE (Rubout) — Transmits the ASCII code 177Q
(7FH). It is a non-displayable character. ZDS software
uses this key to cancel the last character that was
input.

TAB — When typed on the keyboard, it transmits the
ASCII code 011Q (09H). When received by the termi-
nal, it moves the cursor to the next tab stop (eight
character spaces) to the right. The tab stops are fixed
at 9, 17, 25, 33, 41, 49, 57, 65, and 73 (columns are
numbered 1 through 80). If the cursor is at character
position 73 through 79, it will only move one charac-
ter position to the right each time you type the TAB
key. If the cursor is at character position 80, it will not
move when you type the TAB key (unless the
wraparound feature has been selected).

Page 5-5

ESC (Escape) — A non-displayable character that
transmits the ASCII code 033Q (1BH). This key is used
in combination with other keys to enter and exit special
modes. See "Special Modes and Keys" on Page 5-7.

For a complete listing of ZDS and ANSI codes using
escape sequences and their definitions, refer to the
Appendix (Pages 11-10 and 11-17).

REPEAT — When you hold this key in, along with
another key, it will repeat the function of the other key as
long as both keys are held down. The repeat rate is
approximately 8-characters per second. However, if
the baud rate that has been selected is less than the
repeat rate, the repeat function will operate at the
slower rate.

SHIFT — When you use this key in conjunction with
another key, the character printed on the upper por-
tion of that key will be displayed. When you use
the SHIFT keys in conjunction with the alphabetic
keys, the upper-case character is displayed.

CAPS LOCK — When this latching key is down, the
terminal section will transmit the ASCII code for, and
display, upper-case (capital) alphabetic letters. It
does not shift the keys with the double markings. This
is not a shift lock.

OFF LINE — When this latching key is down, the
terminal section is inhibited from transmitting or re-
ceiving data. However, any displayable characters
that you type on the keyboard will appear on the
screen and any local control codes will be responded
to.

BREAK — When you type this key, it generates a
continuous space at the output of the terminal sec-
tion. It is generally used to tell the computer that you
wish to interrupt execution.

RESET — Allows you to reset the Computer to its
preset condition; it exits all escape modes and resets the
baud rate to the rate selected by the switches on the
logic circuit board. To use this key, you must
press only the right-hand SHIFT key and the RESET
key at the same time. This two-key combination pre-
vents you from inadvertently resetting the Terminal.

Page 5-6

SCROLL — When this is used with ZDS software,
when in the Hold Screen Mode, you can type the
SCROLL key to instruct the Terminal to display
another line of information onto the screen. You can
simultaneously press the SHIFT and SCROLL keys to
display another 24 lines of information onto the
screen.

SCROLL
SHIFT/SCROLL

SCROLL (line)
SCROLL (page)

CONTROL KEY

The CTRL key is held down while you push one of the
other keys to send the 32 ASCII control codes to the
Computer. Refer to the "ASCII Characters" chart in
the "Appendix" (Page 11-1) of this Manual for a listing
of the control keys. These are non-displayable
characters. The Terminal responds to only seven of
the control characters from the keyboard or from the
serial input port. These seven characters are:

BELL (BEL or CTRL G) — Causes the Terminal to
sound an audible tone through an internal
speaker.

Back Space (BS or CTRL H) — Duplicates the
BACK SPACE key.

Horizontal Tab (HT or CTRL I) — Duplicates the
TAB key.

Line Feed (LF or CTRL J) — Duplicates the LINE
FEED key.

Carriage Return (CR or CTRL M) — Duplicates
the RETURN key.

Escape (ESC or CTRL [) — Duplicates the ESC key.

Cancel (CTRL X) — Cancels the current escape
sequence.

Page 5-7

SPECIAL MODES AND KEYS

Many of the following functions refer to and affect the operation of the terminal section of the Computer only.

Escape sequences allow you to use two or more keys together to provide a certain function or to get your
unit to operate in a particular manner. This provides a maximum of operation with a minimum of keys.

NOTE: The following descriptions give ZDS mode escape sequences. For ANSI escape sequences, refer to the
"Appendix." Also, the operating system must be set to accept and transmit lower-case letters before the example
programs will run properly. See Page 11-50.

CURSOR FUNCTIONS

Cursor Home - ESCH- [Shift 5 (HOME) of keypad]
Moves the cursor to the first character position on the first line (home).

Cursor Forward - ESCC— [Shift 6 (—) of keypad]
Moves the cursor one character position to the right. If the cursor is at the end of the line, it will remain there.

Cursor Backward - ESC D — [Shift 4 («) of keypad]
Moves the cursor one character position to the left (backspaces). If the cursor is at the start (left end) of a line, it will
remain there.

Cursor Down - ESC B — [Shift 2 (]) of keypad]
Moves the cursor down one line. If the cursor is at the bottom line, it will remain there; however, a scroll will
not occur.

Cursor Up - ESC A —[Shift 8 (7) of keypad]
Moves the cursor up one line. If the cursor is at the top line, it will remain there; however, a scroll will not occur.

Reverse Index — ESC I — This is a reverse line feed. Tt causes the cursor to move upward one line. If the cursor is
at the top line it will remain there. However, any text on the screen will be scrolled downward one line.

Cursor Position Report- ESC n — Reports the position of the cursor in the form of ESC Y line# column#. The

following BASIC program gives an example of its use. This is sent by the computer to interrogate the terminal;
terminal responds with the ESC Y sequence.

00010 PRINT "PRESS RETURN"; CHR$ (27);"n" ’ (send ESC sequence to interrogate terminal).

00020 LINE INPUT ; A$ > (get result - ESCY - sequence from terminal).
00030 B$=LEFTS (AS$,1) > (get left-most character of ESC Y sequence).
00040 A$=RIGHTS (AS$,LEN(AS$)-1) > (remove left-most character of returned string).
00050 PRINT ASC (B$), > (print ASCII value).

00060 IF LEN (A$) > 0 THEN 30 > (loop until string is gone).

Page 5-8

When you run the program and push the RETURN key, the Computer will respond with the following decimal
numbers:

27 89 55 44

Here the 27 equals ESC, 89 equals Y, 55 is the line# (55-31=24), and 44 is the column# (44-31=13). (See
"Direct Cursor Addressing" below.) Therefore, the reported cursor position is:

ESCY line# 24 column# 13

Save Cursor Position - ESC j— The present cursor position is saved so the cursor can be returned there later
on the "Set to previously saved position" command. "Demonstration Program #2" in the "Appendix" of
this Manual gives an example of this feature in a BASIC program.

Set to Previously Saved Position - ESCk— Returns the cursor to the position where it was when it received the
last "Save cursor position" command.

Direct Cursor Addressing - ESCY - Allows the Computer to control the position of the cursor on the screen
by entering the escape code, the ASCII character which represents the line number, and the ASCII character
which represents the column number.

The first line and the left column are both 32 (decimal) and increase from there. The number 32 (decimal)
is used because it is the smallest value of the printing characters. All values less than 32 (decimal) are
control codes, which can interfere with operating sequences of some computers.

Since the lines are numbered from 1 to 24 (from top to bottom) and the columns from 1 to 80 (from left to

right), you must add the proper line and column numbers to 31 (decimal). Then convert these decimal
numbers to their equivalent ASCII characters and enter them in the following order:

ESC Y line# (ASCII character) column# (ASCII character)

For example, to place the cursor at line 20, column 40, you will first have to add 31 (decimal) to the line number
to find the value of the line#.

31+20=51
Then use the "ASCII Characters" chart (in the "Appendix") to find the ASCII character that corresponds to 51
(decimal). In this case, it is the number 3. Next, add 31 (decimal) to the column number to find the actual value of
the column#.

31+40=71

Again, use the ASCII chart to find the ASCII character that corresponds to 71 (decimal), which is the symbol
G.

To demonstrate this example, make sure the OFF LINE key is down. Then type ESC Y 3 G. The cursor should
move to line 20, column 40.

Page 5-9

If you specify a line# that does not exist on the screen, the cursor will remain in the line it is presently in. If you
specify a column# that does not exist on the screen, the cursor will move to the right-most column.

"Demonstration Program #1" in the "Appendix" of this Manual shows you how this feature is used in a
BASIC program.

ERASING AND EDITING

Clear Display (SHIFT ERASE) — ESCE - Erases all the information on the screen. The screen is filled with
spaces and the cursor is placed in the home position.

"Demonstration Program #1" in the "Appendix" of this Manual shows you how this feature is used in a
BASIC program.

Erase Beginning of Display - ESCb— Erases the display from the start of the screen to the cursor position, and
includes the cursor position.

Erase to End Of Page (ERASE Key) — ESC J - Erases all the information from the cursor (including the cursor
position) to the end of the page.

Erase Entire Line - ESC 1 — Erases the entire line, including the cursor position.

Erase Beginning Of Line - ESC o— Erases from the beginning of the line to the cursor position, and includes the
cursor position.

Erase To End Of Line - ESC K — Erases from the cursor (including the cursor position) to the end of the line.

Insert Line - ESCL — [Shift 1 (IL) of keypad J
Inserts a new blank line by moving the line that the cursor is on, and all following lines, down one line. Then the
cursor is moved to the beginning of the blank line.

Delete Line - ESCM — [Shift 3 (DL) of keypad]
Deletes the contents of the line that the cursor is on, places the cursor at the beginning of the line, moves all the
following lines up one line, and adds a blank line at line 24.

Delete character - ESCN — [Shift 9 (DC) of keypad]
Deletes the character at the cursor position and shifts any existing text that is to the right of the cursor, and on the
same line, one character position to the left.

Enter Insert Character Mode - ESC @ — [Shift 7 (IC) of keypad]

Lets you insert characters or words into text already displayed on the screen. The first time you type IC, the
Terminal enters the Insert Character Mode. You can then use the cursor controls to place the cursor at the point
where you want to insert characters. As you type in the desired characters, any existing text directly at and to
the right of the cursor is shifted to the right. This feature lets you add letters or words to existing text without
having to re-type the whole text. When you finish inserting characters, type IC again to exit the Insert Character
Mode. The Terminal transmits an ESC @ to enter, and an ESC 0 to exit the Insert Character Mode.

Exit Insert Character Mode - ESC O — Exits the Insert Character Mode. See "Enter Insert Character Mode"
above.

Page 5-10
CONFIGURATION

Reset To Power-Up Configuration - ESC z — Nullifies all previously set escape modes and returns to the power-
up configuration set by switches S401 and S402 on the terminal logic circuit board.

Modify the Baud Rate - ESC r — Initially, the baud rate is set by the switches on the terminal logic circuit
board. However, you can change the baud rate from the keyboard. To do this, type ESC r followed by the
appropriate letter given below:

A=110 G=2000
B=150 H=2400
C=300 1=3600
D=600 J=4800
E=1200 K=7200
F=1800 L=9600
M=19200*

The baud rate reverts back to the baud rate set by the switches on the circuit board when you RESET the Terminal
(RESET and right-hand SHIFT keys) or when you turn the Terminal off and then back on.

Set Mode - ESC x — Certain operating modes can be enabled and disabled from the keyboard. To enable the
functions, type ESC x followed by the appropriate number given below:

1 = Enable 25th line. The 25th line is available as a line that is totally separate from the normally-
used 24 lines. You might use this line, for example, to identify the user function keys with labels
which correspond to the function that your Computer provides when it receives these function
key escape codes. Or you might use it to display information concerning the status of your
Computer while a program is running.

The only way to place the cursor on the 25th line is to enable the 25th line and then use "Cursor
Addressing." Once on the 25th line, the terminal acts like a 1-line terminal ("erase in display"
commands only operate on the 25th line) until you use cursor addressing to place the cursor on one of
the other 24 lines of the Computer. This is a good place to use the "Save Cursor Position" and the
"Set Cursor To Previously Saved Position" routines. With these routines, the current cursor position
can be saved, your routine can address the 25th line, write information on the 25th line, and
return to the "remembered" cursor location without your program having to remember that
location. "Demonstration Program #2" in the "Appendix" of this Manual gives an example of
these features in a BASIC program.

Also, when the cursor is on the 25th line, all erase functions affect only this line and a line feed will
not cause a scroll.

2 = Nokey click. This function turns off the key click.

3 = Hold screen mode. See "Enter Hold Screen Mode" (Page 5-11) for a description of this function.

* This baud rate is not presently supported (it may drop characters).

Page 5-11

4 = Block cursor. Produces a cursor that fills the entire character position. This is a reverse video
character position.

5 = Cursor off. Turns off the cursor so there is no cursor at all.

6 = Keypad shifted. See "Enter Keypad Shifted Mode" for a description of this function.

7 = Alternate keypad mode. See "Enter Alternate Keypad Mode" for a description of this function.

8 = Auto line feed on receipt of CR. A line feed is automatically performed (in addition to a

CARRIAGE RETURN) when a CARRIAGE RETURN is received.

9 = Auto CR on receipt of line feed. A CARRIAGE RETURN is automatically performed (in addition to a
line feed) when a line feed is received.

For example: If you want to turn off the cursor, press OFF LINE and type ESC x 5.

These functions default back to their initial states (as set by switches S401 and S402 on the terminal logic circuit
board) when the Computer is reset (RESET and right-hand SHIFT keys) or when you turn the Computer off and
then back on again. You can also reset these functions using the Reset Mode escape codes (ESC y). See
below.

Reset Mode - ESC y — Resets the "Set Mode" functions to their power-up default states. To reset a function, type
ESC y followed by the appropriate number given below.

Exit alternate keypad mode
No auto line feed
= No auto CR

1 = Disable 25th line

2 = Enablekey click

3 = Exit hold screen mode
4 = Underscore cursor

5 = Cursoron

6 = Keypad unshifted

7

8

9

See "Set Modes" above.

Enter ANSI Mode -- ESC < = — Enters the ANSI mode. See the "Appendix" in the rear of this Manual for the
definition and descriptions of the ANSI mode escape codes.

MODES OF OPERATION

Enter Hold Screen Mode - ESC[— The Hold Screen Mode allows you to control when new information is printed
on the screen. This is especially useful when you are reading lists or looking for a particular part of a
program. Push the OFF LINE key to its down position and then type ESC [to enter the Hold Screen Mode.
Then after you release the OFF LINE key, each time you type the SCROLL key a new line of text will appear on the
bottom line and the top line of text will scroll up and off the screen. If you type SHIFT SCROLL, a whole new
page (24 lines) of text will be scrolled onto the screen. Press the OFF LINE key to its down position and type
ESC \ to exit the Hold Screen Mode. Remember, that when the cursor is at the start of a line of text, the
Terminal is probably waiting for a scroll command when in this mode.

This mode requires that the operating system respond to XON and XOFF.

Page 5-12
Exit Hold Screen Mode - ESC \ — Exits the Hold Screen Mode. See "Enter Hold Screen Mode" above.

Enter Reverse Video Mode - ESC p — The characters displayed on the screen can also be displayed in reverse
video, a black character on a white background. Type ESC p to enter the Reverse Video Mode, and ESC q to
exit the Reverse Video Mode.

The following BASIC program shows you how to send the escape codes to the terminal to enter and exit the reverse
video mode.

00010 REM Reverse Video Demonstration

00020 PRINT "This is a demonstration of the "
00030 PRINT CHR$(27);"p";

00040 PRINT "'reverse video';

00050 PRINT CHR$(27);"q";

00060 PRINT " feature.™

00070 END

Exit Reverse Video Mode - ESC q — Exits the Reverse Video Mode. See "Enter Reverse Video Mode" above.

Enter Graphics Mode - ESC F — The graphics mode lets you display 33 special symbols. Refer to the
"Graphic Mode Symbols" in the "Appendix" of this Manual. Type ESC F to enter the Graphics Mode. Then type
any of the 26 lower-case keys or the seven other symbol keys that correspond to the graphic symbols. Type
ESC G to exit the Graphics Mode. You can place the terminal in the Reverse Video Mode while it is in the
Graphics Mode to increase the number of graphic symbols.

"Demonstration Program #1" in the "Appendix" of this Manual shows you how this feature is used in a
BASIC program.

Exit Graphics Mode - ESC G — Exits the Graphics Mode. See "Enter Graphics Mode" above.

Enter Keypad Shined Mode - ESC t — The shifted functions that the keypad transmits normally require you to
press and hold the SHIFT key when you type one of the keys. You can type ESC t to enter the Shifted Keypad
Mode so that you do not need to hold the SHIFT key to obtain the unshifted functions. However, if you place the
terminal in the Shifted Keypad Mode and you need to use the unshifted functions (numbers), you will have to
press and hold the SHIFT key to obtain them. Type ESC u to exit the Shifted Keypad Mode.

Exit Keypad Shifted Mode - ESC u — Exits the Keypad Shifted Mode. See "Enter Keypad Shifted Mode"
above.

Enter Alternate Keypad Mode - ESC = — The codes sent to the Computer from the keypad normally include
the numbers, period, ENTER, and (when shifted) some special cursor movement and editing functions. You can
change these codes using the Alternate Keypad Mode to transmit specific escape codes that your software may
respond to. Note that the program must recognize the escape sequence.

Page 5-13

Type ESC = to enter and ESC > to exit the Alternate Keypad Mode.

The following chart lists the escape codes sent by the Terminal in the Alternate Keypad Mode.

KEY ZDS ANSI
ESCAPE ESCAPE

CODE CODE
0 ESC?p ESCOp
1 ESC?q ESCOq
2 ESC ?r ESCOr
3 ESC ? s ESCOs
4 ESC ?t ESCOt
5 ESC ?u ESCOu
6 ESC?v ESCOv
7 ESC ?w ESCOw
8 ESC ? x ESC O x
9 ESC?y ESCOy
. ESC ?7n ESCOn
ENTER ESC?M ESCOM

Exit Alternate Keypad Mode -- ESC > — Exits the Alternate Keypad Mode. See "Enter Alternate Keypad Mode"
above.

ADDITIONAL FUNCTIONS

Keyboard Disabled - ESC} — Inhibits the output of the keyboard. WARNING: After this function is entered, the
keyboard can only be turned back on by your program or a master reset.

Keyboard Enabled - ESC { — A computer-sent code that enables the keyboard after it was inhibited by a
"Keyboard Disabled" command.

Wrap Around At End Of Line - ESC v — The 81st character on a line is automatically placed in the first character
position on the next line. The page scrolls up if necessary.

Discard At End Of Line - ESC w — After the 80th character in a line, the characters overprint. Therefore, only
the last character received will be displayed in position 80.

Identify As VT52° (ESC/K)- ESCZ — The terminal responds to interrogation with ESC / K to indicate that it can
perform as a VT52. This is sent by the Computer to interrogate the terminal.

Transmit 25th Line - ESC] — See "Transmit Page" below.

Transmit Page -- ESC # — The transmit functions (Transmit 25th Line and Transmit Page) are the same except
for the source of the data transmitted.

Page 5-14

Basically (assuming that the mode has not changed), the data is transmitted the same as it appears on the CRT. This
includes all 1920 characters (24 lines of 80 characters), or the 80 characters of the 25th line. However, it is possible
that the actual number of characters transmitted will be more than 1920. If graphic characters, reverse
video characters, or both are encountered, the proper escape sequence for entering the respective
modes will be transmitted. When one or both of these parameters no longer apply, the appropriate escape
sequence will then be sent to exit the mode.

The escape sequence which is sent is determined by whether the Computer is in the ZDS mode or the ANSI mode.
The sequence will be the same as that which was sent to the terminal (or entered from the keyboard) to cause
the Computer to enter and/or exit the reverse video and graphic character modes.

Other than the above required escape sequences, the only characters sent are the displayed characters.
Following the transmission of the last character, a CARRIAGE RETURN is sent and the bell will sound.

If a transmit page is executed (ESC #), only lines 1 through 24 are transmitted. If you want to transmit the 25th
line, you must ask for that specifically (ESC]). This operates the same as the transmit page except that only the 80
characters of the 2 5th line (and any necessary escape sequences) are transmitted and followed by a CARRIAGE
RETURN. In the event that the 25th line is not enabled, only a CARRIAGE RETURN will be transmitted.

Special Function Keys

The eight special function keys (fi, £, f3, fi, fs5, Blue, Red, and White) on the top row of the keyboard transmit two-
character escape codes to the computer. You can define the meanings of each of these keys to suit your particular
application (your software program must recognize the particular escape codes associated with the keys). See the
"Appendix."

SUMMARY OF KEYPAD FUNCTIONS
The keypad can operate in any one of four modes: normal unshifted, normal shifted, alternate unshifted, and

alternate shifted. Then, within each of these modes, you can use the SHIFT key shifted or unshifted as a toggle.
(See "Enter Keypad Shifted Mode" and "Enter Alternate Keypad Mode.")

Page 5-15

Normal Unshitted - This is the normal operating mode.

Example:
TYPE

3
SHIFT 3

TERMINAL
TRANSMITS

3
DL (Delete Line)

Normal Shifted - ESC t to enter; ESC u to exit — The normal functions are inverted.

Example:
TYPE

3
SHIFT 3

TERMINAL
TRANSMITS

DL (Delete Line)
3

Alternate Unshifted - ESC = to enter; ESC > to exit — This is the normal alternate mode.

Example:
TYPE

3
SHIFT 3

TERMINAL
TRANSMITS

ESC? s -- (ZDS escape code)
DL (Delete Line)

Alternate Shifted - ESC t ESC = to enter; ESC u ESC > to exit — The normal alternate functions are now inverted.

Example:

TERMINAL
TRANSMITS

DL (Delete Line)
ESC?s -- (ZDS escape code)

See the "Appendix" for actual codes sent and for ANSI codes.

Page 5-16

USE AS A TERMINAL

To use your Computer as a terminal, refer to Pictorial 5-
3 (Illustration Booklet, Page 4) and;

() Disconnect the cable from P404 on the back of
the terminal logic circuit board.

() Disconnect cable #134-1070 from plug P605
(the bottom one) on the serial interface circuit
board.

() Plug the cable into P404 on the back of the
terminal logic circuit board (brown wire up).

This connects the rear panel DTE input to the termi-
nal ACE.

Another approach found to be more satisfactory by
most users is to obtain software which utilizes the
Z-89/90 Series Computer and one of its serial ports to
emulate an intelligent terminal. This provides all of
the usual terminal functions, and also allows addi-
tional features such as file transfer between any at-
tached storage devices and the remote Computer, and
local printing of data from the remote Computer using a
second serial port and printer. Such software is
available from your Zenith Data Systems dealer.

READJUSTMENT

This section contains several adjustments that you
may need to make to properly maintain your Computer.
You will have to remove or tilt back the cabinet top in
order to reach the controls, coils, and adjustments
called for in this section. To do this, refer to the inset
drawing on Pictorial 3-1 (Page 3-2) and carefully
remove the cabinet top back.

() On the terminal logic circuit board (see Picto-
rial 4-1 on Page 4-2), set section 2 of switch S402
down to its 1 position. This enables the
wraparound.

NOTE: When power is turned on, do not touch the
flyback transformer, the high voltage lead, or the
anode socket at the back of the CRT, as it is possible to
receive an electrical shock from these areas. Also, to
lessen the chances of an electrical shock while you are
making adjustments, keep your other hand away from
this unit and all other metallic objects.

|
)

—

Page 6-1

() Plug in the line cord and set the POWER switch to
ON.

Refer to Pictorial 6-1 for the locations of controls on
the video circuit board.

() After a short warm-up time, a light raster should
appear on the screen. If it does not, adjust G1
control R262 counterclockwise (as viewed from
the left side), to cause the raster to appear,

() If the display is slanted, loosen the yoke clamp
screw slightly and slowly turn the yoke to properly
line up the raster on the screen. See Pictorial 6-
2 on Page 6-2.

() Adjust VERT SIZE control R219 (on the video
circuit board) so the raster is approximately 6"
high.

VERT
LINEARITY
R223
PR
AN
@5
R e s
4, ==
A
4 40)
~ I"‘
VERT
HOR 12 © i
CENTERING
R246

PICTORIAL 6-1

Page 6-2

MAGNET

PICTORIAL 6-2

()Refer to Pictorial 6-2 and rotate the ring
magnets on the back of the yoke to center the
display on the screen.

() Adjust rear panel BRIGHTNESS control R1
until a blinking cursor (underline) appears at
the top corner of the screen.

() Set the OFF LINE and CAPS LOCK keys to their
down positions.

() Hold the "Z" key and the REPEAT key down
and fill the screen with characters.

() Adjust HORIZ CENTERING control R246 to
center the display horizontally within the
raster.

() Adjust VERT LINEARITY control R223 so that
the top and bottom rows of characters are of
uniform size.

NOTE:You should make the next adjustment in a
darkened room.

() Turn G1 control R262 clockwise (as viewed
from the left) until the raster just disappears.

() If the display width is not approximately 8-1/2",
adjust WIDTH coil L203 to correct the width
size.

() Adjust BRIGHTNESS control R1 to obtain the
brightness that is most suitable to you.

() Adjust FOCUS control R264 for the best focus.

() Recheck the display for proper alignment of the
screen. If necessary, rotate the yoke a small
amount. Then tighten the yoke clamp screw
only enough to hold the yoke from turning.

() Set the POWER switch to OFF and disconnect
the line cord.

() Set section 2 of switch 5402 (on the terminal
logic circuit board) up to its 0 position.

() Re-secure all parts in your Computer and replace
the cabinet top.

TROUBLESHOOTING

Page 7-1

IMPORTANT NOTICE

All ZDS Computer hardware and software products were
designed to work together as a complete system. Proper
operation can be assured only when the Computers are
used with ZDS designed or approved accessories. ZDS
does not assume the responsibility for improper operation
resulting from custom interfacing, custom software, or
the use of accessories not approved by Zenith Data
Systems.

All the Computer components have been wired and tested
at ZDS. If you encounter any malfunction during the
warranty period, return the complete Computer to your
Zenith Data Systems dealer or authorized Zenith Data
Systems repair facility. It will be promptly repaired
and returned. Do NOT attempt to service this Computer
yourself during the warranty period; to do so voids the
warranty.

For out-of-warranty products, you can have them repaired
by your Zenith Data Systems dealer or authorized Zenith
Data Systems repair facility, or you can purchase
individual replacement parts to do your own service.

The following section, titled "Troubleshooting
Charts," lists problems or conditions that might oc-
cur. The "Possible Cause" column lists the compo-
nents associated with the problem. This will help you
relate a problem to the schematic and Circuit Descrip-
tion. The components listed in the "Possible Cause"
column are the most likely causes (but not necessarily
the only cause) of a problem.

But before you start, check the set-up switches on the
logic circuit boards to be sure that they are in their

proper positions. See Pictorial 4-1 (Page 4-2) and Pic-
torial 4-2 (Illustration Booklet, Page 1).

Refer to the "Circuit Board X-Ray Views" (Illustration
Booklet, Pages 8 through 13) for the physical location
of parts on the circuit boards.

Due to the complexity of the factory wired circuit
boards and the closed loop configuration of the control
and interface circuits, we recommend that you
return these parts to your ZDS dealer or authorized
repair facility for repair if necessary.

Page 7-2

TROUBLESHOOTING CHARTS

The following charts list conditions and possible causes
of several specific malfunctions. If a particular part is
mentioned (FI for example) as a possible cause, check
that part and other components connected to that part to
see that they are in good working order.

WARNING: Measure the anode voltage only with an
approved high voltage probe.

CAUTION: Never operate the Computer unless the short
black ground wire coming from the corner of the
video board is connected to the CRT ground.

POWER SUPPLY PROBLEMS

Page 7-3

CONDITION

POSSIBLE CAUSE

Nothing happens at turn on.

ANl

Not plugged in.
Fuse F1 blown.
Switch SW1 wiring.
Fuse holder wiring.
Capacitor C1.

Fuse blows.

A e el

®

Check primary wiring.

Short circuit on power supply circuit board.

Short circuit across transformer secondary.

Diodes D101 — D112, and BR1.

Capacitors C1, C102 — C104.

IC’s U401 — U405.

Short between collector of transistor Q204 and Video board heat
sink.

Incorrect fuse.

Power transformer T1.

No output from 5 V supplies, or voltage(s) too high or low.

IC’s U401 — U405.
Diodes D105 - D107.
Capacitor C103.

No +12 V, or is too high or too low.

IC U403.
Diodes D101 — D104.
Capacitor C102.

No -12 V, or is too high or too low.

—

W

IC U404.
Diodes D101 — D104.
Capacitor C104.

No -5V, or is too high or too low.

bl el e

IC U405.

IC U404 (-12 V source supplies -5 V regulator).
Diodes D101 — D104.

Capacitor C104.

No +53 V, or is too high or too low.

Transistors Q201, Q202, Q204.
Diodes D201, D202.

No unregulated voltages (+65, +8.5, +/- 16) on power supply board.

Check appropriate secondary of T1, diode bridges or filter
capacitor.

No anode voltage when other voltages are OK.

NN RWN e~

No sync pulses coming from terminal logic board.
Transistors Q213, Q214.

Deflection yoke.

Coils L203, L204.

Capacitors C228, C232.

Diode D208.

IC’s U201 U202.

+500 V supply is too high or too low.

N —

Diode D211.
Capacitor C231.

-90 V supply is too high or too low.

W

Diode D207.
Resistor r259.
Capacitor C229.

-6 V supply is too high or too low.

—

Diode D203.
Resistor R212.

Page 7-4

CONDITION

POSSIBLE CAUSE

No Video (blank screen).

—_—

—O 0PN LA LN~

Brightness control (R1) turned down.
Anode voltage incorrect.

Grid voltage incorrect (G1, G2, G4).

No cathode drive.

Transistor Q901, Q902.

No video signal coming from terminal logic board.
IC U406.

Video circuits on logic board.

Diode D901.

No sync pulses coming from logic board.
Diode D209.

Screen all white (raster).

bl S

Grid voltages.

Transistors Q901, Q902.

Video circuits on terminal logic board.
Anode voltage incorrect.

Insufficient brightness.

B =

(9]

Transistors Q901, Q902.

Diode D902.

Capacitors C901 — C905.

Brightness control, R1, Resistors R901 —-R904,
R214, R218, R219, R217.

Grid voltages.

One bright horizontal line on screen.

Nk v =

Vertical amplifier Transistors Q207 — Q212.
Diode D205.

Deflection yoke (vertical).

Vertical sweep generator transistors Q205, Q206.
Diode D204.

No vertical sync pulses coming from logic board.
IC U406.

Too much or insufficient height.

A e

Vertical amplifier or sweep generator.
Capacitor C213.

Resistor R242.

Vertical size control R219.

Capacitor C211.

Too much or too little width.

Nk v =

Adjust width coil L203.
Capacitors.

Deflection yoke (horizontal).
Coils L203, L204.

+53 V supply not correct.
Flyback transformer T202.
Transistor Q214.

Page 7-5

CONDITION

POSSIBLE CAUSE

Picture tube filament does not glow.

1. No horizontal sync pulse coming from logic board.
. Filament wiring of T202 (brown wires).
3. Resistor R257.

Horizontal centering does not work.

[

IC U201.
Horizontal centering control R240.
Capacitor C221.

W

No horizontal sweep, but sync pulses are present at P202.

Diode D206

IC’s U201, U202.
Transistors Q213, Q214.
Transformer T201.

+6 V supply not correct.
Capacitor C226.

Diode D208.

+53 V supply not correct.
Deflection yoke.

Coils L203, L204.

SPXIANBE WD~

[

SERVICE INFORMATION

In an extreme case where you are unable to
resolve a difficulty, you may want to take your
Computer to your local Zenith Data Systems
dealer or authorized Zenith Data Systems repair
facility.

If you can isolate the problem to a particular
circuit board, take only that circuit board for
repair. This will save service expense.

IMPORTANT: Try to list the following
information about your Computer. It will help
your ZDS dealer to diagnose and repair your unit.

A. The problem you are having.

B. Name, the model number, and the series
number of you computer system. (Shown
on the blue and white label.)

C. Baud rate.
D. System configuration.

E. Any additional information that will help
describe your System.

Page 7-6

Refer to the Schematic Diagram (fold-in) and the
Computer Block Diagram (Illustration Booklet, Page
7) while you read this "Circuit Description."

To help you locate parts in the Computer or on the
Schematic, the circuit component numbers (R1,
C101, L301, etc.) for resistors, capacitors, coils, trans-
istors, and integrated circuits are in the following

0- 99 Parts mounted on the molded cabinet

base or front panel.

100 — 199 Parts mounted on the power supply

circuit board.

200 — 299 Parts mounted on the video circuit

board.

CIRCUIT DESCRIPTION

300 — 399
400 — 499
500 — 599
600 — 699
700 — 799
800 — 899
900 — 999

Page 8-1

Parts mounted on the keyboard circuit

board.

Parts mounted on the terminal logic
circuit board.

Parts mounted on the CPU logic circuit
board.

Parts mounted on the serial interface
circuit board.

Parts mounted on the cassette interface
circuit board.

Parts mounted on the hard-sectored
floppy disk interface circuit board.

Parts mounted on the video driver
circuit board.

Page 8-2

POWER SUPPLY CIRCUIT BOARD

The primary circuit of the power supply consists of
slow-blow fuse F1, ON/OFF switch SW3, 115/230volt
switch SW1, NORM/LOW line switch sw2, and the
primary windings of transformer T1.

The red secondary windings of transformer T1 supply
AC to diode bridge rectifier D109-D112. The 65-volt
rectified output of the bridge is filtered by
capacitor C1. It is used to power the video circuits.

The yellow secondary winding of T1 supplies AC to
the diode bridge rectifier BR1. The rectified output of
the bridge (approximately 9 VDC) is filtered by
capacitors C101 and C103 and is used on the logic
circuit board.

The green secondary windings supply center-tapped
30 VAC to diode bridge rectifier D101-D104. The rec-
tified outputs of the bridge (+ 18 vDC) are filtered by
capacitors C102 and C104. These outputs are used on
the logic circuit board.

INTERCONNECTION AND GROUNDING

The three power supplies (+65, +8.5, and +18) are
not interconnected on the power supply circuit
board. Instead, they pick up their appropriate
grounds at the circuit boards they power. The +65-
volt video supply connects to + and ground points on
the video circuit board. The external conductive coat-
ing of the CRT and the CRT socket arc-ring both con-
nect directly to the video circuit board ground.

The +8.5-volt and + 18-volt supplies connect directly to
the logic circuit boards with no common grounds
until they meet at the terminal logic circuit boards.

This grounding method produces two independent
operating systems that do not interact with each other
except through the signal ground and sync/video in-
puts. In the event of a CRT arc, the arc discharge
current is confined to the video circuit board and it
does not induce transients into the logic circuits.

The logic/video system is also floating with respect to
the ground wire of the power cord. The protective
ground input (pin 1) of the EIA RS-232 connector
connects to the power cord ground, along with all the
exposed metal surfaces.

The signal ground input (pin 7) of the EIA RS-232
connector connects to the terminal logic circuit board
ground.

Page 8-3

VIDEO CIRCUIT BOARD

POWER SUPPLY

The unregulated 65-volts DC from the power supply
circuit board enters the video circuit board at plug
P202, pins 2 and 3. Assume that the Computer has just
been turned on and the output of the +53-volt reg-
ulator is at zero volts. The base current of Q201 is
supplied through resistors R201, R202, and R203.
The collector current of Q201 causes Q202 to turn on
and supply current to the base of Q204. As the
output voltage at the emitter of Q204 rises, D202
begins to supply current to zener diode D201
through resistor R202. D201 stabilizes at 12.8 volts
and provides a reference for the output voltage. The
divider formed by resistors R207 and R208 samples
the output voltage as it continues to rise, and applies a
fraction of the voltage to the emitter of Q201. When
the emitter voltage of Q201 reaches 12.15 volts (12.8-
.65), its collector current is reduced to a value that
keeps the output voltage stabilized at +53 volts.

The current through R211, supplied to the load by
Q204, generates a voltage that is applied through
current limiting resistor R209 to the base of Q203. If
the current thus developed exceeds about 1.1 am-
peres, Q203 turns on and shunts current from the base
of Q202, which, in turn, prevents the output current
from exceeding 1.1 amperes.

D203 and R212 form another zener regulator that
supplies 6.2 volts DC to the video driver circuit board
and 6 volts DC to the horizontal section through R213.

VERTICAL SECTION
The vertical portion of the video circuit board con-

sists of two sections, a sweep generator and an
amplifier.

The sweep (or ramp) generator consists of C208,
€209, R221, and Q205. Capacitors €208 and €209
charge to +53 volts through resistor R221 to generate
the ramp. This ramp voltage is applied to the anode of
Q205, a programmable unijunction transistor. The
gate of the unijunction is biased at a voltage deter-
mined by R215, R216, D204, and R217. When the
anode voltage charges to the gate voltage, Q205 con-
ducts and discharges €208 to ground through L201.
As the discharge current decreases to zero, the
unijunction stops conducting and the capacitors start
to charge again through R221.

The ramp voltage is applied to the base of Darlington
voltage follower Q206. The emitter voltage of Q206 is
fed back to the junction of C208 and €209 to linearize
the exponential ramp. Resistor R222 and Vert Linearity
control R223 determine the amount of correction
applied to the ramp. The amplitude of the ramp is
determined by R218 and the Vert Size control, R219.

The free-running frequency of the oscillator is
slightly less than 60 Hz, the normal sweep rate. Verti-
cal sync pulses, which enter the circuit board at plug
P202, pin 6, are coupled through C206 and D204 to
the gate of transistor Q205. The negative-going pulse
lowers the gate voltage below the anode voltage and
Q205 immediately conducts, discharging 208 and
C209 before the free-running trip point is reached.
This increases the oscillator frequency to 60 Hz (or 50
Hz if you set section 7 of switch S402 to its "1
position). Each succeeding sync pulse keeps the os-
cillator synchronized with the vertical sync signal
generated by the CRT controller on the logic
circuit board.

Page 8-4

The amplifier portion of the vertical circuitry is com-
posed of Q207, Q208, Q209, Q210, Q211, and Q212.

Under steady-state conditions, with no ramp signal
applied to the base of transistor Q208, the collector
currents of Q207 and Q208 are determined by bias
string R225, R226, R227, R228 and emitter resistors
R229 and R231. The collector current of Q207 is nom-
inally 3 milli-amperes, and the collector current of
Q208 is nominally 2 milli-amperes. The difference
(1 milli-ampere) between the two, supplies base
current to driver transistor Q209, which drives output
transistors Q211 and Q212. Diode D205 and
resistor R237 bias transistors Q211 and Q212 so that
there is enough idle current to eliminate crossover
distortion. Transistor Q210 is a current source that
provides base current for Q212 and the bias network,
D205 and R237. The output voltage at the junction of
R239 and R241 is fed back to the bias string through
R234 to keep the output stable at about 2 5 volts.

When the ramp signal is applied to the input of the
amplifier through C211, the collector current of Q208
is varied as a function of the amplitude of the ramp
voltage. The difference between the currents of Q207
and Q208 drives the outputs through Q209. The out-
put voltage is fed through C216 to the vertical deflec-
tion yoke. Resistor R242, which is in series with the
yoke, generates a voltage proportional to the yoke
current. This voltage is fed back to the base of Q207
(negative feedback), which changes its collector cur-
rent to keep the yoke current directly proportional to
the input ramp voltage.

HORIZONTAL SECTION

The horizontal portion of the video circuit board con-
sists of three sections;

Time delay and pulse shaping.
Horizontal deflection.
High voltage supplies.

The time delay and pulse shaping circuits are
triggered by the horizontal sync pulses that come
from the logic circuit board. They generate a time
delay that provides horizontal centering and a pulse
of the proper width to drive the horizontal sweep
system.

The horizontal deflection system transfers energy
from the power supply to the yoke in order to sweep
the beam across the face of the CRT. The high voltage
supplies generate the anode and grid voltages that
operates the CRT.

TIME DELAY AND PULSE SHAPING

The horizontal sync pulses enter the circuit board at
plug P202, pin 1. These pulses are then coupled
through R243, €217, and D206 to U201. The trailing
edge of each pulse triggers U201, a timer used as a
mono-stable multivibrator, causing the output (pin 3),
to go high. The width of the output pulse is deter-
mined by C221, R247 and Horizontal Centering con-
trol R246. When the output pulse from U201 goes
low, it triggers another timer used as a mono-stable
multivibrator, U202. The 20 microsecond output
pulse of U202 (pin 3) is determined by C223 and
R249. This pulse drives horizontal driver transistor
Q213.

HORIZONTAL SWEEP AND HIGH VOLTAGE

Transistor Q213 and driver transformer T201 drive
horizontal output transistor Q214, which, in turn,
drives the horizontal output transformer (flyback
transformer) and the yoke. The positive-going
pulse from U202 is coupled through the parallel
combination of R251 and C224 to the base of Q213.
During the time the pulse is high, the collector current
of Q213 flows through the primary of T201. The
phasing of the transformer is such that the secondary
output voltage during this time is negative and keeps
Q214 turned off. While Q213 is turned on and
current flows through the primary, energy is stored
in T201.

When the output pulse from U202 returns to zero
volts, Q213 turns off, its collector current decreases to
zero, the secondary voltage of T201 goes positive, and
Q214 starts to conduct. The energy stored in the trans-
former is converted to base current and keeps Q214
turned on for the rest of the cycle. The transformer
inductance, R254, R255, €226, and L202 control the
base current decay and insure the best efficiency of
the output transistor.

Transistor Q214 is a switch that controls the flow of
energy through the deflection components. When
Q214 is turned on, current flows from the power supply
through the primary of horizontal output trans-
former T202 and through the horizontal yoke,
L203, L204, and C232 to ground. During this time, the
yoke current increases linearly and the beam is
deflected to the right of the screen. When it reaches the
right edge, driver transistor, Q213, turns on and output
transistor Q214 turns off. The energy that was stored in
the yoke (along with the energy stored in the primary of
T202) is transferred to C228 in the form of a half wave
voltage pulse with an amplitude of 550 volts. During
this cycle, the current through the yoke goes to zero
and the beam returns to the center of the screen.

Capacitor C228 now discharges into the yoke, induct-
ing a current in the opposite direction, deflecting the
beam to the left side of the screen. As the voltage
across C228 decreases to zero volts, the resonant cir-
cuit of C228, the yoke, and the primary of T202 tries to
oscillate in a negative direction. The energy trans-
ferred to the yoke by C228 now provides the sweep
current for the first half of the scan and charges C232
via damper diode, D208.

Shortly before the beam reaches the center (before the
yoke current reaches zero), transistor Q213 is turned
off by U202 and Q214 is turned on. For a brief period,
both D208 and Q214 are conducting in opposite di-
rections. D208 is conducting the yoke current and
Q214 is conducting the primary current of T202.
Transistor Q214 turns on early to guarantee a smooth
transition from negative to positive yoke current.

The value of C232 is chosen to provide "S" shaping of
the current waveform through the yoke. This com-
pensates for stretching at the left and right edges of
the screen. Since the deflected beam sweeps a wider
area at the edges than it does at the center for a given
deflection angle, the current is decreased slightly at
the left and right edges.

Width coil L203 is in series with the yoke and its
reactance can be adjusted to change the total current
through the yoke. If its reactance is high, the yoke
current is slightly decreased and the scan width is
reduced. If its reactance is low, the scan width is
increased.

Page 8-5

Vertical linearity coil L204 is a nonlinear inductor that
provides further linearity correction that cannot be
provided by C232 alone.

HIGH VOLTAGE SUPPLIES

The flyback voltage pulse developed at the collector of
Q214 during the horizontal retrace is rectified by
D211 and C231 to provide approximately 500 volts
DC. This voltage, which is filtered further by R266,
C235, C236, and C237 is coupled through
R909, on the driver circuit board, to the CRT grid 2
(G2).

The same flyback pulse is transformer coupled to the
secondary of T202 and rectified by D207 and C229 to
generate a -100-volt DC supply.

Resistor R265 and Focus control R264 form a voltage
divider between the +500-volt and the -100-volt
supplies to provide a bias voltage for grid 4 (the focus
grid). This voltage is coupled through R267 and R908,
on the driver board, to G4 on the CRT.

Another voltage divider consisting of D209, R261, and
G1 control R262, between the +55-volt and -100-volt
supplies, provides a bias voltage for grid 1 of the CRT.

The flyback pulse is also coupled to another secon-
dary of transformer T202, the high voltage
winding. The output pulse from this winding is about
+ 15,000 volts. It is rectified by D1 (in the anode lead)
and filtered by the internal capacitance of the CRT to
provide the anode (or accelerator) voltage for the CRT.

Occasionally, the voltage stored in the internal
capacitance of the CRT arcs over to the other elec-
trodes. An arc ring built into the tube socket, and
C233 (a capacitor with a parallel spark gap), in
conjunction with driver circuit board series resistors
R904, R907, R908, and R909, limit the amount of the
arc energy on the video circuit board to a safe value.

Flyback transformer T202 also has a filament winding
that supplies 6.3 volts AC at 450 milliamperes to
power the CRT filament.

Page 8-6

VIDEO DRIVER CIRCUIT BOARD

The voltages for the CRT, except for the anode supply
and deflection voltages, are either generated on or
pass through the video driver circuit board. The CRT
6.3 VAC voltage originates on the video circuit board
and passes directly through the video driver circuit
board to the CRT. The filament voltage is RF-
bypassed to ground on the driver board by capacitors
C907 and C908. A common ground also is routed from
the video board through the driver board, and forms
an arc-ground to the cathode and grid circuits of the
CRT.

The video amplifier is a conventional cascade
amplifier. The video signal is routed onto the board
from rear panel Brightness control R1 and through

resistor R905 to the base of transistor Q902. The base
of transistor Q901 is biased by the 6.2-volt supply
coming from the video circuit board. The signal at the
collector of Q901 is coupled through resistor R904 to
the cathode of the CRT. Choke L1901, in series with
collector load resistor R903, provides high frequency
compensation.

Grid voltages for the CRT are routed through three,
series-connected, current-limiting resistors on the
driver board, R907 to grid 1, R908 to grid 4, and R909 to

grid 2.

TERMINAL LOGIC CIRCUIT BOARD

The terminal logic board consists of seven functional
blocks:

1. Power supplies.

2. Keyboard encoder and configuration logic.
3. Processor/CPU.

4. Master clock and system logic.

5. Communications.

6. CRT and memory control.

7. Display memory, character generator, and
video control logic.

The integrated circuits in each block are numbered as
follows:

U401-U405 Power supplies.

U426, U427, Master clock and system logic.

U429, U431,

U434, U435,

U440-U442

U413, U428, Processor, ROM, RAM, pro-

U430, U432, cessor control logic.

U433,

U436-U439

U43-U450 Keyboard encoder and config-
uration logic.

U452-U454 Communications and I/O drivers.

U414-U418 CRT and memory control.

0406-U411, Display memory, character

0419-U425 generator, and video control logic.

POWER SUPPLIES

Integrated circuits U401 and U402 provide two regu-
lated 5-volt supplies. U401 supplies 5-volts DC for the
left half of the circuit board, while U402 supplies the
right half of the circuit board. U403 supplies + 12
volts DC, U404 supplies -12 volts DC, and U405
supplies -5.2 volts DC. These integrated circuits are
internally protected against short circuits, overloads,
and high temperatures. Capacitors C402, C404, C407,
and C411 at the inputs of the regulators stabilize the
supplies, while capacitors C403, C405, C408, C412,
and C413 improve the transient response of the reg-
ulators. C412 serves as the input stability capacitor for
U405 and as the output capacitor for U404.

MASTER CLOCK AND SYSTEM LOGIC

Clock And Scalers

The master clock is a 12.288 MHz crystal-controlled
oscillator. Crystal Y401, with C419, C421, and U426E
form the oscillator. The series combination of C419
and C421 serve as the load capacitance for the crystal.
U426E is the gain stage. Resistors R408 and R409 bias
U426E into its linear region, while C418 bypasses any
AC feedback through the two resistors. The output of
the oscillator is buffered by U426D to prevent loading
on the output from changing the oscillator frequency.
This output is the "dot clock" and it is used by the
shift register to shift dot information to the screen.

The dot clock also drives divide-by-sixteen counter
U427, which generates 1.536 MHz pulses. This is
called the character clock. Each pulse corresponds to
one character on the screen. U427 is a synchronous
presettable counter that is loaded with a binary eight
(1000). It counts dot clock pulses until its output
reaches binary fifteen (1111). During the fifteenth
count, the ripple carry output (pin 15) goes low. This
pulse, which is inverted by U426F, puts a logic one on
the load input (pin 9). The next positive-going clock
cycle reloads a binary eight back into the counter and
the cycle repeats. The Q output (pin 12) generates a
1.536 MHz pulse that serves as the clock for (pin 21)
CRT controller U417. 1t is inverted by U412D. These
two signals are referred to on the Schematic as C and
C. The Qg (pin 13) output generates a 3.072 MHz
signal that drives the clock input (pin 16) of the ACE

(U452).

Page 8-7

The dot clock also drives U429. U429 is a divide-
by six and divide-by-two scaler. The clock drives the
B input (pin 1), and the Qp output (pin 8) generates
a 2.048 MHz clock signal for CPU (U430). The Qp
output (pin 8) also drives the A input (pin 14).
The Q, output (pin 12) in turn drives the input of
binary scaler U440.

The output of U440 provides a 128 kHz clock (pin
6) for the keyboard encoder, U444 and a 1 kHz
signal (pin 14) for the audible bell signal.

System Control Logic

The system control logic consists of /O and memory
decoding, power-up and manual reset circuits, and
the bell and key clock circuits.

I/0 and memory decoding are accomplished by
three-to-eight line decoders U442 and U435, respec-
tively. U442 decodes address bits A5, A6, and A7, to
generate eight I/O addresses:

1. Keyboard encodercccceceveeieiieneneneene 200Q
(80n)
2. Keyboard statusccccoevvevveriirineneereenenn, 240Q
(AOH)
3. CRT controllerccocevvervevireieeiesieseeene. 140Q
(604)
4. Power-up configuration (primary) 000Q
00
5. Power-up configuration (secondary) .040Q
(201)
6. ACE (communications)ceceeververueenne 100Q
(401)
7. Bellenableccccceeviiiiiieiiieciiecieecieeene 340Q
(EO)
8. Keyclickenablecccocceviniiiieiiiiee, 300Q
(COw)

Decoder U442 is enabled only during an I/O read or
write operation to eliminate the possibility of false
decoding on a refresh address coming from the Z80.

Page 8-8

U435 decodes address bits 14 and 15 to generate three
memory addresses;

1, Program ROM 000,000
(00004)

2. Scratchpad RAM 100,000
(40004)

3. Display memory 370.000
(F800y)

Whenever the Z80 performs a read or a write
operation it will either write to or read from one of
these memory or I/O addresses,

When the Computer is first turned on, the CPU, CRT
controller, ACE, and keyboard control logic are
cleared by the master reset signal, U431A, R412,
C422, and D401 form the power-up reset circuit.
When power is first turned on, C422 has no charge
and temporarily holds pin 2 of U431A at logic zero.
The output of U431 goes high and is inverted by
U431B. The two outputs are the true and the com-
plimented reset pulses. As C422 charges through
R412, it pulls the input of U431 high, turning off the
reset pulses.

A manual reset can also be accomplished if you
simultaneously press the Reset and right-hand Shift
keys on the keyboard. U446E and U446B are con-
nected to those keys and they drive the inputs of
U431D. The output of U431D (pin 11) is coupled
through R413 to pin 1 of U431A. R413 and C423 form a
de-bounce circuit for the Shift and Reset keys. When the
output of U431D goes low, the input of U431A is also
pulled low. This generates a reset pulse.

The CPU, under the control of the ROM program, can
cause a bell tone or a key click to sound through the
speaker. When the CPU addresses 1/O port 340, pin 7
of U442 trigger one-half of mono-stable U441. Its out-
put goes low for about 200 milliseconds, causing the
output of U431C to go high. This logic 1 is NANDed in
U434C with the 1000 Hz signal coming from
U422. The output of U434C drives speaker SP1, Diode
D402 keeps the output of U434C from being
driven above 5-volts at turn-off by the inductive
reactance of the speaker.

When the CPU addresses I/O port 300, pin 9 of U442
triggers the other half of U441. Its output (pin 7) goes
low for about six milliseconds and turns on the 1000

Hz tone. This short duration causes the tone to sound
like a click.

PROCESSOR

The processor section of the Terminal consists of the
780 processor (U430 the CPU, central processing
unit), ROM (read only memory), RAM (random
access memory), and processor control logic.

Processor/CPU

The heart of the terminal logic circuit board is the Z80
CPU. 1t acts as a scheduling or dispatching service for
the data coming into or originating from the Termi-
nal. It examines the data it receives and determines
what, if anything, it should do with it. If the data
comes from the ACE (U452), for example, the Z80 will
compare the ASCII word with a set of conditions
determined by the ROM program, and then write the
word into the appropriate memory or 1/O port. If
the ASCII word is a bell signal, the CPU addresses
I/O port 340, and the bell tone sounds through
the speaker. If the word is the letter "B", the CPU
performs a memory write to the current cursor position
in the display memory. If the data from the ACE is
a nonvalid character or a string of characters, the CPU
simply ignores the data and does nothing.

The ROM program that directs the CPU is rather long
and complex, but the mechanics of the process are
easy to follow. The 2.048 MHz clock signal drives the
clock input (pin 6) of the CPU through U426A. This
steps the CPU through an internal "Machine" cycle
that starts with a fetch instruction. It executes the
remainder of its instructions by stepping through a
precise set of a few basic instructions. These include
memory read, memory write, I/O read, I/O write, and
interrupt acknowledge. The basic thing to remember
is that the ROM program directs the Z80 to make
decisions and move data from place to place within
the circuit board. Without the CPU and ROM, the
decisions and data movement would have to be ac-
complished with hard-wired logic packages.

For a more detailed description of the Z80 processor,
refer to Chapter 12 of this Manual, starting on Page
12-1.

ROM

The read only memory, U437, is a pair of 4K x 8-bit
(32768 bit) ROM. Its twelve address inputs connect to
A0 through A1l of the address bus and its eight data
outputs connect to DO through D7 of the data bus.
U413A, U413B, and U434D decode the ROM select
line coming from memory decoder U435.

RAM

The random access memory for the Z80 scratchpad
consists of U438 and U439, 256 x 4-bit RAMS. This
scratchpad RAM provides temporary data storage for
the Z80. The address inputs to each IC connect to A0
through A7 on the address bus. The lower four bits of
data (D0-D3) are provided by U438; the upper four bits
(D4-D7) are provided by U439. The select signal
comes from U435.

Processor Control Logic

The processor for the Terminal requires some addi-
tional circuitry to control the interrupt process, and to
provide a wait cycle for keyboard encoder U444,
which is slow in responding to a read cycle.

U432C is a 2-input NOR gate that monitors the
INTRPT output of the ACE (U452) and pin 6 of U447B
(the keyboard INTRPT). When either INTRPT output
goes high, the output of U432C goes low and signals
the INT input (pin 16) of the Z80 that data is available
from the ACE or keyboard.

U433, U432A, and U432B form a counter that drives
the WAIT input (pin 24) of the Z80. Whenever the Z80
performs an I/O read at the keyboard encoder, pin 11
of U442 drives the "reset to zero" inputs (pins 12 and
13) of U433. The Qp and Qg outputs (pins 9 and 5) of
U433 drive the inputs of U432B, a 2-input NOR gate.
The output of U432B holds the Z80 WAIT input low
whenever the Qa or Qg outputs of the counter are
high. This generates

Page 8-9

a total wait of four clock cycles (one wait cycle is
automatically inserted by the 2z80 on an 1/O
instruction) to allow the output buffer of U444 to turn
on. When the Q¢ output (pin 4) of counter U433
goes high, it drives the input of U432A high. This
forces the output low and turns off the A input (pin
10) of U433. The Qa and Qg outputs now go low and
the wait signal is no longer present. The Z80 then
finishes up the /O read cycle (pin 11 of U442 goes
high) and the counter is reset to zero and held there
until the next keyboard read.

U428 provides a nonmaskable-interrupt (NMI) that
operates under the control of the ROM program. The
NMI routine is used when the program wants to read
something into the CRT Controller (or CRTC) during
the vertical blanking period. The data input of U428A
is driven by A2 of the address bus. The T, or clock,
input is driven by the complemented CRT controller
I/O select that comes from pin 12 of I/O decoder U442
through U412C, which provides the complement of
the signal. When the program wants to write during
vertical retrace, it addresses the CRT controller while
holding A2 high. The Q output of U428A is clocked
high and drives the reset input of U428B high. The
vertical sync signal from U417 drives the T input of
U428B and clocks the Q output low as soon as the
sync signal begins. The R 1 input of the Z80 goes low
and the program immediately jumps to the "update
CRTC" routine. Part of that routine will write a zero to
the data input of U428A to clear the NMI signal.

KEYBOARD ENCODER AND
CONFIGURATION LOGIC

Keyboard Encoder

The keyboard of the Terminal consists of single-pole,
single-throw switches in a matrix that is scanned by
keyboard encoder U444. Outputs X1 through X9 go
high, in sequence, and drive one of the Y1 through
Y10 inputs if one of the switches is depressed. The
encoder uses the X and Y information to generate a
unique binary code for each matrix intersection, and
this code is latched internally when a key is de-
pressed.

Page 8-10

The encoder generates a data strobe (DS), which
comes from pin 13 of U444, for each key closure. DS
clocks the T input (pin 3) of U448A and the Q output of
U448A goes low. The Q output drives an input of
U447B. The output of U447B, an TNT signal, is
coupled to Z80 pin 16. When the Z80 services the
interrupt at I/O port 200, pin 11 of U442 clears U448A
(through U447C and U446A) and the TNT signal is
removed. Pin 36 of U444 is also a binary data output
and it is latched in U448B by the 1/0O read at 80H
(200Q). The keyboard interrupt routine also checks
the keyboard status in another I/O read operation. The
keyboard status check reads the state of the following:

Control key.

Shift keys.

Repeat key.

Break key.

Off-line key.

Caps Lock key.

Data Strobe.

Data bit latched in U448B.

A A

The ROM program uses this information in conjunc-
tion with the encoder data to determine the routing of
the data within the Terminal. Pin 10 of I/O decoder
U442 drives enable inputs (pin 19) of buffers U449 and
U450 to put the status information on the bus. The
Caps Lock, Break, Off Line, Control, Repeat, and Shift
(left) keys are connected directly to the inputs of these
buffers. The outputs of U448A and U448B are also
connected to the inputs of the buffers.

The binary data outputs of the keyboard encoder
drive the address inputs (A0-A7) of ROM U445. U445
converts the binary data from the keyboard encoder to
ASCII data. The data outputs

of U445 drive the DO-D7 bits of the data bus. The chip
select input (pin 18) of U445 is driven by pin 11 of
U442 (the I/O decoder).

When the Repeat key is held down, the input of
U446D is low and its output is high. This enables the
repeat rate oscillator, U447A, R437, C481, and Q402.
The repeat frequency, approximately 15 Hz, is deter-
mined by R437 and C481. When the Repeat key is
released, the output of U446D goes low, forcing the
output of U447A high and disabling the repeat func-
tion.

The two shift keys are NORed together in U447D. Its
output drives the shift input (pin 21) of U444. When
the Control key is typed, the output of U446F is forced
high, that drives the control input (pin 19) of
keyboard encoder U444.

Configuration (Power-up) Logic

When the system is first turned on, the ROM program
must program the ACE (U452) for the baud rate and
parity that you selected on switches S401 and 5402.
The program addresses 1/O port 00H (000Q). Pin 15 of
I/O decoder U442 drives enable inputs of U449 and
U450 to put the information selected by the switches
on the bus. The program then interprets the data and
configures the ACE accordingly. 1/O address 20H
(040Q) is used in a similar manner. Pin 14 of the I/O
decoder U442 enables buffer U443 and puts the data
from 5402 on the bus.

COMMUNICATIONS AND 1I/0 DRIVERS

The Terminal talks to the outside world through an
Asynchronous Communications Element (ACE) and
EIA RS-232C compatible line drivers and receivers.
The ACE (U452) converts parallel ASCII data to serial
data and drives the communications line through line
driver U453. The ACE also converts serial data com-
ing from line receiver U454 into parallel ASCII data.
The ACE puts this data on the bus when the ROM
program requests it.

ACE/UART

U451 is an Asynchronous Communications Element
that performs the following functions:

1. Converts data from parallel to serial and
vice versa.

2. Divides a master clock frequency by a
programmed divisor to generate a desired
baud rate.

3. Programs the data characteristics, parity,
stop bits, and character length.

The characteristics of the ACE must be programmed
into the internal registers of U452 by the ROM pro-
gram through the address and data busses. Bidirec-
tional data bits (pins 1-8) of U452 connect to the
system data bus. The address inputs (pins 28, 27, and
26) connect to the system address bits A0, Al, and A2.
When the ROM program addresses 1/O port 40H
(100Q), pin 13 of I/0O decoder U442 selects the CS2
input (pin 14) of the ACE. The Z80 can then read or
write data by enabling the data input and data output
strobes at pins 21 and 18 DISTR and DOSTR) of U452.

When the ACE receives a complete serial word from
the EIA interface, it signals the Z80 that there is data
available by pulling the Z80 INT input (pin 16) low.
The Z80 then examines the internal status and data
registers of the ACE, reads the data word, and routes it to
the proper device within the Computer. For a more
complete description of the ACE, refer to Chapter 13
in this Manual, starting on Page 13-1.

1/0O Drivers

The standard EIA interface communicates by means of
a serial stream of voltage levels that correspond to logic
ones and zeros. A logic one (or mark) on the data lines is
a voltage between - 5 and -15 volts. A logic zero on
the data lines is a voltage between + 5 and + 15 volts. On
the control lines (DTR, RTS, RLSD, DSR, CTS), a
voltage between + 5 and +15 volts is considered to
be ON, and a voltage between - 5 and -15 volts is
considered to be OFF.

U453 is a standard EIA line driver. A logic one on the
input of U453C drives the serial data outline to an ETA
logic one, or "mark." A zero on the input forces the
line to an EIA zero, or "space." U453B and U453D
drive control lines DTR (Data Terminal Ready) and
RTS (Ready to Send) in a similar manner.

Page 8-11

U454 is a standard EIA line receiver. The serial data in
line drives the input of U454A, which converts the
EIA voltages to TTL levels and drives the serial input of
the ACE. Likewise, the RLSD, DSR, and CRS line
Signals drive the inputs of U454B, U454D, and
U454C, respectively. The outputs drive the approp-
riate control inputs of the ACE.

The I/O connector on the back panel of the Computer is
a standard 25-pin D-type plug with the data and
signal line connected as follows:

1. Protective or chassis ground.

2. Serial Data Out.

3. Serial Data In.

4. Request To Send (RTS).

5. Clear To Send (CTS).

6. Data Set Ready (DSR).

7. Signal ground.

8. Received Line Signal Detector In (RLSD).

20. Data Terminal Ready (DTR).
CRT AND DISPLAY MEMORY CONTROL

The heart of the video logic system is the CRT controller.
This device generates all of the sync and blanking
signals and display memory addresses for the video
system. The memory control is used to select either
the address coming from the CRT controller or the
address bus, and to synchronize read and write
pulses.

CRT Controller

The CRT controller, U417, is a fully programmable
device that is set up by the ROM program during
power-up. Its bidirectional data bits (pins 33-26) con-
nect to system data bits DO-D7. Its address or prog-
ramming inputs come from the following four input
pins:

Pin 22. Read/Write (R/W) — Determines whether
the controller's internal register file is to be written
to or read from. A write is a logic zero.

Page 8-12

Pin24. Register Select (RS) — Selects either
the address register (RS=0) or one of
the data registers (RS=1) of the internal

register file.

Pin 25. Chip Select (CS) — A zero-sets the CRT
controller to read or write the internal

memory file.

Pin 23. Enable (E) — Enables the I/O buffers

and clocks data to and from the CRT
controller. Data is clocked on the fall-
ing edge of the enable signal.

The internal registers are written to or from by means
of the address register. The Z80 sets up the pro-
grammable registers by first writing a register number
into the address register when the register select
input is low. It then performs a write operation when
the register select input goes high.

Each of the CRT controller's registers is programmed at
power-up with appropriate data to generate the
SYNC, timing, and refresh signals. The memory ad-
dress outputs (MAO-MA10) drive the address of the
display RAM through multiplexers U414, U415, and
U416. The scan row address outputs (RAO-RA3) drive
the address inputs of character generator U420. The
display enable output (DISPLAY) is a logic one
whenever the CRT controller, U417, is
addressing a port of the RAM during the time it
should be displayed. This serves as a blanking output
whenever it is a logic zero. The cursor output goes to
a logic one when the RAM location being addressed
is equal to the address stored in the cursor address
registers.

Controller Read/Write Logic

The CS and E inputs of the CRT controller must be
selected in a particular sequence to perform read and
write operations to and from the controller. The ena-
ble input pulse (pin 23) must always be inside the CS
pulse. When the I/O request for address 140 appears at
pin 12 of U442, the clear input of U418A goes low,
and the Q output immediately drives the CS input
low. The Q output drives the data input of U418B to a
logic one. At the same time, U412C puts the Clear
input of U418B at a logic one.

The next CPU clock pulse at pin 11 of U418B clocks the
logic one at the data input through to the Q output. This
delays the leading edge of the enable pulse until
approximately one clock cycle after the leading edge
of the CS pulse. When the I/O request, at address 140
goes away (returns to logic one), the output of U412C
immediately clears U418B. U418B's Q output (pin 9)
drives the E input of the CRT controller to zero. The
clear input of U418A goes high at the same time, but
the Q output remains low until the next CPU clock
pulse at U418A's clock (pin 3) clocks the logic one at
the data input through to the output, terminating the
CS. This delays the trailing edge of the CS pulse until
after the trailing edge of the E pulse.

Display Memory Control,

The display memory control consists of an address
bus multiplexes, a bidirectional bus buffer, and some
gates that control the display memory write enable
(WE) and chip select (CS) inputs.

The address bus multiplexes consists of quad 2-input
multiplexers U414, U415, and U416. Their select in-
puts are tied together and controlled by memory de-
coder U435. When no read or write operations are
being performed on the display memory, the select
inputs are at a logic one, and the memory addresses
(MAO-MAD9) generated by the CRT controller drive
the address inputs (A0-A9) of RAMS U408-U411.
Memory address MA10, generated by the CRT con-
troller, is used to select either the upper or the lower
1k bank of video RAM. When the Z80 addresses the
memory, pin 9 of U435 pulls the select input to a logic
zero, CRT controller memory addresses MAO-MA9
are disconnected from the display RAM, and address bus
bits A0-A9 are connected to the RAM address
inputs. The Z80 can then read from or write into the
display RAM.

Bus buffer U407 isolates the main data bus from the
secondary or refresh, bus. During the screen refresh
period, the data outputs of the display RAM drive the
data inputs of the character generator continuously.
This would prevent the processor from having access
to the bus except during retrace times. However, by
isolating the refresh bus from the main bus, the Z80
can have continuous access to the main bus, and the
display RAM and character generator can have
continuous access to the secondary bus (refresh
bus). When the Z80 needs access to the display
RAM, it addresses the memory, which enables U407
through pin 9 of U435, and connects the main bus
directly to the secondary bus.

U412A and U412B provide the CS signals for the
display RAMS. During the screen refresh cycle, pin 11
of U414 is driven by A10 and pins 1 and 4 of U412 are
logic one. The output of U412A provides the CS for
RAMS U408 and U409 and drives input pin 5 of
U412B. The output of U412B is the complement of the
CS signal and it drives the CS input of RAMS U410
and U411. During a display RAM read or write cycle,
pins 1 and 4 of U412 are driven by the RD+WR signal
coming (indirectly) from pin 3 of U434A. This elimi-
nates the possibility of a contention problem on the
secondary (refresh) bus between the display RAMS
and buffer U407.

The write (WE) inputs of the RAMS are connected
together and they are controlled by U413C. The WE
(pin 8 of U413C) cannot go low unless pin 9 of U435 is
low (memory is selected), the signal is delayed
slightly to avoid a timing race with memory selection,
and the Z80 WR output is low.

DISPLAY MEMORY, CHARACTER
GENERATOR, AND VIDEO CONTROL
LOGIC

This section of the terminal logic circuit board essen-
tially runs by itself (in conjunction with the CRT
controller) after being programmed by the Z80. The
CRT controller continually provides refresh addres-
ses for the display RAM, while the output of the RAM
continually provides data for the character generator
and the video shift register.

Character Generator

Character generator U420 is a 2048 x 8 (16384 bit) read
only memory (ROM) that converts the ASCII data stored
in the display memory into dot information for the
video shift register. Address inputs A0-A3 (pin 5-8)
are driven by the scan row address outputs of the CRT
controller (RAO-RA3) to select a particular row of dots
within a character space. Address inputs A4-A10
connect to the secondary data bus through 8-bit latch
U419. These inputs use ASCII data to address the dot
data stored in the ROM. The data outputs (01-08) of
U420 supply video dot data to the parallel inputs of
video shift register U421.

The inputs of 8-bit latch U419 connect to the secondary
data bus. Data bits D0-D6 are latched into
U419A-G and drive the character generator. Data bit
D7 is the reverse video bit. It is latched in U419H and
drives an input of U423A.

Page 8-13

Video shift register U421 latches parallel dot data
from the character generator at inputs A-H and shifts it
out of output Qy in synchronism with the dot clock
(the dot clock drives the clock input, pin 7). The shift
register is loaded (the dot data is latched) on a
positive-going transition of the dot clock while the
shift/load input is held low by the ripple carry coming
from pin 12 of U426F. The dot data at input H appears
immediately at output Qy The next leading edge
of the dot clock shifts the data that was latched at
Qc. The next edge of the dot clock will shift the data
that was latched in Qf and so on. After the data from QA
is shifted to the Qg output, the load input goes low,
and the next character cycle begins.

Video Control Logic

The video control logic consists of two sections: a
series, or chain, of gates and latches associated with
video, cursor, and reverse video data; and a chain of
gates and latches associated with blanking data.

The display enable (blanking) and cursor data from
pins 18 and 19 of the CRT controller is coincident
with MAO-MA10, which address the display RAM.
The display enable bit is latched in U424F (after pas-
sing through AND gate U423C) by the complemented
character clock pulse coming from pin 11 of U412D.
The cursor bit is latched in U424F. This delays the
two signals by one character time. They are delayed
for one more character time by being latched in
U424E and U424G, respectively. The two character
delays are necessary to compensate for the delays in
the display RAM/character generator "pipeline."

When MAO-MAT10 address the RAM, it takes approx-
imately 450 nS for the data to be valid at the outputs.
Once it settles down, the next character clock latches it
in U419. The data at the output of U419 then ad-
dresses character generator U420. The data at the
output takes another 450 nS to settle, and it is latched in
the shift register by the following clock pulse.
(Since the character clock pulses are 650 nS apart, the
RAM and character generator outputs have plenty of
time to settle). This two-character delay matches the
delays for the cursor and display enable, so that every-
thing is synchronized.

The reverse video bit (D7) in the display RAM is
latched first in U419, and then in U424H (after pas-
sing through AND gate U423A), so that it too arrives
coincident with the video, blanking, and cursor data.

Page 8-14

The video dot data from pin 13 of video shift register
U421 and the cursor data coming from pin 16 of
U424G are exclusive-ORed in U425A. This causes the
cursor dots to reverse when the cursor happens to be
coincident with video information, and keeps the
cursor from disappearing when it occupies the same
space as a character.

The video/cursor information coming from pin 3 of
U425A is then exclusive-ORed in U425B with the
reverse video data coming from pin 19 of U424H.
When pin 19 is logic zero, the video/cursor data passes
through U425B just as it is entered. If pin 19 of
U424H is logic one, the data is reversed, and the
character appears on the screen as black dots on a
white background. The reverse video function can be
disabled under the control of the ROM program when a
logic zero is written into latch U422B via the address
bus. Address bit A3 drives the data input of
U422B, and its clock input is clocked when the CRT
controller is addressed (I/O address 140). If the reverse
video is to be ignored, the Q output (pin 9) of U422B
puts pin 1 of AND gate U423A at a logic 0 and disables
the reverse video bit coming from pin 19 of latch
U424H.

The video/cursor/reverse data coming from pin 6 of
U425B is ANDed in U423D with the display enable
data coming from pin 12 of U424E. If the display
enable is logic 1, the video data goes to the video
circuit board; if it is a logic zero, the video is blanked.

When the Z80 performs a read or write operation on
the display RAM, it disturbs the pipeline, and the data
on the secondary (refresh) bus does not coincide with
what should be written on the screen.

Consequently, the video is blanked during a read or
write. When pin 9 of memory decoder U435 goes low
to select the display RAM, it also drives the clear
input (pin 1) of U424. The Q output (pin 6) of
U424C drives pin 9 of AND gate U423C to a logic
zero and disables the display enable. At the same
time, the Q output (pin 12) of U424E drives pin 12
of AND gate U423D to a logic zero, blanking the video
information coming from the video chain. The screen
will blank as long as the RAM is selected.

When pin 9 of U435 goes high to deselect the RAM,
U424 is no longer held cleared. The logic one at the D
input of U424C is clocked through to its Q output on
the next character clock pulse, and it is clocked
through U424D and U424E on the next two pulses.
This three-character delay gives the pipeline time to
reload with valid information before the video is ena-
bled.

The propagation delays through the various gates and
latches (U421, U425A, U425B, and U424) from the
edge of the character and dot clocks to their various
outputs is not always constant, so another delay is
used. Latch U422A acts as a mini-pipeline, clocked at
the dot rate. The data input to U422A is the composite
video/cursor/reverse/blanking data, and its T input is
clocked by the dot clock. This 80 nS delay lets all data
settle to valid states before it is sent to the video
circuit board.

The sync and video signals are buffered before they
leave the terminal logic circuit board. U406A inverts
and buffers the video data. U406C inverts and buffers
the vertical sync signal coming from pin 40 of the CRT
controller. U406D buffers the horizontal sync signal
coming from pin 39 of the CRT controller.

Page 8-15

CPU LOGIC CIRCUIT BOARD

Refer to the CPU Logic Circuit Board Block Diagram
(Illustration Booklet, Page 6) as you read the following
material.

SYSTEM CLOCK

Crystal X501, in conjunction with U501A, form a
crystal oscillator which operates at 12.288 MHz.
Capacitors C501 and C503 provide the load for the
crystal, while R501 and R502 force U501A to operate
in its linear mode. C502 acts as a low-pass filter to
insure that the crystal will determine the operating
frequency of the circuit rather than the delay time of
US01A.

U502 operates both as a divide-by-6 scaler, resulting
in a 2.048 MHz clock signal, and as a divide-by-two
scaler acting on the 2.048 MHz signal to provide
U503's clock. U503 operates as a divide-by-1024
scaler and provides the 2mS clock signal.

POWER-UP AND RESET

When power is first applied, capacitor C507 is dis-
charged. As the +5 V source becomes active, C507
begins to charge. Approximately 150 mS after the

+5V source reaches +5 volts, pin 6 of US08B goes
low and pin 8 of U501D goes high and terminates
the power-up reset operation.

As long as the reset and shift keys are held down on
the keyboard, pin 3 of U5S06A is held low and the
display electronics are continuously reset. However,
the Computer is not reset until the keys are released.
This insures that the display will complete its reset
function before the Computer resets; thus resulting in a
proper indication on the display.

The rising edge of the KBRST L signal toggles US06A
and causes its Q output (pin 5) to go high. This
signal is coupled to a 50 uS one-shot (U507A) by
U508A, and is the trigger signal for the one-shot.
U507A's output is the reset signal used by the
Computer and is coupled to the Computer by US08B
and U501D.

U508A and U508D form an R-S flip-flop which
guarantees that a keyboard reset will occur only dur-
ing the op code fetch portion of an MI cycle.
Therefore, the refresh for dynamic memories will not
be disturbed and no information will be lost.

Page 8-16
CENTRAL PROCESSING UNIT (CPU)

The CPU is a Z80 microprocessor which runs at 2.048
MHz. Pictorial 8-1 shows the timing during an
M1 cycle (instruction fetch). Notice that signal M1
occurs prior to the refresh signal during the instruction
fetch. Pictorial 8-2 shows the timing of a memory read
and a memory write cycle, Pictorial 8-3 shows the
timing during an /O cycle, and Pictorial 84 (on
Page 8-17) occurs only at the end of an instruction
cycle and that both an M1 and an IORQ are
generated.

CONTROL LOGIC

U509 is a non-inverting buffer, while U562D com-
plements BM1 L to produce BM1 H. U515A OR's the
[/0 request and memory request signals to produce
the latch address signal (LA L). US562A and U562B
form a 100 nS delay for the memory request signal;
thus DMERQ L is the delayed memory request. This
delay occurs only on the leading edge and not the
trailing edge of the signal.

ADDRESS LATCH

U510 and U511 are transparent latches. Any
data at their inputs is transferred to their outputs when
LA Lis high. When LA L is low, the last data

pattern to occur just before the LA L high-to-low
transition is retained at their outputs.

MEMORY MAP DECODER

U517 and U516 are PROMS which decode the latched
address lines and determine which memory chips are to
be enabled. Specifically, U517 determines which of the
eight 8k banks is to be enabled, and U516 deter-
mines which of the 1k pages within bank 0 is to be
enabled. However, the address lines are not the only
criteria used to determine memory selection.

Jumpers JJ501, JJ502, and JJ503 select various memory
configurations. That is, if only 48k of user RAM is
installed, then JJ501 is jumpered for "0," JJ502 is
jumpered for "1 ," and JJI503 is jumpered for "B." Asa
result, RASO L, RASI L, or RAS2 L, will be selected
(coincident with the selected address being within
banks 1 and 2, 3 and 4, or 5 and 6). In addition,
NOMEM L will be asserted low whenever bank 7 is
accessed. This results in U521 being enabled and all
0's being forced onto the data bus (required by some
software memory sizing routines). If, however, 64k of
user memory is installed, JJ501 and JJ502 will be jum-
pered for "1," and JJ503 is again a "B." Now, when
bank 7 is addressed, RAS3 L will be asserted instead
of NOMEM L. Access to 64k of RAM requires setting
the CP/M ORGO latch in the software to configure
bank 0 as RAM.

- M1 CYCLE =
" [P T3 Ty T

i W \ —f
AO~A15 [PC Y KEFRESH ADDR.
MREQ \ [\ [L
RD 1T\ [
LY SR U S AN W s S SRR
M A / | .
DBO~DE7 (0]
RFSH \ [1

PICTORIAL 8-1

Page 8-17

————MEMORY READ CYCLE ——m=t———MEMORY WRITE CYCLE——
T
T Ty Ty N T2 3
— g \ \ |
AO~Al5 _ 1) MEMORY ADDR. X MEMORY ADDR.) G
MREQ \ 1T\ 1T
\ RD 1\ [
PICTORIAL 8-2
WR | W A
DATA BUS o 4 DATA OUT
{D0~07) o) [_ _
war ZT-__”T17 [-_'_';: _________ S C_[____ [__
N I Tw T3 "
a4 I \ \ |
no~a1 PORT ADDRESS X
[ORQ)
RD \ [{ ReaD
CYCLE
DATA BUS {In)- \
—— — . ————— ————— -P- ——— e - - e w— - — o ——
WATT
o Saiuntnted tedadated IO W -—-- PICTORIAL 8-3
WR J- / fWRITE
{CYCLE
DATA BUs ———{ 0UT
LAST M CYCLE _ "
OF INSTRUCTION]+
LAST T
STATE n T2 Tw Tw T3
o — | | — \ \ | — | _
ﬁ - ——— - e e e S S S W W N W NS S e S — S — — — r--———
s uubutn W I slububutl bt ettt it oooIfoIIs
AQ~ALS X PC XREFRESH
Ml [
WREQ |-
TORQ \
PICTORIAL 8-4
DATA BUS @}
YRS D SR SRR SRR I I A S A
RD

Page 8-18

The write enable line (WE L) will be asserted low
whenever there is no read (BRD L is high), no refresh
(BRSH L is high), memory is selected (DMERQ L is
low), and the bank selected contains writeable mem-
ory. Thus, since NOMEM L contains no writeable
memory, WE L cannot be asserted if NOMEM L is
asserted. However, bank 0 contains both writeable
and non-writeable memory. Therefore, WE L will be
asserted for bank 0 if the first three conditions are met
regardless of the fourth condition. It is up to U516 to
either enable or not enable the page select lines
(MC5001 L, MC5023 L, MC505 L, and MC5067 L),
depending on whether the memory addressed is
writeable or not.

Write enable line 0 (WEO L) is used with the 1k of
RAM associated with the floppy disk. It is only as-
serted when WE L is asserted, MC 505 L is asserted,
and FMWEN H is asserted. It is controlled by bit 7 of
1/0 port 177.

If the refresh line (BRFSH L) is asserted low, then WE L
is not asserted. In addition, RASO L, RAS1 L, and
RAS2 L will be asserted (consistent with the position
of jumpers JJ501, JJ502, and JJ503) regardless of the
bank address. This insures that all applicable
dynamic RAM will be refreshed.

DYNAMIC RAM MULTIPLEXER

U513 and U514 multiplex the 14 address lines re-
quired for 16k of memory into the 7 lines available on
the memory chips. US512A is used to clock the row
and column addresses into the memory chips in the
proper sequence and at the proper time. Assume that
a memory cycle has just begun (DMERQ H is high). At
this time, the row addresses are multiplexed onto the
memory address lines (A0-6 L) and the applicable
RAS line (RAS0-2 L) is asserted low; thus, latching
the row address into the memory chips. One half
clock cycle later, US12A is toggled. This causes
the row addresses to be removed from the memory
address lines (A0-6 L) and the column addresses (A7-13)
to be multiplexed in. A short delay later (determined
by R514 and C522), the CAS L line is asserted and the
column address is latched into the memory.

The multiplexer will be returned to its normal state
(RAS address selected) when either a refresh cycle is
initiated (clears U512A) or after the first clock cycle
following the memory cycle (DMERQ H is low, caus-
ing the Q output of U512A to go low).

SYSTEM ROM

U518 is the system ROM which resides in the bottom 2
pages of memory (0, 1). An additional 2k of ROM can
be added to the system at Pages 2 and 3 by installing
jumper JJ507 at "A". Jumpers JJ504, JJ505, and JJ506
are used to switch between the 3-voltage
EPROMs and the single voltage ROMs. When the
jumpers are installed in their 0 locations, then the
3-voltage EPROMs are used.

FLOPPY DISK ROM

U520 is the floppy disk ROM which resides in the
address map at Pages 6 and 7. It is restricted to a single
voltage ROM. However, by moving jumper JJ507 to
‘B', U519 will serve as the floppy ROM and a 3-voltage
EPROM can be installed. It is now no longer possible
to use 4k of system ROM.

FLOPPY DISK RAM

U523 and U525 are used by the floppy disk and reside in
Page 5 of bank 0 of the memory map. They are
organized as 1k x 4 static RAMS. Provisions are made
for an additional 1k of static memory at Page 4. How-
ever, it cannot be write protected as the memory at
Page 5 can.

SYSTEM RAM

The system RAM is organized as 16k x 1 dynamic
RAMS and resides in banks 1, 2, 3, 4, 5, 6, and 7. U526
through U533 comprise banks 1 and 2, U534 through
U541 comprise banks 3 and 4, and U542 through
U549 comprise banks 5 and 6. Bank 7 is accessible
when the memory expansion board is installed and
JJ501 through JJ503 are properly positioned.

INTERRUPT LOGIC

U557 detects that an interrupt request has occurred. It
transmits this information to the processor by the INT L
line. The interrupt priority is also determined by
U557, and is available on output pins 6, 7, and 9. This
information is transmitted to the data bus during the
interrupt acknowledge cycle by U558.

The highest priority is interrupt level 5, while the
lowest priority is the 2 mS clock at level 1. In proces-
sing the interrupt, the CPU is operating in the 8080
mode. Therefore, the data on the data bus at acknow-
ledge time is an instruction (U558 encodes the data
from priority encoder U557 such that the processor
sees a restart instruction). This instruction directs the
processor to execute the instruction at ROM address
10 for the 2 mS clock, at address 20 for the single step, at
address 30 for the INT 3L, etc.

1/0 MAP DECODER

U550 is a 256 x 8 PROM, and decodes the various I/O
ports required by the Computer. /O F2H (362Q) is the
general purpose port and I/O 362L is its enable signal.
I/O NMI L is generated by the system whenever accesses
to ports OFOH (360Q), OF1H (361Q), OFAH (372Q), 0OFBH
(373Q) occur. Interrupt acknowledge is generated by
the Z80 via a simultancous M1 L and IORQ L. The
BM1 L is used to deselect US50 and terminate the
interrupt request. This enables the system to run
software previously developed for the H-8 Computer.
That is, accesses to the H-8 front panel are rerouted to
the system console.

Since the interrupt acknowledge generates a BIORQ L
signal, this could cause an I/O request to /O 362 or I/O
NMI. The effect would be to either cancel the inter-
rupt before it could be processed or to generate an
NMI request. In either case, the Computer will get
lost. Therefore, since the interrupt acknowledge also
generates an M1 signal, M1 is used to deselect U550
during the interrupt acknowledge cycle.

SINGLE STEP AND 2 mS CLOCK

The 2 mS clock is controlled by U506B. It is enabled
by writing a “1' on data line D1 H at I/O port
OF2H (362Q). Once enabled, the next positive
transition of the 2 mS clock will trigger US06B and
cause its output (pin 8) to go low; thus enabling
interrupt level 1. The clock handler must, as part of
its routine, disable the clock interrupt (clear U506).
Otherwise, another interrupt will be generated as soon
as an El instruction is executed. This occurs because
US506B is operating as a latch. It will be cleared
whenever a write to I/O port 0F2H (362Q) occurs. If
D1 H is low when this write occurs, then the 2 mS clock
will be disabled. If D1 H is high when the write
occurs, then US06B will only be cleared and the 2 mS
clock will still be enabled; thus allowing another
interrupt to occur at the end of the next 2 mS period.
At power-up or keyboard reset, US06B is enabled.
Consequently, a 2 mS clock interrupt will occur
immediately after an El instruction has been
executed.

The single step is enabled by DO H and I/O port OF2H
(362Q). With bit 0 of port 0F2H (362Q) low, U555A
and U555B are held in their initialized state. When bit 0
of port 0F2H (362Q) is high, the single step is enabled.

US556A synchronizes the 2.048 MHz clock with the M1
cycle and valid data on the data lines. U515B and U554
decode the El instruction for US55A. Thus, an El
instruction causes the D input of US55A (pin 2) to be

Page 8-19

asserted low. US555A is then toggled by US556A:
thus, setting the T input of U555B (pin 11) low. At the
end of the next M1 cycle, US55B is toggled, which
latches its output (pin 0) low. Another M1 cycle is
executed, which now toggles U556's output(pin 8)
high. This generates the interrupt at level 2 (restart 2).
The software sequence is:

Enable single step

Wait for keyboard

EI instruction

RTI instruction

Execute single program instruction

Interrupt out of program

Disable single step

Enable single step (step 7 and 8 are re-

quired to reinitialize single step logic)
9. Wait for keyboard

10. Etc.

0NN R W~

GENERAL PURPOSE PORT

The general purpose port is located at I/O address
0F2H (362Q), and is comprised of U551, U552,
U553B, and switch SW501. A read from this port puts
the dip switch (SW501) status on the data lines. A
write to this port controls the single step and 2mS
interrupt logic. In addition, 4 other lines (MEMO H,
MEMI H, 100 H, and 101 H) are available. These lines
are routed to the accessory connectors on the CPU
logic circuit board and are not presently used. BANK
SEL H controls the selection of bank 7 on the 16k
memory expansion board.

CONSOLE SERIAL PORT

This port, at I/O locations 0OEOH-OE7H (350Q-357Q), is
used to communicate with the console terminal.
U559 and U560 convert the TTL levels from and to the
ACE (U561) into standard EIA signals. US515D acts
only as an inverter for the reset line, and Q1 provides
both inversion and the WIRED-OR function for inter-
rupt level 3 (restart 3).

The clock for the ACE is supplied by logic inside
U561, and is crystal controlled by X502. C525 and
C526 provide the load for the crystal, and R515
and R516 provide the proper bias for the internal
devices. The clock thus generated is routed to the
I/0 accessory connectors (through buffer U564D) for
use by the Serial Interface Accessory circuit
board.

For a description of the ACE and how to program it,
refer to Chapter 13 in this Manual, starting on Page
13-1.

Page 8-20
SERIAL INTERFACE CIRCUIT BOARD

The first port on this circuit board is located at I/O
0EOH-0E7H (340Q-347Q) and is used as the line
printer port. Its output is standard EIA with a DCE
connector. The second port is located at I/O 0D8H-
ODFH (330Q-337Q) and, again, is used as the standard
EIA output. However, this port is terminated with a
DTE connector for communication with a
MODEM. The third port is located at I/O 0DOH-
0D7H (320Q-327Q) and is configured for

EIA with a DCE connector. All three ports can be
jumpered for interrupt levels, 3, 4, or 5 and use the
1.8432 MHz clock generated by the console serial
port.

The main logic device for each port is the 8250 ACE.
For a description of this device and its programming
instructions, refer to Chapter 13 in this Manual and
starting on Page 13-1.

Page 9-1

REPLACEMENT PARTS LIST

POWER SUPPLY
CIRCUIT HEATH DESCRIPTION CIRCUIT HEATH DESCRIPTION
Comp. No. Part No. Comp. No. Part No.

Diodes (cont'd.)
CAPACITORS, Electrolytic

D102 57-42 3A1
C101 25-902 10,000 uF D103 57-42 3A1
C102 25-906 4700uF D104 57-42 3A1
C103 25-902 10,000uF D109 57-27 IN2071
Cl104 25-891 470 uF D110 57-27 IN2071
D111 57-27 IN2071
DIODES D112 5727 1N2071
BR1 56-67 Bridge rectifier INTEGRATED CIRCUIT
D101 57-42 3A1 See "Semiconductor Identification."

VIDEO CIRCUIT BOARD

CIRCUIT HEATH DESCRIPTION CIRCUIT HEATH DESCRIPTION
Comp. No. Part No. Comp. No. Part No.
RESISTORS Resistors (cont'd.)
NOTE: The following resistors are 5%.1/2-watt R212 3-57-5 1500 Q, 5-watt, 10%
unless otherwise specified. R213 6-470 47 Q
R214 Not used
R201 6-105 1 MQ R215 6-152 1500 Q
R202 6-472 4700 Q R216 6-332 3300 Q
R203 6-102 1000 Q R217 6-104 100 kQ
R204 6-682 6800 Q R218 6-223 22 kQ
R205 6-472 4700 Q R219 10-390 20 kQ control
R206 6-101 100 Q R220 Not used
R207 6-6491 6490 Q, 1% R221 6-224 220kQ
R208 6-1871-12 1870 Q, 1/4-watt, 1% R222 6-273 27 kQ
R209 6-102 1000 Q R223 10-390 20 kQ control
R210 Not used R224 6-822 8200 Q
R211 3-6-2 51 Q, 2-watt R225 6-103 10 kQ

R226 6-623 62 kQ

Page 9-2

CIRCUIT HEATH DESCRIPTION

Comp. No.

Part No.

Resistors (cont'd.)

R227
R228
R229
R230
R231
R232
R233
R234
R235
R236
R237
R238
R239
R240
R241
R242
R243
R244
R245
R246
R247
R248
R249
R250
R251
R252
R253
R254
R255
R256
R257
R258
R259
R260
R261
R262
R263
R264
R265
R266
R267
R268

6-473
6-103
6-122
Not used
6-182
6-101
6-105
6-103
6-273
6-222
6-150
6-471
6-279
Not used
6-279
6-479
6-102
6-223
6-273
10-311
6-6491
6-273
6-392
Not used
6-201
6-470
6-392
3-22-2
6-101
3-22-2
3-22-2
6-104
6-331
Not used
6-473
6-104
6-823
6-225
6-394
6-335
6-335
6-102

47 kQ
10 kQ
1200 Q

1800 Q
100 Q
1 MQ
10 kQ
27 kQ
2200 Q
15 Q
470 Q
2.7Q

2.7 Q

4.7 Q

1000 Q

22 kQ

27 kQ

5000 Q control
6490Q, 1

27 kQ

3900 Q

200 Q

47 Q

3900 Q

1.2 Q, 2-watt
100 Q

1.2 Q, 2-watt
1.2 Q, 2-watt
100 kQ
330Q

47 kQ
100 kQ
82 kQ
2 MQ
390 kQ
3.3 MQ
3.3 MQ
1000 Q

CIRCUIT HEATH DESCRIPTION
Comp. No. Part No.

CAPACITORS

C201 25-911 22 uF, 25V
C202 21-140 .001 pF ceramic
C203 25-865 10 puF electrolytic

C204 25-220
C205 25-220
C206 21-176
C207 25-883

C208 27-145
C209 27-145
C210 Not used
C211 27-841
C212 29-32
C213 25-865
C214 21-176
C215 21-140

C216 25-890
C217 21-75

C218 21-176
C219 21-75
C220 Not used
C221 29-22
C222 21-176
C223 29-22
C224 27-73
C225 25-882

C226 25-220
C227 25-882

C228 29-56
C229 25-299
C230 Not used
C231 29-57
C232 27-206
C233 21-193
C234 25-883
C235 21-122
C236 21-122
C237 21-122

10 pF tantalum
10 uF tantalum
.01 uF ceramic
47 uF electrolytic
.22 uF Mylar
.22 uF Mylar

4.7 puF tantalum
.0068 puF polystyrene
10 pF electrolytic

.01 pF ceramic

.001 pF ceramic

330 pF electrolytic
100 pF ceramic

.01 pF ceramic

100 pF ceramic

.0047 pF polystyrene
.01 uF ceramic

.0047 uF polystyrene
.047 uF Mylar

22 pF electrolytic

10 uF tantalum

22 uF electrolytic

.006 uF polypropylene
1.5 pF electrolytic

.22 uF polypropylene
1 uF polycarbonate
.005 pF spark gap
.47 pF electrolytic
.02 uF ceramic

.02 uF ceramic

.02 pF ceramic

DIODES -TRANSISTORS - IC's

See "Semiconductor Identification."

INDUCTORS - CHOKES - TRANSFORMERS

L201 40-581
L202 45-42
L203 40-1947
L204 40-1948
T201 51-197
T202 51200

620 pH inductor
8.75 uH choke

19 pH inductor

52 pH inductor
Driver transformer
Flyback transformer

Page 9-3

VIDEO DRIVER CIRCUIT BOARD

CIRCUIT HEATH DESCRIPTION

Comp. No. Part No.

RESISTORS

R901 6-105-12 1 MQ, 1/4 watt, 5%
R902 6-102-12 1000 Q, 1/4 watt, 5%
R903 1-50-2 820 Q, 2-watt

R904 1-45 220 Q, 1/2 watt, 10%
R905 6-750-12 75 Q, 1/4 watt, 5%
R906 6-220-12 22 Q, 1/4 watt, 5%
R907 1-9 1000 Q, 1/2 watt, 10%
R908 1-25 47 kQ, 1/2 watt, 10%
R909 1-25 47 kQ, 1/2 watt, 10%
RI10 Not used

RI11 6-370-12 33 Q, 1/4 watt, 5%
CAPACITORS

C901 21-176 .01 pF ceramic

C902 21-176 .01 pF ceramic

C903 21-176 .01 pF ceramic

CIRCUIT HEATH DESCRIPTION

Comp. No.

Part No.

Capacitors (cont'd.)

C904
C905
C906
907
C908

21-176
25-865
20-106
21-176
21-176

.01 pF ceramic
10 pF electrolytic
390 pF mica

.01 pF ceramic
.01 uF ceramic

DIODES - TRANSISTORS

See "Semiconductor Identification."

CHOKE
L901

45-39

4.65 uH choke

TERMINAL LOGIC CIRCUIT BOARD

CIRCUIT HEATH DESCRIPTION

Comp. No. Part No.
RESISTORS

NOTE: All resistors are 1/4-watt, 5%.
R401 6-222-12 2200 Q
R402 6-470-12 47Q
R403 6-101-12 100 Q
R404 6-222.12 2200 Q
R405 6-101;12 100Q
R406 6-102-12 1000 Q
R407 6-102-12 1000 Q
R408 6-561-12 560 Q
R409 6-561.12 560 Q
R410 Not used

R411 6-331-12 330Q
R412 6-103-12 10 kQ
R413 6-102-12 1000 Q1
R414 6-103-12 10 kQ
R415 6-224-12 220 kQ
R416 6-102-12 1000 Q
R417 6-100-12 10Q
R420 Not used
R418-R426 6-103-12 10 kQ
R427-R435 6-103-12 10 kQ

CIRCUIT HEATH DESCRIPTION

Comp. No.

Part No.

Resistors (cont'd.)

R430 Not used
R436 6-102-12
R437 6-472-12
R438 6-272-12
R439 6-103-12
R440 Not used
R441 6-224-12
R442-R454 6-103-12
R450 Not used
R455 6-102-12
R456 6-101-12
R457 6-102-12
RP1 9-98
RP2 9-98
CAPACITORS
C400 21-176
C401 21-46
C402 25-221
C403 25-221
C404 25-221
C405 25-221
C406 21-176

1000 Q2

4700 Q
2700 Q
10 kQ

220 kQ
10kQ

1000 Q

100 Q

1000 Q

220 kQ resistor network
220 kQ resistor network

.01 pF ceramic

.005 uF ceramic
2.2 pF tantalum
2.2 uF tantalum
2.2 pF tantalum
2.2 pF tantalum
.01 pF ceramic

Page 9-4

CIRCUIT

Comp. No.

HEATH
Part No.

DESCRIPTION CIRCUIT HEATH DESCRIPTION
Comp. No. Part No.

Capacitors (cont'd.)

Capacitors (cont'd.)

C407 25-276 4.7 uF tantalum
€408 25-221 2.2 uF tantalum C479 21-140 .001 uF ceramic
C409 21-176 .01 pF ceramic C480 Not used
C410 21-176 .01 pF ceramic C481 25-220 10 pF tantalum
C411 25-276 4.7 pF tantalum C482 21-46 .005 uF ceramic
C412 25.221 2.2 pF tantalum C483 25-223 47 uF tantalum
C413 25-221 2.2 pF tantalum C484 21.176 .01 uF ceramic
Cal4 21.167 39 pF ceramic 485 21-176 .01 uF ceramic
C415 21-176 .01 pF ceramic C486 21-176 .01 pF ceramic
C416 21-711 470 pF ceramic C487 21-176 .01 pF ceramic
C417 21-140 001 pF ceramic C488 21-176 .01 pF ceramic
C418 21-176 .01 pF ceramic C489 21-176 .01 uF ceramic
C419 20-101 47 pF mica C490 Not used
€420 21-176 .01 pF ceramic C491 21-711 470 pF ceramic
C421 20-103 150 pF mica
C422 25-223 47 uF tantalum
C423 25221 2.2 pF tantalum MISCELLANEOUS
C424 21-95 .1 pF ceramic
C425 21-95 .1 uF ceramic S401 60-621 Dip switch
C426 25221 2.2 uF tantalum S402 60-621 Dip switch
C427-C457 21-95 .1 uF ceramic Y401 404-613 12.288 MHz crystal
C458 21-176 .01 pF ceramic
C459-C474 21-95 .1 uF ceramic DIODES - TRANSISTORS - IC's
C475-C478 21-711 470 pF ceramic
See "Semiconductor Identification."
CPU LOGIC CIRCUIT BOARD
CIRCUIT HEATH DESCRIPTION CIRCUIT HEATH DESCRIPTION
Comp. No. Part No. Comp. No. Part No.
RESISTORS CAPACITORS
. . 0 C501 20-103 150 pF mica
NOTE: all resistors are 1/4-watt, 5% C502 21-185 01 uF ceramic
R501 6-561-12 560 Q C503 20-101 47 pF mica
R502 6-561-12 560 Q C504 21-186 .01 uF ceramic
R503 6-331-12 330 Q C505 20-106 390 pF mica
R504 6-102-12 1000 Q C506 20-171 820 pF mica
R505 6-102-12 1000 Q C507 25-282 68 pF tantalum
R506 6-471-12 470 Q C508 25-221 2.2 uF tantalum
R507 6-103-12 10kQ C509 25-197 1.0 uF
R508 6-184-12 180 kQ C510 Not used
R509 6-103-12 10 kQ C511 25-195 2.2 pF tantalum
R510 Not used C512 25-191 1.0 pF tantalum
R511 6.102-12 1000 Q C513 25-195 2.2 uF tantalum
R512 6-102-12 1000 Q Cs514 25-197 1.0 pF tantalum
R513 6-151-12 150 Q C515 25-221 2.2 pF tantalum
R514 6-151-12 150 Q C516 25-191 1.0 pF tantalum
R515 6-472-12 4700 11 C517 25-221 2.2 uF tantalum
R516 6-152-12 1500 Q C518 25-197 1.0 pF tantalum
R517 6-105-12 1 MQ C519 21-185 .01 pF ceramic
C520 not used
C521 21-185 .01 pF ceramic

C522 21-114 270 pF ceramic

CIRCUIT HEATH
Comp. No. Part No.

DESCRIPTION

Capacitors (cont's.)

C523 21-22 220 pF ceramic
C524 31-185 .01 pF ceramic
C525 21-3 10 pF ceramic
C526 21-5 20 pF ceramic

C527-C597 21-185 .01 pF ceramic

Pagel0-5

CIRCUIT HEATH DESCRIPTION
Comp. No. Part No.

MISCELLANEOUS

S501 60-621 8-section switch
Y501 404-613 12.288 MHz crystal
Y502 404-608 1.843 MHz crystal

DIODE - TRANSISTOR - IC's
See "Semiconductor Identification."

CHASSIS PARTS

CIRCUIT HEATH DESCRIPTION

Comp. No. Part No.
R1 10-1178 500 € control
C1 25-857 1500 uF electrolytic capacitor
T1 54-969 Power transformer
T2 58-19 Yoke
SW1 60-642 115/230 switch
SW2 60-643 NORM/LOW switch
SW3 61-43 Power switch
F1 421-23 1-ampere fuse
F1 421-25 1.5-ampere fuse
401-163 Speaker
A\ 411-838 White standard CRT
OR
411-851 White anti-glare CRT
OR
411-852 Green anti-glare CRT

SERIAL INTERFACE CIRCUIT BOARD

CIRCUIT HEATH DESCRIPTION
Comp. No. Part No.

RESISTOR

R601 6-102-12 1000 Q
R602 6-181-12 180 Q

R603 6-181-12 180 Q

R604 6-181-12 180 Q

R605 6-181-12 180 Q

R606 6-181-12 180 Q
R607 6-181-12 180 Q
R608 6-181-12 180 Q

R609 6-181-12 180 Q

R610 6-181-12 180 Q

R611 6-181-12 180 Q

CIRCUIT HEATH DESCRIPTION
Comp. No. Part No.

CAPACITORS

C601 25-221 1.0 pF tantalum
C602 25-221 1.0 uF tantalum
C603 25-221 1.0 pF tantalum
C604 25-221 1.0 pF tantalum
COILS

(21) L601-L621 45-614 10 uH

INTEGRATED CIRCUITS

See "Semiconductor Identification."”

Page 9-6

SEMICONDUCTOR IDENTIFICATION

This section is divided into two parts; "Component Number
Index" and "Part Number Index." The first section provides a
cross-reference between semiconductor component numbers
and their respective Part Numbers. The component numbers
are listed in numerical order. The second section provides a
lead configuration detail (basing diagram) for each semicon-
ductor Part Number. The Part Numbers in the second section

are also listed in numerical order.

COMPONENT NUMBER INDEX

This index shows the Part Number of each semiconductor in

the Computer.

POWER SUPPLY CIRCUIT BOARD

CIRCUIT HEATH
COMPONENT PART
NUMBER NUMBER
BR1 57-67
D101 47-42
D102 47-42
D103 47-42
D104 47-42
D109 57-65
D110 57-65
D111 57-65
D112 57-65
U101 442-30
U102 442-30
U103 442-650

Page 10-1

Pagel0-2

VIDEO CIRCUIT BOARD

Transistors

Diodes
CIRCUIT HEATH
COMPONENT PART
NUMBER NUMBER
D201 56-94
D202 56-56
D203 56-58
D204 56-56
D20s 56-73
D206 56-56
D207 57-27
57-614
D208
D208 57-27
D210 57-27
D211 57-64

VIDEO DRIVER CIRCUIT BOARD

Diodes
CIRCUIT HEATH
COMPONENT PART
NUMBER NUMBER
D901 57-27
D902 56-93

TERMINAL LOGIC CIRCUIT BOARD

Diodes
CIRCUIT HEATH
COMPONENT PART
NUMBER NUMBER
D401 56-56
D402 56-56

Integrated Circuits

CIRCUIT HEATH CIRCUIT HEATH
COMPONENT PART COMPONENT PART
NUMBER NUMBER NUMBER NUMBER
Q201 417811 U201 442-53
Q202 417-924 U202 442-53
Q203 417874
Q204 417-282
Q205 417-823
Q206 417-885
Q207 417822
Q208 417-821
Q209 417-926
Q210 417-926
Q211 417-264
Q212 417-263
Q213 417-195
Q214 417-923
Transistor
CIRCUIT HEATH
COMPONENT PART
NUMBER NUMBER
Q901 417-834
Q902 417-875
Transistors
CIRCUIT HEATH
COMPONENT PART
NUMBER NUMBER
Q401 417-937
Q402 417-937

Integrated Circuits (Cont'd)

Resistor Packs

CPU LOGIC CIRCUIT BOARD

Pagel0-3

Integrated Circuits

CIRCUIT HEATH CIRCUIT HEATH
COMPONENT PART COMPONENT PART

NUMBER NUMBER NUMBER NUMBER

U401 442-54

U402 442-54

U403 442663 . o8

U404 442-664

U405 442-630

U406 443-891

U407 443-885

U408 443-764

U409 443-764

U410 443-764

U411 443-764

U412 443-728 2

U413 443-875 Diode

32 :; 2:3_;33 CIRCUIT HEATH

l1e 443-799 COMPONENT PART

rpb 443.606 NUMBER NUMBER

U418 443-730

U419 443-805 oo S

U420 444-29

U421 443-892

U422 443-900 Transistor

U423 443-780

U424 443-805 CIRCUIT HEATH

U425 443-915 COMPONENT PART

U426 443-18 NUMBER NUMBER

U427 443.757

U428 443-730 Qs01 417-821

U429 44334

U430 443-881

U431 443.792

U432 443-779

U433 443-733

U434 443-228

U435 443877

U436 Not used

U437 444-46 SERIAL INTERFACE CIRCUIT BOARD

U438 443-721

U439 443721

U440 443-760

U441 443-727 Integrated Circuits

U442 443.877

Em ::g:;?; CIRCUIT HEATH

Uass 44437 COMPONENT PART

Uade 44318 NUMBER NUMBER

U447 443-792

U448 $4-70= U601 443-818

U449 443-791 U602 443-952

U450 443-791 U603 443-874

U451 443.730 U604 443-952

U452 443-952 U605 443.795

U454 443-795 ue07 443.795
U608 443-794
U609 443.795
U610 443-730

CIRCUIT HEATH
COMPONENT PART
NUMBER NUMBER
Us01 443-18
us02 443-34
Us03 443-760
Us04 443881
U506 443-730
uso7 443-727
us08 443-792
Us09 443-824
uUs10 443-837
us11 443-837
us12 443-730
U513 443-824
us14 443-824
usis 443-779
Us16 444-41 or
44483
us17 444-66
uUs18 444-62 or
' 44484
uUs19 Not used
U520 444-19
us21 443-754
us22 Not used
us23 443-764
us24 Not used
us2s 443-764
U526-U549 443-904
Us50 444-61
uss51 443-791
uss52 443-805
uss3 443875
uss4 443-732
Us55 443-730
Us56 443-730
uss7 443-912
uss8 443-754
uss59 443.794
U560 443-795
Us61 443-852
use2 443-792
usés 442-664
U566 442-665
use7 442-663
us68 442-663
U569 442-665

Pagel0-4

RESISTOR PACK

PART NUMBER INDEX

This index shows a lead configuration detail (basing
diagram) of each semiconductor part number.

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
DOT
9-98 1220 k02 0R~_ < S
resistor network 1 \“ I
— * h
DIODES
HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
56-56 1N4149 10 mA, 75V
56-58 1N709A Zener, 6.2 V, 25 mA
NOTE: HEATH PART NUMBERS
56-73 MZ2360 Compensation ARE STAMPED ON MOST DIODES.
D
56-93 FD333 225 mA, 125 V OR
)
OR
56-94 Zener, 12.8 V, 12 mA} _‘=
OR
57-27 1N2071 Sl Rect %:
1A 600V P
57-42 3A1 Sl rect @EOR >
3A, 100 V G
57-64 DRS-110 Sl Rect OR
1A, 1000 V)
57-65 1N4002 S| Rect
1A, 100 V
57-614 MR-508 S| Rect
3A, 800 V
57-67 10A20 Diode
Bridge
N
Light-emitting
412-640 Diode

Pagel0-5

TRANSISTORS
HEATH MAY BE BASING
PART REPLACED DIAGRAM
NUMBER WITH
417-195 MJE340 A METALLIC
SIDE A
417-282 MJ2841 E
B
¢ E
417-811 MPSLO1 B
417-821 MPSA06 B B
. Bé
417-822 MPSAS6 B ¢
417-823 MPU131 c
417-834 MPSU10 D c
K
G
A
417-874 2N3906 B
417-875 2N3904 B
417-885 MPSAB5 B
417-923 BUS500 E
417-924 MJE172 A
417-926 MPSU06 D
417-927 MPSA93 B
417-932 MJE182 A
417-937 MPS2369 B

Pagel0-6

INTEGRATED CIRCUITS

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
INPUT (1)
OUTPUT (2)
442.30 wA309K 5-volt WIDE
—
/ (5]
CASE
S (C)
cnD| 1 8[Vee
TRIGGER| 2 7[DISCHARGE
442.53 555 Timer
outPUT| 3 —‘OUTPUT} L oMPH 6 |[THRESHOLD
|FLI P-FLOE]—
CONTROL
RESET| 4 {nzr 5 |VOLTAGE
442.54 7805 +5V
Regulator
442-616 LM3302N, Quad
LM2901, or Operational
uA775 Amplifier . B~
(selected)

Pagel0-7

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
S
442-630 7905.2 -52V / OR
Regulator GND
: /
ouT
t) N D
N
out
INPUT (1)
OUTPUT (2
WIDE
442-650 78H12 +12 V. 5A SPACE>\:-
Regulator
COMMON
13)
442-663 78M12CKC +12V
Regulator
442-664 79M12CKC 12V
Regulator
442-665 79L05AC -5V
Regulator

GND

ourt

Pagel0-8

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
442-674 UA7812 +12V
Regulator
442-683 79M05 -5V
Regulator
443-18 7404 Hex Inverter
Rext/
Voo NC NC Cext Cext FRint NC
14 13 12 1 10 9 8
443-22 74121 Monostable .
Multivibrator
1
3
INPUT
Aone 22 % oo % Y
14 13 121411 10}4 9 8
9
. b A Qp Qg Qp—
443-34 7492 Divide-By- p
Twelve Counter —Cp B Rotit—
Rom)
1 2 3 4 5 6 7
IN;UI NC NC NC V.. R Ry

Pagel0-9

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
443-73 7416 Line Driver
443-77 7438 Quadruple
2-Input
Positive-NAND
Buffers With
Open-collector
Outputs
443-721 2112-2 256 x 4 RAM
443-727 96L02 Dual
Monostable
443-728 74LS00 Quad 2-input

NAND

Pagel0-10

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
2
Veeg CLR 20 20K 2PR 20 20
14 13 12 11 10 9 8
443-730 74LS74 Dual D 3
Flip-filop - L
1
1
CLR
QUTPUTS
INPUT INPUT ——
vee Roy Rom A Qa ap
443-731 SN74LS290 BCD
Counter
Roi1) NC Rop) Qc Qp NC GND
Ve
e ez Jiopyo 8
443-732 SN74LS30 8-input
NAND -
; L‘
|
1 ? 3 4 5 [7
GND
OUTPUTS
INPUT INPUT, —N—
Vee Roi2)Roq) B A QA Qp
141 131121 411 10 9 8
HEEEN
443-733 74LS293 2-8it LTRSS QTS :
Binary op
Counter o g
T -
||
1 2 3 4 5 6 T
NC NC NC Q¢ @g NC GND
QUTPUTS

Pagel0-11

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
Vee
ol f e[l
443-754 7415240 Octal buffer,
3-state outputs o
~ e -
\-—lﬂ—lﬂ—s alds[Je[-] 78 9ol
GND
443-755 74LS04 Hex Buffer
RIPPLE OUTPUTS
CARRY ENABLE
VCC OUTPUT QA QB GC QD T LOAD
0D ENABLE
443-757 74L5161 4-Bit T
Binary LOAD
Counter ENABLE
A] P
3 [
CLEAR CLOCK A B c) EN%BLE GND
DATA INPUTS
BUFFERED
out BUFFERED
- out
Vpp U1l Q10 Q8 Q9 RESETCLOCK QI
16 15 141z 1o 9
| L]
443-760 4040 12-Bit l _
Binary

Q12 496 Qs 07 Q4 Q3 Q2 Vss

BUFFERED OUT

Pagel0-12

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
A B
Ag
Ag
443-764 2114 1k x 4 RAM Ay
Ao
A
[
Ao
GND] ¢
07 E ~ Eﬂ]
o [270
keo (5] 28]V
ono [3 [75] RxC
0g 5] 74) 0TR
s [& 3] RTS
443-776 8251 USART 0s 0] [22) 05 R
o7 [E] I RESET
i [@ 20 cLx
wr [10 9] 140
cs [(18] TxEMPTY
cio (ig] [ers
R0 [13] [T6] SYNDET
RarDY [14] T3] TxROY
443-778 4093 Quad 2-input
NAND SCHMITT
Trigger

Pagel0-13

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)

. . [
443-779 741502 Quad 2-input i f ! T
Positive-NOR i ‘ ':ﬁo
gates # —
L[*h =N

A

443-780 74L.S08 Quad 2-input 1
Positive-AND]
Gates i
443-791 7415244 Noninverting
3-state output
octal buffers
ri T l'—‘ H
]
| L LY
443-792 74L5132 Quad 2-input o ‘
Positive-NAND
Schmitt : ‘ |
Triggers
B SN n=n=n= gz
443-794 75188 EIA Driver
or
1488

Pagel0-14

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
443-795 75189 EIA
or Receiver
1489
443-797 74LS10 Triple 3-input
Positive-NAND
Gate
,ﬂﬁ ouTPUT NPUTE outeut
Ver STROBE 4A 48 ay L) ig 3Y
443-799 74L5157 Quad 2-line-
to-1-line
Multipliers
SELECT 14 1B 1Y 7h B 2Y GO
S — ouTPUT — e (T PYT
INPUTS INPUTS
Vee 80 8D 0 0 6Q 60 50 50 CLOCK
20 19 18 17 16 15 14 13 12 1
I:lor‘l:nb I:lnﬁolj Ifol: nl.:l [.Igioj
443805 74L8273 O_c(al 0 CLEAR u?aa ELECAKR EI.KA R
Flip-tiop
with clear
CLEAR CLEAR CLEAR ICLEAR
K CK CK CK
ot 2 2 s
1 ? 3 a 5 6 7 8 9 {10
CLEAR 10 1D 20 20 30 30 4D 40 GND

Pagel0-15

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
INPUTS OUTPUTS
cc A [C PR 8 7Y
443-807 741542 BCD-to-Decimal BCO-TO-DECIMAL
Decoder 01 2 34 5 67 &9
443-811 74L5125 Quad bus
buffer gate
with 3-state
outputs
443-818 74LS05 Hex Inverter
FHABLE SELECT DATA OUTPUTS
Vee 26 7A 2B 2v0 2wl 2v2 2v3
16 fisi{r1al 13l a2l i dwolde
S
443822 7405139 Dual oo
2-to-4-line ' A 5
decoder
ﬁ i J
L
A b Y0 ¥l ¥2 Y3
s
L ! | ? H I l
1Ha2M3MaMsMs 1718
T 16 Iv0 Ivl Iv? Iv3 GNO

DATA QulPuls

Pagel0-16

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
443-824 7415241 Octal buffer
443-837 74LS373 Octal D
latch
ouTPUT :Io D 30 0 30 35 &5 1@ owo
CONTROL
ce @ 9] noe,
NPE E 3 ng
por 2] Iﬂ
443-856 $2350 Universal s G | e
Synchronous iso (o] BT
Receiver/ fon [0 e Swi
Transmitter (USRT) ST R E :l RO,
et [o] 52| ro,
REE 10 Hl own,
ROR E DRE .
A E 3 0y
RiSF TE HE
] E 3 kS
[1__; 2] TT%
Ba E 73 Rss
04]E 22) 0,
bs @ 2 0y

Pagel0-17

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
16 f— 15 el 1 G
443-857 74LS367 Hex Bus Drivers
443-872 74LS14 Hex SCHMITT-
Trigger
Inverters

afor m
uff 3=
0o T4
(&5 T

443-952 82508 ACE HE i
[x ENEA (|
w oK)
s o 2l
[N
E BAUDO A :23
G =@
[x4 csoutfzd
[5] 00 TR)|
[Eoos nisTRED
Eovss oTsT1R[Z])

443-875 74L532 Quad 2-input

Positive OR
Gates

Pagel0-18

HEATH MAY BE
PART REPALCED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
DATA QUTPUTS
Vee yoo Yl Y2 Y3 v Y5 Yo
NeilHeilisilsiiisilisllsE
YO ¥l Y2 Y3 ¥4 Y5
443-877 74L5138 3-to-8-line
Decoder - A Yo
B C G2a G2B Gl Y1
| ?) 4 5 b 7 5
A [C G2A G28 Gl Y71 GND
~ ~ - ~ buteur
SELECT EnagLE
e =
M| --———i7 J——A(
3p—ah)
MREQ -—m19 3 p——=Az
SYSTEM | 0R () -—qi20 3 i A 3
CONTROL RD --—21 34— Ay
WR --———27 J5b——As
1p——=Af
RFSH -——28 37 p——aA7 ADDKESS
Jo—mmag BUS
HALT -——18 T p—— Ay
a0pP——m=A10
WAT ——B24 |p—=A
443-881 Z 80 Microprocessor cPU - Z80 CPU A
CONTROL INT ——16 MK 3BE0 ———A
NMT ——]7 A p——2y
s—--A]U
RESET ——3»{26
;UE <Euwu—-25
conTkolBUSAK® 2 -
14 pet——=0)
15—
CLOCK —6 12 fett—D 7
+ Y i | | & —p3 DATA
GND—— 29 7—0, BUS
9 pat——3D5
10 pet—=D,
13 f—p
443-885 7415245 Octal bus
transceiver

HEATH MAY BE
PART REPLACED DESCRIPTION LEAD CONFIGURATION
NUMBER WITH (TOP VIEW)
Ve
14l fal 12l {110l {o {8
443-891 74LS86 Quad 2-input
Exclusive — OR r@_‘
1Hz2H3HaHsH6M7
GND
PARALLEL
INPUT
H PARALLEL
sHiFr/ | OUTPUT INPUTS
CC LOAD Oy G F D CcLiAR
SHIFTI H
0A
443-892 7415166 8-bit StriaL
shift
register
SERIAL | A
INPUT PARALLEL CLOCK
INPUTS INHIBIT
Vee 2clk 20 2ck 2Pk 20 20
443-900 74574 Dual-D
Flip-flop
ves (As Dour As Az Ag As Ve
[ve] [1s] [ve] [[v2] [1] [oo] [
443-904 MK4116-4 16k = 1
RAM [

Page10-20

HEATH MAY BE DESCRIPTION LEAD CONFIGURATION
PART REPLACED (TOP VIEW)
NUMBER WITH
Vg —--E“u- ' 5 -k
SET -{I L e T YIAN
WA - 4 117 -4
| MAL 5 o) - w A IFIT L3 t f-
| '.H?-.—E B : e
'A‘-.-E [
443-906 6845 CRT Retresn | ,‘:E %: |
~ Memory { b s i vz | |
Controller pagreatr P maree{T] - Lr- |
H I'I”-"E 3—. - j""” |
A Y] E'—..-.. | |_:‘ ™
MATL 14 3—-—-» | : terl
a1 La-—{15] Tt f
a1z ea—{16] i3)
-,H.H-—E 3... re |
Display Erab:e-ﬂ—@] Pe—
Cursorem—{13] [22 RIW J
OUTPUTS INPUTS ouTPUT
Py _—
“'CC ED Gs i Z :] aq
e e
1T 1 I 1 1 1 7]
EO 2 ! {
443-912 7405148 8-line-to-3- [e] il
line b - ¢ a0 pd l :
Priority encoder [. o : i '
L s 5 7 1| i
; (ii IO o ol o !
X ":I.l T T T
i..l_l I I i ﬁﬂl_'_.'_!._'_r_'i_'h"
4 5 3 1 TEY &l GND
INPUT S GUIPUTS
crock [3 Ec
o |4 il b1
x¢ 5] RE
X7 E %m
443-913 S740 Keyboard xo [7] i &o
Encoder x5 8] B
x4 [@] g Ve
n E vy
X E 3 Yh
X1 E E] v
DATA STROBE OUTPUT [1]] 2
DATA STROBE CONTROL [14]
OUTPUT ENABLE [:
Repiatl [16]
KEY bounCE MASK [17]
UGGE
controt [19]
SHIFT LOCK "E

Pagel0-21

HEATH MAY BE DESCRIPTION LEAD CONFIGURATION
PART REPLACED (TOP VIEW)
NUMBER WITH
443-915 74586 Quad 2-input
Exclusive — OR
A [T Ny Ve
444-19 T =
a5 (3] 77 A9
IR HIlE
2k« 8-bit O] —
444-29 2316 or ROM 2L _“
8316 (Available only ar[7] 1jesd
from Heath Co.) ao 2] [s
e Fjor
(1 500
444-37 0T 005
vo[0Z] (1304
o~ e
.\lr_-E ?1|AR
“‘>[: 22)%
ﬂdE: B Vig
44462 PROM a3 5] 7] 810
o 2716 = .
444{84 (Available only . ! _l (
from Heath Co.) A [T e j0s
0 e
RH T M5
J(iT e
vss[17] (T3] 04

Page10-22

HEATH MAY BE DESCRIPTION LEAD CONFIGURATION
PART REPLACED (TOP VIEW)
NUMBER WITH
444-66
256 x 8-Bit
SN74S47D PROM
444-61 (Available only
from Heath Co.)
AD A A A AL DADE DD DO 2 DU s DA GND
Vec A8 A9 €S2 CS) A0 ALL 08 07 Q6 Q5 Q4
al s 2 aa) e s vl el sl a5
4k x 8-bit
PROM
2
444-46 8332A (Available only
from Heath Co.)
'H:H:H«Hs iHeHsHwoHuH®:
AT A6 A5 A& A3 AZ AL AD QI 02 03 Vg,
Ve CS ADE ADD ADC AD B AD A DOS
16 15 sz of~ 9
g | | |
44441 SN74S188BA 32k x 8 TS ADE ADD ADC ADB AD A
or ROM
44483 (Available only » oo 008
from Heath Co.) 002 003 D04 DOS D06 DO7
[T T T T 1
1 2 3 a 5 6 7 8
001 D002 D03 004 DO5S D06 DO7 GND

Page 11-1

APPENDIX

ASCII CHARACTERS

The characters in the shaded areas are not processed by the Terminal.

7-BIT DECIMAL HEX CHARACTERS CONTROL DESCRIPTION
OCTAL CODE CODE KEYS
CODE

000 0 0 NUL @ Null, tape feed.
001 1 1 SOH A Start of heading.
002 2 2 STX B Start of text.
003 3 3 ETX C End of text.
004 4 4 EOT D End of transmission.
005 5 5 ENQ E Enquiry; also WRU.
006 6 6 ACK F Acknowledge; also RU.
007 7 7 BEL G Rings the bell.
010 8 8 BS H Backspace; also FEB, format effector backspace.
011 9 9 HT I Horizontal tab.
012 10 A LF J Line feed: advances cursor to next line.
013 11 B VT K Vertical tab (VTAB).
014 12 C FF L Form feed to top of next page.
015 13 D CR M Carriage return to beginning of line.
016 14 E SO N Shift out.
017 15 F ST o Shift in.
020 16 10 DLE P Data line escape.
021 17 11 DCl1 Q Device control 1: turns transmitter on (XON).
022 18 12 DC2 R Device control 2.
023 19 13 DC3 S Device control 3: turns transmitter off (XOFF).
024 20 14 DC4 T Device control 4.
025 21 15 NAK U Negative acknowledge: also ERR (error).
026 22 16 SYN v Synchronous idle (SYNC).
027 23 17 ETB W End of transmission block.
030 24 18 CAN X Cancel (CANCL). Cancels current escape sequence.
031 25 19 EM Y End of medium.
032 26 1A SUB V4 Substitute.
033 27 1B ESC [Escape.
034 28 1C FS \ File separator.
035 29 1D GS] Group separator.
036 30 1E RS . Record separator.
037 31 IF usS - Unit separator.

Page 11-2

7-BIT DECIMAL HEX CHARACTERS DESCRIPTION
OCTAL CODE CODE
CODE
040 32 20 SP Space.
041 33 21 ! Exclamation point.
042 34 22 « Quotation mark.
043 35 23 # Number sign.
044 36 24 $ Dollar sign.
045 37 25 % Percent sign.
046 38 26 & Ampersand.
047 39 27 ¢ Acute accent or apostrophe.
050 40 28 (Open parenthesis.
051 41 29) Close parenthesis.
052 42 2A * Asterisk.
053 43 2B + Plus sign.
054 44 2C , Comma.
055 45 2D - Hyphen or minus sign.
056 46 2E Period.
057 47 2F / Slash.
060 48 30 0 Number O.
061 49 31 1 Number 1.
062 50 32 2 Number 2.
063 51 33 3 Number 3.
064 352 34 4 Number 4.
065 53 35 S Number 5.
066 54 36 6 Number 6.
067 55 37 7 Number 7.
070 56 38 8 Number 8.
071 57 39 9 Number 9.
072 58 3A Colon.
073 59 3B ; Semicolon.
074 60 3C < Less than.
075 61 3D = Equal sign.
076 62 3E > Greater than.
077 63 3F ? Question mark.

Page 11-3

7-BIT DECIMAL HEX CHARACTERS DESCRIPTION GRAPHIC
OCTAL CODE CODE SYMBOLS

CODE

100 64 40 @ At sign.

101 65 41 A Letter A.

102 66 42 B Letter B.

103 67 43 C Letter C.

104 68 4 D Letter D.

105 69 45 E Letter E.

106 70 46 F Letter F.

107 7 47 G Letter G.

110 72 48 H Letter H.

111 73 49 I Letter I.

112 74 4A] Letter j.

113 75 4B K Letter K.

114 76 4C L Letter L.

115 77 4D M Letter M.

116 78 4E N Letter N.

117 79 4F 0 Letter 0.

120 80 50 P Letter P.

121 81 51 Q Letter Q.

122 82 52 R Letter R.

123 83 53 5 Letter S.

124 84 54 T Letter T.

125 85 55 U Letter U.

126 86 56 A% Letter V.

127 87 57 w Letter w.

130 88 58 X Letter X.

131 89 59 Y Letter Y.

132 90 SA Z Letter Z.

133 91 5B [Open brackets.

134 2 5C \ Reverse slash.

135 93 5D] Close brackets.

136 94 5E A Up arrow/caret.

137 95 SF Underscore.

Page 11-4

7-BIT DECIMAL HEX CHARACTERS DESCRIPTION GRAPHIC
OCTAL CODE CODE SYMBOLS
CODE
140 96 60) Grave accent.
141 97 61 a Letter a.
142 98 62 b Letter b.
143 99 63 c Letter c.
144 100 64 d Letter d.
145 101 65 a Letter e.
146 102 66 f Letter f.
147 103 67 g Letter g.
150 104 68 h Letter h.
151 105 69 i Letter 1.
152 106 6A j Letter j.
153 107 6B k Letter k.
154 108 6C 1 Letter 1.
155 109 6D m Letter m.
156 110 6E n Letter n.
157 111 6F 0 Letter o.
160 112 70 p Letter p.
161 113 71 q Letter q.
162 114 72 r Letter r.
163 115 73 s Letter s.
164 116 74 t Letter t.
165 117 75 u Letter u.
166 118 76 v Letter v.
167 119 77 w Letter w.)
170 120 78 X Letter x.
171 121 79 y Letter y.
172 122 TA z Letter z.
173 123 7B { Left brace.
174 124 7C ; Vertical bar (broken).
175 125 7D } Right brace.
176 126 7E - Tilde.

177 127 7F DEL Delete (rubout)

GRAPHIC SYMBOLS

Page 11-5

KEY KEY KET KEY

[OCTAL) SYMBOL [QCTAL) SYMBOL [OCTAL) AYMBOL [OCTAL) SYMBOL
[DECIMAL] [DECIMAL] [DECIMAL] [DECIMAL]
| | | | | | | |
- : 1383 | C | | h | *4 | i} | [
(A36) |- geaes)| (143) [jneses | (150)\ oesege| (A55) |0
(941 |1 3237 | re9) : arodunn] BN STEY : S [109] :;é;é |
| ! 1 %] 4 | ! Poeapndel
Coooo oo ocoood seee
sebidess | TSI | THead T
LERT i 1-H | [| | BN S SN 4 |1Hi=“'r
| !E:ﬂ!!!ﬁl.!l oy | |. & & & | |‘HEEN.‘ |
= | YTy d | as | 1 | [BN = =¥ % n |===e |
(1T (L gessy) (1a4) [leeese | 151y |leslale j] (158) [[4see
(65] | :==::= [100] e I [105] |.-.|-.'-| (1107 | |
| | | [Na s & o | |
s PPN
HHoHE agnhnfuhy ARSIy inininh
;' T i' TEeT T i' T i_ T aaka
[ooa] L ose] o I | sgsg]
OO | (125} | :3:..»;' ,{1%2) oof l {1?7} | 1:::'
{14a) | > | bl I b
(961 |1 28| rwoad |t rioer | MM 1)) |
I (5] w

i S | | | | | | |
oo ocoood ocoooo oCoODO
CrmmTmr DT DT Tamanass|
! | | | | | | EHY TR L TH |
[| | P [#gaeaans
a FovEvEy [i | | I | a | P |========|
[1413 i' L dF dhadk dh d “l {1483 GE:‘HEEN'” {153} - .E' ll | f160) Ll Ly
[9,_” innnnnnnn| [1|:|2] : :;:_.u.l [1|:|F|"] : l.;d. | [112] : |
X | | :"‘: I I I | |
Ooooo %90 o oood OOoo
;_ Tda T A mTmTmTET U
o aa] HH U L ' | I Laase
o 13 e T
b :_ '==| q | sassa | 1 | | q | ;===|
(142) |gesessesi) ad7y |bo e) 1Eg (b] 1a1y b eses
[98] i as | [103] | 1 | [108] | aman| [113] | amas|
. e | Ll lsnana | | sea8 | Ag e
i L) | | e | R
mfu)Liukn Doooo L L _#89el L [#sesl

Page 11-6

(CE%'Y EET EET
AL) | gyMBOL | (ocTaL)
[DECIMAL SYMBOL et
] [DECIMAL] [DECII‘IMJ..] SYMBOL
Fybybvrvy FLTITIT,
r |;:;::e | w | &% [2 B l:: :
(162) |teses | g7y |10 Teati] Ly |15
[114] [[882¢ o119y |1t SR |
|ow | | (31l | [124] ||. l
s | .:n *n | |- |
p{aks | |. -: [#4 |
TT R AnAnninky kL ARRRREY
|ITLTLT LT TITLTLT,
| " T1TLTIg,
| | wlufuivie wiulufs i
[& |
3 --.l {1}':.-‘:0} : ' 13 : 1 | ::l
11 ‘| ve (1735) || o
[115] akak [1z0] |0 2] [125] |1 **|
e [| el
| i | o | | il
RYar+4an - | | o
dninfighs MARAREL &Y
:__c_u_“_i | g T T2 gy e e
e i¥
N et et e et
{164y |Feesas ! .[11%:1:, | .:I- ! 1 | 444 |
(11671 :-IH}::I- [[121]]1 ™ | i176% | soe |
stk |t] nze)) 4R
| g | te | i
JRLLINER 3 " | |
Aninigh maninhnky
T Frvyyrvve
| ::;: | |I‘|I‘I|I‘I'|
(1%5} : Badas] Z i |
Sgdna s (1723 |1 !
arlaarErakarakar
[117] : [FET Y : [122] | :
|
: | | |
OILTLTLT mininhnhy
[T T 10 [mrTriTre
e | '
v o |l E |
(166) || ;-?;m' (1%3} l |
R B
[118] [gaes : (12211 !
| P | | |
| ik
RERTTIsE! Rretieess

TRANSMITTED CODES

Page 11-7

The following tables list the octal code or codes transmitted by the Computer when the indicated keyboard keys

are pressed.

KEY LOWER CASE | UPPER CASE KEY LOWER CASE | UPPER CASE
A 141 101 0 060 052)
|
B 142 102 1 061 041 !
2 062 100 @
C 143 103
3 063 043 #
D 144 104 4 064 044 $
E 145 105 5 065 045 %
F 146 106 6 066 136 "
G 147 107 7 067 046 &
. 150 110 8 070 052 *
9 071 050 (
I 151 111
055 137 B
J 15 11
2 2 = 075 053 +
L 154 114 : 073 072
M 155 115 ¢ 047 042 “
N 156 116 ; 054 074 <
056 076 >
0 157 117
/ 057 077 ?
P 160 120
140 176 ~
Q 161 121 \ 134 174 |
R 162 122 { 173 175 }
S 163 123
T 164 124
U 165 125
\% 166 126
4 167 127
X 170 130
Y 171 131
z 172 132

ALPHABETIC KEYS

Page 11-8

HEATH ANSI
KEYPAD | UNSHIFTED | UNSHIFTED UNSHIFTED SHIFTED
KEYS ALTERNATE ALTERNATE
0 0 ESC?p ESCOp 0
I\IL 1 ESC?q ESCOq ESC L (Insert Line)
2\ 2 ESC7r ESCOr ESC B (Down arrow)
3\DL 3 ESC?s ESCOs ESC M (Delete Line)
4\ — 4 ESC 7t ESCOt ESC D (Left arrow)
S\HOME 5 ESC?u ESCOu ESC H (Home)
6\—> 6 ESC?v ESCOv ESC C (Right arrow)
7\IC 7 ESC?w ESCOw ESC @ (Enter Insert Character Mode)
8\ 1 8 ESC ?x ESC O x ESC O (Exit Insert Character Mode)
9\DC 9 ESC?y ESCOy ESC A (Up arrow)
ESC 7n ESCOn ESC N (Delete Character)
ENTER RETURN ESC?M ESCOM RETURN

KEYPAD KEYS

Note: The shifted mode and the unshifted (or alternate) mode (if the alternate mode was selected) can be
interchanged by entering ESC t or ESC u.

ZDS ANSI

KEY ESCAPE ESCAPE
CODE CODE

0 ESC?p ESCOp

1 ESC?q ESCOq

2 ESC?r ESCOr

3 ESC?s ESCOs

4 ESC?t ESCOt

5 ESC?u ESCOu

6 ESC?v ESCOv

7 ESC?w ESCOw

8 ESC ? x ESCOx

9 ESC?y ESCOy

ESC?n ESCOn

ENTER ESC?M ESCOM

Page 11-9

KEY OCTAL ANSI
CODE CODE

RETURN 015 015
LINE FEED 012 012
BACKSPACE 010 010
SPACE BAR 040 040
TAB 011 011
DELETE 177 177
ESC 033 033

ALTERNATE KEYPAD MODE

CONTROL KEYS

ZDS ANSI
KEY ESCAPE ESCAPE
CODE CODE

Fl ESCS ESCOS
F2 ESCT ESCOT
F3 ESCU ESCOU
F4 ESCV ESCOV
F5 ESCW ESCOW
BLUE ESCP ESCOP
RED ESCQ ESCOQ
GRAY ESCR ESCOR

SPECIAL FUNCTION KEYS

Page 11-10

ZDS

ESCAPE SEQUENCES

Summary Of Sequences

Escape
Sequence Mnemonic

Definition

CURSOR FUNCTIONS

ESC H ZCUH
ESC C ZCUF
ESC D ZCUB
ESC B ZCUD
ESC A ZCUU
ESC I ZRI

ESC n ZCPR
ESCj ZSCP
ESC k ZRCP
ESC Y ZDCA

ERASING AND EDITING

ESCE ZCD
ESCb ZBD
ESCJ ZEOP
ESC1 ZBL
ESCo ZEBL
ESCK ZEOL
ESCL ZIL
ESCM ZDL
ESCN ZDCH
ESC@ ZEIM
ESC O ZERM
CONFIGURATION
ESCz ZRAM
ESCrB, ZMBR
ESCxP; ZSM

Cursor Home

Cursor Forward

Cursor Backward

Cursor Down

Cursor Up

Reverse Index

Cursor Position Report

Save Cursor Position

Set Cursor To Previously Saved Position
Direct Cursor Addressing (Same as VT52)

Clear Display (Shift Erase)
Erase Beginning Of Display
Erase To End Of Page (Erase Key)
Erase Entire Line

Erase Beginning Of Line
Erase To End Of Line

Insert Line

Delete Line

Delete Character

Enter Insert Character Mode
Exit Insert Character Mode

Reset to Power-Up Configuration

Modify Baud Rate (B,=; A=110, B=150, C=300,
D=600, E=1200, F=1800, G=2000, H=2400, I=3600,
J=4800, K=7200, L=9600, M=19200%)

Set Mode(s); Pa=

1 = Enable 25th line

2 = No key click

3 =Hold screen mode

4 = Block cursor

5 = Cursor off

6 = Keypad shifted

7 = Alternate keypad mode

8 = Auto line feed on receipt of CR

9 = Auto CR on receipt of line feed

*Not presently supported (may drop characters).

Page 11-11

ESCy Ps ZRM Reset Mode(s): Ps=
1 = Disable 25th line
2 = Enable key click
3 = Exit hold screen mode
4 = Underscore cursor
5 = Cursor on
6 = Keypad unshifted
7 = Exit alternate keypad mode
8 = No auto line feed
9 = No auto CR

FSC< ZEAM Enter ANSI Mode

MODES OF OPERATION

ESC [ZEHS Enter Hold Screen Mode
ESC\ ZXHS Exit Hold Screen Mode

ESCp ZERV Enter Reverse Video Mode
ESCq ZXRV Exit Reverse Video Mode
ESCF ZEGM Enter Graphics Mode

ESCG ZXGM Exit Graphics Mode

ESCt ZEKS Enter Keypad Shifted Mode
ESCu ZXKS Exit Keypad Shifted Mode
ESC= ZAKM Enter Alternate Keypad Mode
ESC> ZXAM Exit Alternate Keypad Mode
ADDITIONAL FUNCTIONS

ESC} ZDK Keyboard Disabled

ESC { ZEK Keyboard Enabled

ESCv ZEWA Wrap Around At End Of Line
ESCw ZXWA Discard At End Of Line
ESCZz ZID Identify As VT52 (ESC 1 K)
ESC] 7X25 Transmit 25th Line

ESC# ZXMP Transmit Page

NOTE: The Terminal will transmit the following sequences, but it will not respond
to them if they are received by the Terminal.

ESCS ZF1 Function Key #1 (f1)
ESCT ZF2 Function Key #2 (f2)
ESCU ZF3 Function Key #3 (f3)
ESCV ZF4 Function Key #4 (f4)
ESCW ZF5 Function Key #5 (f5)
ESCP ZF7 Function Key (BLUE)
ESCQ ZF8 Function Key (RED)

ESCR ZF9 Function Key (GRAY)

Page 11-12

ZDS Escape Sequences Defined

CURSOR FUNCTIONS

ZCUH Cursor Home ESCH
Moves the cursor to the first character position on the first line (home).

ZCUF Cursor Forward ESCC
Moves the cursor one character position to the right. If the cursor is at the right end of the line, it will remain
there.

ZCUBCursor Backward ESC D
Moves the cursor one character position to the left (backspaces). If the cursor is at the start (left end) of a line, it will
remain there.

ZCUD Cursor Down ESCB

Moves the cursor down one line without changing columns. The cursor will not move past the bottom (24th)
line and no scrolling will take place. Use ZDCA (Direct Cursor Addressing) to move the cursor to line 25 -
when line 25 is active.

ZCUUCursorUp ESCA
Moves the cursor up one line. If the cursor reaches the top line, it remains there and no scrolling occurs.

ZRI Reverse Index ESCII
Moves the cursor to the same horizontal position on the preceding line. If the cursor is on the top line, a scroll
down is performed.

ZCPR Cursor Position Report ESCn
The Terminal reports the cursor position in the form of ESC Y line# column#.

ZSCP Save Cursor Position ESC j
The present cursor position is saved so the cursor can be returned here later when given the HRCP (Set Cursor to
Previously Saved Position) command.

ZRCP Set Cursor to Previously Saved Position ESC k
Returns the cursor to the position where it was when it received the HSCP (Save Cursor Position) command.

ZDCA Direct Cursor Addressing ESCY
Moves the cursor to a position on the screen by entering the escape code, the ASCII character which
represents the line number, and the ASCII character which represents the column number.

The first line and the left column are both 32, (the smallest value of the printing characters) and increase
from there. Since the lines are numbered from 1 to 25 (from top to bottom) and the columns from 1 to 80 (from
left to right), you must add the proper line and column numbers to 31,9. Then convert these decimal numbers to
their equivalent ASCII characters and enter them in the following order:

ESC Y line # (ASCII character) column # (ASCII character)

Page 11-13

If the line number entered is too high, the cursor will not move. If the column number is too high, the
cursor will move to the end of the line.

This is the only way to move the cursor to the 25th line, but the 25th line must first be enabled.

ERASING AND EDITING

ZCD Clear Display (Shift Erase) ESCE
Erases the entire screen, fills the screen with spaces, and places the cursor in the home position.

ZBD Erase Beginning of Display ESCDb
Erases from the start of the screen to the cursor, and includes the cursor position.

ZEOP Erase to End Of Page (Erase Key) ESCJ
Erases all the information from the cursor (including the cursor position) to the end of the page.

ZEL ERASE Entire Line ESC I
Erases all of the line, including the cursor position.

ZEBL Erase Beginning of Line ESCo
Erases from the beginning of the line to the cursor, and includes the cursor position.

ZEOL Erase to End Of Line ESCK
Erases from the cursor (including the cursor position) to the end of the line.

ZIL InsertLine ESCL
Inserts a new blank line by moving the line that the cursor is on, and all following lines, down one
line. Then the cursor is moved to the beginning of the new blank line.

ZDL Delete Line ESC M
Deletes the contents of the line that the cursor is on, places the cursor at the beginning of the line,
moves all the following lines up one line, and adds a blank line at line 24.

ZDCH Delete Character ESCN
Deletes the character at the cursor position and shifts any existing text that is to the right of the cursor
one character position to the left.

ZEIM Enter Insert Character Mode ESC @

Lets you insert characters or words into text already displayed on the screen. As you type in new
characters, existing text to the right of the cursor shifts to the right. As each new character is inserted,
the character at the end of the line is lost.

ZERM Exit Insert Character Mode ESCO0
Exits from the insert character mode.

Page 11-14
CONFIGURATION

ZRAM Reset to Power-Up Configuration ESC z
Nullifies all previously set escape modes and returns to the power-up configuration.

ZMBR Modify Baud Rate ESC r Bn
Modifies the baud rate, where Bn equals:

A=110 G=2000
B=150 H=2400
C=300 [=3600
D=600 J=4800
E=1200 K=7200
F=1800 L=9600

ZSM Set Mode(s) ESC x Ps
Sets the following modes, where P equals:

I=enable 25th line

2=no key click

3=hold screen mode

4=block cursor

S=cursor off

6=keypad shifted

7=alternate keypad mode

8=auto line feed on receipt of CR
9=auto CR on receipt of line feed

ZRM Reset Mode(s) ESCy Pg
Resets special modes, where Pg equals:

1=disable 25th line

2=enable key click

3=exit hold screen mode
4=underscore cursor

5 =cursor on

6=keypad unshifted

7=exit alternate keypad mode
8=no auto line feed

9=no auto CR

ZEAM Enter ANSI Mode ESC <
Enters the ANSI mode.

MODES OF OPERATION

ZEHS Enter Hold Screen Mode ESC |
Controls when new information is printed on the screen.

- Type the SCROLL key and a new line of information will be printed on the bottom line. The top line will
scroll off.

- Type SHIFT SCROLL and a whole new page of text will scroll onto the screen and stop as the old page
scrolls up and off the screen.

Page 11-15

ZXHS Exit Hold Screen Mode ESC\
Exits the hold screen mode.

ZERV Enter Reverse Video Mode ESCp
Enters the reverse video mode so that characters are displayed as black characters on a white background.

ZXRV Exit Reverse Video Mode ESCq
Exits the reverse video mode.

ZEGM Enter GraphicsMode ESCF
Enters the graphics mode to display any of the 33 special symbols (26 lower-case keys and seven other keys)
that correspond to the graphic symbols.

ZXGM Exit Graphics Mode ESCG
Exits the graphics mode and returns to the display of normal characters.

ZEKS Enter Keypad Shifted Mode ESC t
Inverts the normal and shifted functions of the keypad. Now, if you hold down the SHIFT key, you will get a
normally unshifted character.

ZXKS Exit Keypad Shifted Mode ESCu
Exits the keypad shifted mode.

ZAKM Enter Alternate Keypad Mode ESC =
Enters the alternate keypad mode, which will then allow the keyboard keys to transmit the following escape
codes instead of the normal ones.

KEY ESCAPE CODE
0 ESC7?p
1 ESC?q
2 ESC?r
3 ESC?s
4 ESC?t
5 ESC?u
6 ESC?v
7 ESC?w
8 ESC ?x
9 ESC?y
. ESC?n
ENTER ESC?M

These special escape codes are user defined and must be recognized by your software.

ZXAM Exit Alternate Keypad Mode ESC >
Exits the alternate keypad mode and returns to the transmission of normal character codes.

Page 11-16
ADDITIONAL FUNCTIONS

ZDK Keyboard Disabled ESC}
Inhibits the output of the keyboard.

ZEK Keyboard Enabled ESC{
Enables the keyboard after it was inhibited by an HDK (Keyboard Disabled) command.

ZEWA Wrap Around at End of Line ESCv
The 81st character on a line is automatically placed in the first character position on the next line. The page
scrolls up if necessary.

ZXWA Discard at End of Line ESCw
After the 80th character in a line, the characters overprint. Therefore, only the last character received will
be displayed in position 80.

ZID ldentify as VT52 (ESC1K) ESCZ
The Terminal responds to the interrogation with ESC / K to indicate that it can perform as VT52.

ZX25 Transmit 25th Line ESC]
Transmits the 25th line. (The computer requires a special routine to use this feature.)

ZXMP Transmit Page ESC #
Transmits lines 1 through 24. (The computer requires a special routine to use this feature.)

ZF1 Function Key #1(F1) ESCS
Transmits a unique escape code to perform a user-defined function. The Terminal will not respond to this
code if it is received.

ZF2 Function Key #2 (F2) ESCT
Same as above.

ZF3 Function Key #3 (F3) ESCU
Same as above.

ZF4 Function Key #4 (F4) ESC V
Same as above.

ZF5 Function Key #5 (F5) ESCW
Same as above.

ZF7 Function Key Blue ESC P
Same as above.

ZF8 Function Key Red ESCQ
Same as above.

ZF9 Function Key Gray ESC R
Same as above.

Page 11-17

ANSI
ESCAPE SEQUENCES

Summary Of Sequences
NOTES:

1. Inthe ANSI mode, the Terminal recognizes and responds only to escape sequences whose
syntax and semantics are in accordance with ANSI specifications.

2. "Default" is a value that is assumed when no explicit value, or a value of zero, is
specified.

3. P, - Numeric Parameter. Any decimal value may be substituted for P,.

4. P, - Selective Parameter. Any decimal number that is taken from a list and used to select a
subfunction. You can select several subfunctions at once by putting one number after
another but separating them with delimiters (semicolons).

Example: To turn off the key click (ESC [> 2 h) and turn on the block cursor (ESC [> 4 h), type:
ESC[>2:4h

Escape
Sequence Mnemonic Definition

CURSOR FUNCTIONS

ESC[Hor ESC[0;0 H CUP Cursor Home
or ESC[I;1H or
ESC[forESC[0;0f HVP
orESC[1;1f
ESC[P, C CUF Cursor Forward
ESC[P, D CUB Cursor Backward
ESC[P, B CUD Cursor Down
ESC[P, A CUU Cursor Up
ESCM RI Reverse Index
ESC[6n CPR Cursor Position Report
ESC[s PSCP Save Cursor Position
ESC[u PROP Set Cursor Position
ESC[P;PcH CUP Direct Cursor Addressing

or ESC [Pj;Pcf

Page 11-18

ERASING AND EDITING

ESC[2j

ESC[1j
ESC[jorESC[0]
ESC[2k

ESC[1K
ESC[K or ESC[0K
ESC[P,L

ESC[P, M
ESC[P, P

ESC[4h

ESC[41

CONFIGURATION

ESC[z
ESC[P, r

ESC[>Pnh

ESC[>P, 1

ESC[?2h

MODES OF OPERATION

ESC[7m
ESC[morESC[Om
ESC[>7h
ESC[>71
ESC[10 m
ESC[11 m

ED
ED
ED
EL
EL
EL

DL

PRAM
PMBR

SM

PEZM

SGR
SGR
SM

SGR
SGR

Clear Display (Shift Erase)

Erase Beginning Of Display

Erase To End Of Page (Erase Key)
Erase Entire Line

Ease Beginning Of Line

Erase To End Of Line

Insert Line

Delete Line

Delete Character

Insert/Replacement (Insert character) Mode On
Insert/Replacement (Insert Character) Mode Off

Reset To Power-Up Configuration

Modify Baud Rate (P, =; 1=110, 2 =150,
3=300, 4=600, 5=1200, 6=1800,
7=2000, 8=2400, 9=3600, 10=4800,
11=7200, 12=9600, 13 =19200%*)

Set Mode(s): P,,=
1 = Enable 25th line
2 = No key click
3 = Hold screen mode
4 = Block cursor
5 = Cursor off
6 = Keypad shifted
7 = Alternate Keypad mode
8 = Auto line feed on receipt of CR
9 = Auto CR on receipt of line feed

Reset Mode(s): P, =
1 = Disable 25th line
2 = Enable key click
3 = Exit hold screen mode
4 = Underscore cursor
5 = Cursor on
6 = Keypad unshifted
7 = Exit alternate keypad mode
8 = No auto line feed
9 = No auto CR

Enter ZDS Mode

Enter Reverse Video Mode

Exit Reverse Video Mode

Enter Alternate Keypad Mode (ESC=)**
Exit Alternate Keypad Mode (ESC>)**
Enter Graphics Mode

Exit Graphics Mode

*Not presently supported (may drop characters).
**These escape codes may be used, but are not recommended.

Page 11-19

ADDITIONAL FUNCTIONS

ESC[2h SM Keyboard Disabled

ESC[21 RM Keyboard Enabled

ESC[? 7h SM Wrap Around At End Of Line
ESC[? 71 RM Discard At End Of Line

ESC[¢q PX25 Transmit 25th Line

ESC[p PXMT Transmit Page

[NOTE: The Terminal will transmit the following functions, but it will not respond to
them if they are received by the Terminal.

ESC O S SS3 Function Key # 1 (F1)
ESCOT SS3 Function Key #2 (F2)
ESCOU SS3 Function Key #3 (F3)
ESCOV SS3 Function Key #4 (F4)
ESCO W SS3 Function Key #5 (F5)
ESCOP SS3 Function Key (BLUE)
ESCOQ SS3 Function Key (RED)
ESC O R SS3 Function Key (GRAY)

ANSI Mode Summary

The ANSI controls SET MODE (SM) and RESET MODE (RM) are shown on the previous
page. The following table shows all parameters which may be set or reset using the SM and
RM control sequences.

The control sequence for SET MODE is: ESC[Ps h.
The control sequence for RESET MODE is: ESC [Pg I.
MODE Pn SET SM RESET RM
KAM 2 Keyboard Disabled Keyboard Enabled
ANSI IRM 4 Insert Character Mode On Insert Character Mode OFF
LNM 20 New Line Mode New Line Mode Off
(Auto Line Feed On CR)
L25 >1 Display 25th Line Disable 25th Line
KCL >2 Disable Key Click Enable Key Click
ZSM >3 Enable Hold Screen Mode Disable Hold Screen Mode
CBL >4 Blinking Block Cursor Blinking Underscore Cursor
CDE >5 Cursor Off Cursor On
ZDS | KSH >6 Keypad Shifted Keypad Unshifted
KAM >7 Keypad Alternate Mode Keypad Normal Mode
ALF >8 Auto Line Feed On Return No Auto Line Feed
ACR >9 Auto CR On Line Feed No Auto CR On Line Feed
ZMD 272 Enter ZDS Mode NA

WAR 27 Wrap Around At End Of Line Discard Past End Of Line

Page 11-20

ANSI modes which are always considered to be in either the SET or the RESET state, and those which do not
apply to this product are as follows:

CRM Control Representation Mode RESET
EBM Editing Boundary Mode RESET
ERM Erasure. Mode SET
FEAM Format Effector Action Mode RESET
FETM Format Effector Transfer Mode RESET
GATM Guarded Area Transfer Mode RESET
HEM Horizontal Editing Mode RESET
MATM Multiple Area Transfer Mode N/A
PUM Positioning Unit Mode RESET
SATM Selected Area Transfer Mode SET
SRTM Status Reporting Transfer Mode N/A
TSM Tabulation Stop Mode N/A
T™M Transfer Termination Mode SET
VEM Vertical Editing Mode RESET
SEM Set Editing Extent Mode Edit In Line

ANSI Escape Sequences Defined

NOTES:

1. In the ANSI mode, the Terminal recognizes and responds only to escape sequences whose syntax and
semantics are in accordance with ANSI specifications.

2. "Default" is a value that is assumed when no explicit value, or a value of zero, is specified.
3. Pn - Numeric Parameter. Any decimal number that is substituted for P,
4. Ps - Selective Parameter. Any decimal number that is taken from a list and used to select a subfunction. You

can select several subfunctions at once by putting one number after another but separating them with
delimiters (semicolons).

Page 11-21

CURSOR FUNCTIONS

CUP — Cursor Position ESC[HorESC[0;0Hor

or ESC[1;1H

HVP — Horizontal & Vertical Position ESC[for ESC[0;0f) or
ESC[1;1f

Moves the cursor to the position specified by the parameters. The first parameter specifies the line
number and the second parameter specifies the column number. A parameter of zero is considered to be one. If
no parameter is given, the cursor is placed in the home position.

Default Value: 1

CUF - Cursor Forward ESC[P,C
Moves the cursor to the right the number of characters determined by the value of Pn. If this number is zero or
one, the cursor moves one position. The cursor stops at the right margin.

Default Value: 1

CUB-Cursor Backward ESC [Pn,D
Moves the cursor to the left the number of characters determined by the value of Pn. If this number is zero or one, the
cursor moves one position. The cursor stops at the left margin.

Default Value: 1
CUD - Cursor Down ESC[PnB
Moves the cursor downward without changing columns. The number of lines moved is determined by the value of
P,. If this number is zero or one, the cursor moves down one line. The cursor will stop at line 24. Direct Cursor
Addressing must be used to move to line 25.

CUU-CursorUp ESC[PnA
Moves the cursor upward without changing columns. The number of lines moved is determined by the value
of P,,. If this number is zero or one, the cursor moves up one line. The cursor will stop at the top line.

Default Value:1

Page 11-22

RI — Reverse Index ESC M
Moves the cursor to the same position on the preceding line.

CPR — Cursor Position Report ESC[6n
The Terminal reports the cursor position in the form of ESC [Py ;PcR.

PSCP - Save Cursor Position ESC]|s

The present cursor position is remembered so the cursor can be returned here later when given the PROP (Return to
Previously Saved Position) command.

PRCP — Set Cursor to Previously Saved Position ESC[u
Returns the cursor to the position where it was when it received the PSCP (Save Cursor Position) command.

CUP - Direct Cursor Addressing ESC[P.;PcH or

Same as CUP and HVP above. If the line number (Pp) entered is too high, the cursor will not move. If the
column number (Pc) is too high, the cursor will move to the end of the line.

This is the only way to move the cursor to the 25th line, but the 25th line must first be enabled.

To move the cursor home, enter 0;0 or 1;1 or do not enter any values.

Default Value: 1
ERASING AND EDITING

ED - Erase In Display ESC]| Pg
Erases some or all of the characters in the display according to the value of Pg.

Means

@

Erases from the cursor to the end of the screen and includes the cursor position.
Erases from the start of the screen to the cursor and includes the cursor position.
Erases all of the screen and the cursor goes to the HOME position.

N - o T

Default Value: 0

EL — Erase In Line ESC[Ps K
Erases some or all of the characters in the cursor line according to the value of Ps.

Py Means
0 Erases from the cursor to the end of the line and includes the cursor position.
1 Erases from the start of the line to the cursor and includes the cursor position.
2 Erases all of the line including the cursor position.

Default Value: 0

Page 11-23

IL-InsertLine ESC[PnL
Inserts one or more blank lines (depending on the value of Pn) by moving the line that the cursor is on and all the
following lines down Pn lines. Then the cursor is moved to the beginning of the new blank line.

DL - DeleteLine ESC[PnM
Deletes the line of characters that the cursor is in, and other following lines if Pn is greater than one. The remaining
lines below the deleted area then move up the number of lines that were deleted. The cursor is placed at the
beginning of the next line.

Default Value: 1

DCH - Delete Character ESC[PnP

Deletes the characters at the cursor position, and other positions on the cursor line to the right of the cursor if P, is
greater than one. Any remaining characters to the right of the deleted characters then moved left the number of
characters that were deleted.

Default Value: 1

IRM — Insert/Replacement Mode ON ESC[4h

Lets you insert characters or words into text already displayed on the screen. As new characters are entered,
existing text to the right of the cursor shifts to the right. As each character is inserted, the character at the end of
the line is lost.

IRM - Insert/Replacement Mode OFF ESC[41
Exits from the IRM ON mode.

CONFIGURATION

PRAM - Reset to Power-Up Configuration ESC|[z
Nullifies all previously set escape modes and returns to the power-up configuration.

PMBR - Modify Baud Rate ESC [Pnr
Modifies the baud rate, where P, equals:

1=110, 2=150, 3=300, 4=600,
5=1200, 6=1800, 7=2000, 8=2400,
9=3600, 10=4800, 11=7200, 12=9600,
13=19,200*

SM - Set Mode(s), ESC[>Ps h
Sets the following modes, where Ps equals:

I=enable 25th line

2=no key click

3=hold screen mode

4=block cursor

S=cursor off

6=keypad shifted

7=alternate keypad mode

8=auto line feed on receipt of CR
9=auto CR on receipt of line feed

Can set one or more modes as determined by the parameter string Ps;Ps;Ps, etc.
Default Value: None

*Not presently supported (may drop characters).

Page 11-24

RM - Reset Mode(s) ESC[>Ps |
Resets special modes, where P equals:

exit alternate keypad mode
no auto line feed
no auto CR

1 = disable 25th line

2 = enablekey click

3 = exithold screen mode
4 = underscore cursor

5 = cursoron

6 keypad unshifted

7

8

9

Can reset one or more modes as determined by the parameter string Pg;P;P;, etc.
Default Value: None

PEZM - Enter ZDS Mode ESC[?2h
Enters the ZDS mode.

MODES OF OPERATION

SM — Enter Hold Screen Mode ESC[>3h
Controls when new information is printed onto the screen.
- Type the SCROLL key and a new line of information will be printed on the bottom line. The top line
will scroll off.
- Type SHIFT SCROLL and a whole new page of text will scroll onto the screen and stop as the old
page scrolls up and off the screen.

RM - Exit Hold Screen Mode ESC[> 31
Exits the hold screen mode.

SGR - Enter Reverse VideoMode ESC[7m
Enters the reverse video mode so that characters are displayed as black characters on a white background.

SGR - Exit Reverse VideoMode ESC[morESC[0Om
Exits the reverse video mode.

SM - Enter Keypad Shifted Mode ESC[>6h
Inverts the normal and shifted functions of the keypad. Now if you hold down the SHIFT key, you will get a
normally unshifted character.

RM - Exit Keypad Shifted Mode ESC[>61
Exits the keypad shifted mode.

Page 11-25

SM - Enter Alternate Keypad Mode ESC=0orESC[>7h
Allows you to enter the alternate keypad mode, which will then transmit the following escape codes instead of
the normal ones.

KEY ESCAPE CODE

ESC O p
ESCOq
ESCOT
ESCO's
ESCO't
ESCOu
ESCOv
ESCOw
ESC O x
ESCOy
. ESCOn
ENTER ESCOM

OO Nhk Wh—O

These special escape codes are user defined and must be recognized by your software.

RM - EXxit Alternate Keypad Mode ESC>o0rESC[> 7 |
Exits the alternate keypad mode and returns to the transmission of normal character codes.

ADDITIONAL FUNCTIONS

SM - Keyboard Disabled ESC[2h
Inhibits the output of the keyboard. To activate the keyboard, send the "enable keyboard" escape
sequence from the computer or reset the Terminal.

RM - Keyboard Enabled ESC[21
Enables the keyboard after it was inhibited by an SM (Keyboard Disabled) command.

SM —Wrap Around AtEnd Of Line ESC[?7h
81st character on a line is automatically placed in the first character position on the next line. The page scrolls up
if necessary and permitted.

RM - Discard AtEnd Of Line ESC[? 7|
After the 80th character in a line, the characters overprint. Therefore, only the last character received will
be displayed in position 80.

PX25 - Transmit 25th Line ESC|[g
Transmits the 25th line.

PXMT - TransmitPage ESC[p
Transmits lines 1 through 24. (The computer requires a special routine to use this feature.)

SS3 Function Key #1 (FI) ESCOS
Transmits a unique escape code to perform a useredefined function. The Terminal will not respond to this code
if it is received.

Page 11-26

SS3 Function Key #2 (F2) ESCOT
Same as above.

SS3 Function Key #3 (F3) ESCO U
Same as above.

SS3 Function Key #4 (F4) ESCOV
Same as above.

SS3 Function Key #5 (F5) ESC O W
Same as above.

SS3 Function Key (Blue) ESCOP
Same as above.

SS3 Function Key (Red) ESCOQ
Same as above.

SS3 Function Key (Gray) ESCOR
Same as above.

Page 11-27

THE FUNCTIONS OF A COMPUTER

This section of the Manual introduces certain basic
computer concepts. It provides background infor-
mation and definitions which will be useful.

ATYPICAL COMPUTER SYSTEM
A typical digital computer consists of;

a) A central processor unit (CPU)
b) A memory
¢) Input/output (I/O) ports

The memory serves as a place to store instructions,
the coded information that directs the activities of the
CPU, and data, the coded information processed by the
CPU. A group of logically related instructions stored in
memory is referred to as a program. The CPU "reads"
each instruction from memory in a logically
determined sequence, and uses it to initiate processing
actions. If the program sequence is coherent and
logical, processing the program produces intelligible
and useful results.

The memory is also used to store the data to be man-
ipulated, as well as the instructions that direct man-
ipulation. The program must be organized such
that the CPU does not read a non-instruction word when
it expects to see an instruction. The CPU can rapidly
access data stored in memory, but often the memory is
not large enough to store the data required for a par-
ticular application. This problem can be resolved by
providing the computer with one or more input ports.
The CPU can address these ports and input the data
contained there. The addition of input ports enables
the computer, to receive information from external
equipment (such as a magnetic tape console or floppy
disk) at high rates of speed and in large volumes.

A computer also requires one or more output ports
that permit the CPU to communicate the result of its
processing to the outside world. The output may go to
a display, for use by a human operator, to a peripheral
device that produces "hard copy," such as a line
printer, to a peripheral storage device, such as a
floppy disk unit, or the output may constitute process

control signals that direct the operations of another
system, such as an automated assembly line. Like
input ports, output ports are addressable. The input
and output ports together permit the processor to
communicate with the outside world.

The CPU unifies the system. It controls the functions
performed by the other components. The CPU fetches
instructions from memory, decodes their binary con-
tents and executes them. It also references memory
and I/O ports as necessary in the execution of instruc-
tions. In addition, the CPU recognizes and responds
to certain external control signals, such as interrupt
and wait requests. The functional units within a CPU
that enable it to perform these functions are described
below.

CPU ARCHITECTURE

A typical central processor unit (CPU) consists of the
following interconnected functional units:

e Registers
e Arithmetic/Logic Unit (ALU)
e Control Circuitry

Registers are temporary storage units within the CPU.
Some registers, such as the program counter and in-
struction register, have dedicated uses. Other regis-
ters, such as the accumulator, are for general-purpose
use.

Accumulator

The accumulator usually stores one of the operands to
be manipulated by the ALU. A typical instruction
might direct the ALU to add the contents of some
other register to the contents of the accumulator and
store the result in the accumulator itself. In
general, the accumulator is both a source (operand)
and a destination (result) register.

Often a CPU includes a number of additional general
purpose registers used to store operands or inter-
mediate data. The availability of general-purpose re-
gisters eliminates the need to "shuffle" intermediate
results back and forth between memory and the ac-
cumulator, thus improving processing speed and ef-
ficiency.

Portions of this section of the Menial are reprinted by' permission of Intel
corporation (Copyright 1976).

Page 11-28

Program Counter (Jumps, Subroutines and
the Stack)

The instructions that make up a program are stored in
the system's memory. The central processor refer-
ences the contents of memory in order to determine
what action is appropriate. This means the processor
must know which location contains the next instruc-
tion.

Each of the locations in memory is numbered to
distinguish it from all other locations in memory.
The number that identifies a memory location is called
its address.

The processor maintains a counter that contains the
address of the next program instruction. This register
is called the program counter. The processor updates
the program counter by adding "1" to the counter
each time it fetches an instruction. Therefore, the
program counter is always current (pointing to the
next instruction).

The programmer therefore stores his instructions in
numerically adjacent addresses, so the lower addres-
ses contain the first instructions to be executed and
the higher addresses contain later instructions. The
only time the programmer may violate this sequential
rule is when an instruction in one section of memory is
a jump instruction to another section of memory.

A jump instruction contains the address of the in-
struction which is to follow it. The next instruction
may be stored in any memory location, as long as the
programmed jump specifies the correct address. Dur-
ing the execution of a jump instruction, the processor
replaces the contents of its program counter with the
address embodied in the instruction. Thus, the logi-
cal continuity of the program is maintained.

A special kind of program jump occurs when the stored
program "calls" a subroutine. In this kind of jump, the
processor is required to "remember" the contents of
the program counter at the time the call occurs. This
enables the processor to resume execution of the main
program when it is finished with the last instruction of
the subroutine.

A subroutine is a program within a program. Usually
it is a general-purpose set of instructions that must be
executed repeatedly in the course of a main program.
Routines which calculate the square, the sine, or the
logarithm of a program variable are good examples of
functions often written as subroutines. Other exam-

ples are programs designed for inputting or output-
ting data to a particular peripheral device.

The processor has a special way of handling sub-
routines, in order to insure an orderly return to the
main program. When the processor receives a call
instruction, it increments the program counter and
stores the counter's contents in a reserved memory
area known as the stack. The stack thus saves the
address of the instruction to be executed after the
subroutine is completed. Then the processor loads
the address specified in the call into its program
counter. The next instruction fetched is therefore the
first step of the subroutine.

The last instruction in any subroutine is a return.
Such an instruction need specify no address. When the
processor fetches a return instruction, it simply
replaces the current contents of the program counter
with the address on the top of the stack. This causes
the processor to resume execution of the program at
the point immediately following the original call in-
struction.

Subroutines are often nested; that is, one subroutine
will sometimes call a second subroutine. The second
may call a third, and so on. This is perfectly accepta-
ble, as long as the processor has enough capacity to
store the necessary return addresses, and the
logical provision for doing so. In other words, the
maximum depth of nesting is determined by the depth
of the stack itself. If the stack has space for storing
three return addresses, then three levels of subroutine
nesting may be accommodated.

Processors have different ways of maintaining stacks.
Some have facilities for the storage of return addres-
ses built into the processor itself. Other processors
use a reserved area of external memory as the stack and
simply maintain a pointer register which contains the
address of the most recent stack entry. The
external stack allows virtually unlimited subroutine
nesting. In addition, if the processor provides instruc-
tions that cause the contents of the accumulator and
other general-purpose registers to be "pushed" onto
the stack or "popped" off the stack via the address
stored in the stack pointer, multi-level interrupt pro-
cessing (described later in this section) is possible.
The status of the processor (for example, the contents
of all the registers) can be saved in the stack when an
interrupt is accepted and then restored after the inter-
rupt has been serviced. This ability to save the proces-
sor's status at any given time is possible even if an
interrupt service routine, itself, is interrupted.

Instruction Register and Decoder

Every computer has a word length characteristic of that
machine. A computer's word length is usually
determined by the size of its internal storage elements
and interconnecting paths (referred to as buses); for
example, a computer whose registers and buses can
store and transfer eight bits of information has a
characteristic word length of eight bits and is referred
to as an 8-bit parallel processor. An 8-bit parallel
processor generally finds it most efficient to deal with 8-
bit binary fields, and the memory associated with such
a processor is therefore organized to store eight bits in
each addressable memory location. Data and
instructions are stored in memory as 8-bit binary
numbers, or as numbers that are integral multiples of
eight bits: 16 bits, 24 bits, and so on. This characteris-
tic 8-bit field is often referred to as a byte.

Each operation the processor can perform is iden-
tified by a unique byte of data known as an instruction
code or operation code. An 8-bit word used as an
instruction code can distinguish between 256 alterna-
tive actions, more than adequate for most processors.

The processor fetches an instruction in two distinct
operations. First, the processor transmits the address
in its program counter to the memory. Then the mem-
ory returns the addressed byte to the processor. The
CPU stores this instruction byte in the instruction
register, and uses it to direct activities during the
remainder of the instruction execution.

The mechanism by which the processor translates an
instruction code into specific processing actions re-
quires a more elaborate explanation than is given
here. The concept, however, should be intuitively
clear to any logic designer. The eight bits stored in the
instruction register can be decoded and used to selec-
tively activate one of a number of output lines, in this
case up to 256 lines. Each line represents a set of
activities associated with execution of a particular
instruction code. The enabled line can be combined
with selected timing pulses to develop electrical sig-
nals that can then be used to initiate specific actions.
This translation of code into action is performed by
the instruction decoder and the associated control
circuitry.

An 8-bit instruction code is often sufficient to specify
a particular processing action. There are times, how-
ever, when execution of the instruction requires more
information than eight bits can convey.

One example of this is when the instruction refer-
ences a memory location. The basic instruction code

Page 11-29

identifies the operation to be performed, but cannot
specify the object address as well. In a case like this, a
two- or three-byte instruction must be used. Succes-
sive instruction bytes are stored in sequentially adja-
cent memory locations, and the processor performs
two or three fetches in succession to obtain the full
instruction. The first byte retrieved from memory is
placed in the processor's instruction register, and
subsequent bytes are placed in temporary storage; the
processor then proceeds with the execution phase.
Such an instruction is referred to as variable length.

Address Register(s)

A CPU may use a register or register pair to hold the
address of a memory location to be accessed for data.
If the address register is programmable, (for example, if
there are instructions that allow the programmer to
alter the contents of the register) the program can
"build" an address in the address register prior to
executing a memory reference instruction (for exam-
ple, an instruction that reads data from memory,
writes data to memory, or operates on data stored in
memory).

Arithmetic/Logic Unit (ALU)

All processors contain an arithmetic/logic unit, often
referred to simply as the ALU. The ALU, as its name
implies, is that portion of the CPU hardware which
performs the arithmetic and logical operations on the
binary data.

The ALU must contain an adder capable of combin-
ing the contents of two registers in accordance with
the logic of binary arithmetic. This provision permits
the processor to perform arithmetic manipulations on
the data it obtains from memory and from its other
inputs.

Using only the basic adder, a capable programmer can
write routines which will subtract, multiply and di-
vide, giving the machine complete arithmetic
capabilities. In practice, however, most ALU's pro-
vide other built-in functions, including hardware
subtraction, Boolean logic operations, and shift
capabilities.

The ALU contains flag bits which specify certain
conditions that arise in arithmetic and logical ma-
nipulations. Flags typically include carry, zero, sign,
and parity. It is possible to program jumps which are
conditionally dependent on the status of one or more
flags. Thus, for example, the program may be de-
signed to jump to a special routine if the carry bit is set
following an addition instruction.

Page 11-30

Control Circuitry

The control circuitry is the primary functional unit
within a CPU. Using clock inputs, the control cir-
cuitry maintains the proper sequence of events re-
quired for any processing task. After an instruction is
fetched and decoded, the control circuitry issues the
appropriate signals (to units both internal and exter-
nal to the CPU) for initiating the proper processing
action. Often the control circuitry is capable of re-
sponding to external signals, such as an interrupt or
wait request. An interrupt request causes the control
circuitry to temporarily interrupt main program
execution, jump to a special routine to service the
interrupting device, then automatically return to the
main program. A wait request is often issued by a
memory or I/O element that operates slower than the
CPU. The control circuitry will idle the CPU until the
memory or I/O port is ready with the data.

COMPUTER OPERATIONS

There are certain operations basic to almost any com-
puter. A sound understanding of these basic opera-
tions is a necessary prerequisite to examining the
specific operations of a particular computer.

Timing

The activities of the central processor are cyclical. The
processor fetches an instruction, performs the
operations required, fetches the next instruction, and
so on. This orderly sequence of events requires pre-
cise timing, and the CPU therefore requires a free-
running oscillator clock that furnishes the reference
for all processor actions. The combined fetch and
execution of a single instruction is referred to as an
instruction cycle. The portion of a cycle identified
with a clearly defined activity is called a state. And
the interval between pulses of the timing oscillator is
referred to as a clock period. As a general rule, one or
more clock periods are necessary for the completion of
a state, and there are several states in a cycle.

Instruction Fetch

The first state(s) of any instruction cycle is dedicated
to fetching the next instruction. The CPU issues a read
signal and the contents of the program counter are
sent to memory, which responds by returning the
next instruction word. The first byte of the instruction
is placed in the instruction register. If the instruction
consists of more than one byte, additional states are
required to fetch each byte of the instruction. When

the entire instruction is present in the CPU, the pro-
gram counter is incremented (in preparation for the
next instruction fetch) and the instruction is decoded.
The operation specified in the instruction will be
executed in the remaining states of the instruction
cycle. The instruction may call for a memory read or
write, an input or output and/or internal CPU opera-
tion, such as a register-to-register transfer or an add-
registers operation.

Memory Read

An instruction fetch is merely a special memory read
operation that brings the instruction to the CPU's
instruction register. The instruction fetched may then
call for data to be read from memory into the CPU. The
CPU again issues a read signal and sends the proper
memory address; memory responds by returning the
requested word. The data received is placed in the
accumulator or one of the other general-purpose reg-
isters (not the instruction register).

Memory Write

A memory write operation is similar to a read except
for the direction of data flow. The CPU issues a write
signal, sends the proper memory address, then sends
the data word to be written into the addressed mem-
ory location.

Wait

As previously stated, the activities of the processor are
timed by a master clock oscillator. The clock
period determines the timing of all processing
activity.

The speed of the processing cycle is limited by the
memory's access time. Once the processor has sent a
read address to memory, it cannot proceed until the
memory has had time to respond. Most memories are
capable of responding much faster than the proces-
sing cycle requires. A few, however, cannot supply
the addressed byte within the minimum time estab-
lished by the processor's clock.

Therefore, a processor contains a synchronization
provision, which permits the memory to request a wait
state. 'When the memory receives a read or write
enable signal, it places a request signal on the proces-
sor's READY line, causing the CPU to idle temporar-
ily. After the memory has had time to respond, it frees
the processor's READY line, and the instruction cycle
proceeds.

Input/Output

Input and Output operations are similar to memory
read and write operations with the exception that a
peripheral I/O device is addressed instead of a mem-
ory location. The CPU issues the appropriate input or
output control signal, sends the proper device ad
dress, and either receives the data being input or
sends the data to be output.

Data can be input/output in either parallel or serial
form. All data within a digital computer is rep-
resented in binary coded form. A binary data word
consists of a group of bits; each bit is either a one or a
zero. Serial I/O consists of transferring one bit at a
time on a single line. Naturally, serial I/O is much
slower, but it requires considerably less hardware than
does parallel 1/0.

Interrupts

Interrupt provisions are included on many central
processors as a means of improving the processor's
efficiency. Consider the case of a computer proces-

Page 11-31

sing a large volume of data, portions of which are to be
output to a printer. The CPU can output a byte of data
within a single machine cycle but it may take the
printer the equivalent of many machine cycles to ac-
tually print the character specified by the data byte.
The CPU could then remain idle, waiting until the
printer can accept the next data byte. If an interrupt
capability is implemented on the computer, the CPU
can output a data byte, then return to data processing,
When the printer is ready to accept the next data byte, it
can request an interrupt. When the CPU acknow-
ledges the interrupt, it suspends main program
execution and automatically branches to a routine that
will output the next data byte. After the byte is
output, the CPU continues with main program execu-
tion. Note that this is, in principle, quite similar to a
subroutine call, except the jump is initiated extemally
rather than by the program.

More complex interrupt structures are possible in
which several interrupting devices share the same
processor but have different priority levels. Interrup-
tive processing is an important feature that enables
maximum utilization of a processor's capacity for high
system throughput.

INSTRUCTION SET

A computer, no matter how sophisticated, can only do
what it is "told" to do. A computer is told what to do
via a series of coded instructions referred to as a
program. The realm of the programmer is referred to
as software, in contrast to the hardware that com-
prises the actual computer equipment. A computer's
software refers to all of the programs that have been
written for that computer.

When a computer is designed, the engineers provide
the Central Processing Unit (CPU) with the ability to
perform a particular set of operations. The CPU is
designed such that a specific operation is performed
when the CPU control logic decodes a particular in-
struction. Consequently, the operations that can be
performed by a CPU define the computer's instruction
set.

Each computer instruction allows the programmer to
initiate the performance of a specific operation. All
computers implement certain arithmetic operations in
their instruction set, such as an instruction to add the
contents of two registers. Often logical operations (for
example, OR the contents of two registers) and register
operate instructions (for example, increment a
register) are included in the instruction set. A com-
puter's instruction set also has instructions that move
data between registers, between a register and mem-
ory, and between a register and an I/O device.
Most instruction sets also provide conditional
instructions. A conditional instruction specifies an
operation to be performed only if certain conditions
have been met; for example, jump to a particular
instruction if the result of the last operation was zero.
Conditional instructions provide a program with a
decision-making capability.

Page 11-32

By logically organizing a sequence of instructions
into a coherent program, the programmer can "tell"
the computer to perform a very specific and useful
function.

The computer, however, can only execute programs
whose instructions are in a binary coded form (for
example, a series of 1's and 0's), that is called machine
code. Because it would be extremely cumbersome to
program in machine code, programming languages
have been developed. There are programs available
which convert the programming language instruc-
tions into machine code that can be interpreted by the
Processor.

One type of programming language is assembly lan-
guage. A unique assembly language mnemonic is
assigned to each of the computer's instructions. The
programmer can write a program (called the source
program) using these mnemonics and certain
operands; the source program is then converted into
machine instructions (called the object code). Each
assembly language instruction is converted into one
machine code instruction (1 or more bytes) by an
assembler program. Assembly languages are usually
machine dependent (for example, they are usually
able to run on only one type of computer).

THE 8080 INSTRUCTION SET

This computer uses a Z80 microprocessor, which
provides a great deal of flexibility in programming for
you the user. However, Zenith Data Systems has cho-
sen to support the more popular (and more familiar to
most) instruction set of the 8080A. Therefore,
when you wuse the ZDS assemblers, the
documentation shows execution times and CPU
responses for the 8080A rather than the Z80.

Since some routines are time dependent, knowing the
execution time for each instruction is essential. Also,
when doing some sort of arithmetic operation, the
conditions which affect the setting of the CPU flags
must be known. To help you find the necessary in-
formation about each instruction, a cross reference
from 8080A to Z80 mnemonics is shown below. From
this, you can refer to the following Z80 section of the
Manual.

Even though the standard assemblers provided with
ZDS products will not accept the Z80 mnemonics,
you may use the DB and DW pseudos to take advan-
tage of any Z80 instructions you may wish to use. An
example using the DB pseudo is shown below.

1 ** EXAMPLE OF USE OF A DEFINE BYTE (DB) STATEMENT FOR USING
2% Z80 INSTRUCTIONS WHICH ARE NOT SUPPORTED BY THE HEATH
3% 8080A ASSEMBLER
4
5
000.355 6 LDIR1 EQU 11101101B Z80 LDIR INSTRUCTION BYTE 1
000.260 7 LDIR2 EQU 10110000B Z80 LDIR INSTRUCTION BYTE 2
8
9
10
000.000 11 ORG 012
000.000 041 000 100 13 LXI H,BUFF1 COPY FROM BUFFER $1
000.003 021 000 104 14 LXI D,BUFF2 TO BUFFER $2
000.006 001 000 004 15 LXI B,1024 BUFFER LENGTH IS 1K
16
17 # LDIR EXECUTE LDIR COPY
000.011 355 260 18 DB LDIR1,LDIR2
19
20
21
22 ** RAM
23
100.000 24 ORG 100000A
25
100.000 26 BUFF1 DS 1024
104.000 27 BUFF2 DS 1024
28
110.000 29 END

ASSEMBLY COMPLETE
29 STATEMENTS

0 ERRORS DETECTED
15842 BYTES FREE

The 8080 instruction set includes five different types
of instructions:

e Data Transfer Group - move data between
registers or between memory and registers.

e Arithmetic Group - add, subtract, incre-
ment, or decrement data in registers or in
memory.

e Logical Group - AND, OR, EXCLUSIVEOR,
compare, rotate, or complement data in
registers or in memory.

e Branch Group - conditional and uncondi-
tional jump instructions, subroutine call in-
structions, and return instructions.

Page 11-33

e Stack, I/O, and Machine Control Group -
includes 1/0 instructions, as well as instruc-
tions for maintaining the stack and internal
control flags.

Instruction and Data Formats

Memory for the 8080 is organized into 8-bit quantities
called bytes. Each byte has a unique 16-bit binary
address corresponding to its sequential position in
memory.

The 8080 can directly address up to 65,536 bytes
of memory, which may consist of both read-only
memory (ROM) elements and random-access
memory (RAM) elements (read/write memory).

8080 Z80 8080 Z80 8080 Z80
Mnemonic Mnemonic Mnemonic Mnemonic Mnemonic Mnemonic

ACI ADC AN IN IN A,(N) POP H POP HL
ADC M ADC A,(HL) INR M INC (HL) POP PSW POP AF
ADC r ADC AR INR r INC R PUSH B PUSH BC
ADD M ADD A,(HL) INX B INC BC PUSH D PUSH DE
ADD r ADD AR INX D INC DE PUSH H PUSH HL
ADI ADD AN INX H INC HL PUSH PSW PUSH AF
ANA M AND (HL) INX SP INC SP RAL RLA
ANA r AND R JC JP C,NN RAR RRA
ANI AND N M JP M,NN RC RET C
CALL CALL NN JMP JP NN RET RET
CC CALL C,NN JNC JP NC,NN RLC RLCA
CM CALL M,NN JNZ JP NZ,NN RM RET M
CMA CPL JP JP P,NN RNC RET NC
CMC CCF JPE JP PE,NN RNZ RET NZ
CMP M CP (HL) JPO JP PO,NN RP RET P
CMP r CcP R JZz JP Z,NN RPE RET PE
CNC CALL NC,NN LDA LD A,(NN) RPO RET PO
CNZ CALL NZ,NN LDAX B LD A(BC) RRC RRCA
CcP CALL P,NN LDAX D LD A,(DE) RST RST P
CPE CALL PE,NN LHLD LD HL,(NN) RZ RET Z
CPI CP N LXI B LD BC,NN SBB M SBC A,(HL)
CPO CALL PO,NN LXI D LD DE,NN SBB r SBC AR
Ccz CALL Z,NN LXI H LD HL,NN SBI SBC AN
DAA DAA LXI SP LD SP,NN SHLD LD (NN),HL
DAD B ADD HL,BC MVI M LD (HL),N SPHL LD SP,HL
DAD D ADD HL,DE MVI r LD R,N STA LD (NN),A
DAD H ADD HL,HL MOV M,r LD (HL),R STAX B LD (BC),A
DAD SP ADD HL,SP MOV r,M LD R,(HL) STAX D LD (DE),A
DCR M DEC (HL) MOV ri,r2 LD R,R' STC SCF
DCR r DEC R NOP NOP SUB M SUB (HL)
DCX B DEC BC ORA M OR (HL) SUB r SUB R
DCX D DEC DE ORA r OR R Sul SUB N
DCX H DEC HL ORI OR N XCHG EX DE,HL
DCX SP DEC SP ouT ouT (N),A XRA M XOR (HL)
DI DI PCHL JP (HL) XRA r XOR R
El El POP B POP BC XRI XOR N
HLT HALT POP D POP DE XTHL EX (SP),HL

Data in the 8080 is stored in the form of 8-bit
binary integers:

DATA WORD
|D7’D6‘D5|D4|D3‘D2’D1|D0‘
MSB LSB

When a register or data word contains a binary
number, it is necessary to establish the order in
which the bits of the number are written. In the 8080,
BIT 0 is referred to as the Least Significant Bit (LSB),
and BIT 7 (of an 8-bit number) is referred to as the
Most Significant Bit (MSB).

The 8080 program instructions may be one, two,
or three bytes in length. Multiple byte instructions
must be stored in successive memory locations; the
address of the first byte is always used as the
address of the instructions. The exact instruction
format will depend on the particular operation to
be executed.

Single-Byte Instructions

|] |
Dy ! ! ! [Do Op Code

Two-Byte Instructions

Byte One D7l ! ! ! l ! TDo Op Code

Byte Two LD7 UL T Do] Data

Three-Byte Instructions
T T T 1 !

Byte One lD7 J D:' Op Code

Byte Two LD7 ! I ! I I I] Do]} Data

or
Byte Three I& o I I ! I I Do Address
Addressing Modes

Often the data to be operated on is stored in
memory. When multi-byte numeric data is used,
the data, like instructions, is stored in successive
memory locations, with the least significant byte
first, followed by increasingly significant bytes.
The 8080 has four different modes for addressing
data stored in memory or in registers:

e Direct - Bytes 2 and 3 of the instruction
contain the exact memory address of
the data item (the low-order bits of the
address are in byte 2, the high-order bits
in byte 3).

e Register - The instruction specifies the
register or register pair in which the data
is located.

e Register Indirect -- The instruction
specifies a register pair which contains the
memory address where the data is located
(the high-order bits of the address are in the
first register of the pair, the low-order bits in
the second).

¢ [mmediate -- The instruction contains the
data itself. This is either an 8-bit quantity
or a 16-bit quantity (least significant byte
first, most significant byte second).

Unless directed by an interrupt or branch instruction,
the execution of instructions proceeds through con-
secutively increasing memory locations. A branch
instruction can specify the address of the next in-
struction to be executed in one of two ways:

e Direct - The branch instruction contains
the address of the next instruction to be
executed. (Except for the "RST"
instruction, byte 2 contains the low-order
address and byte 3 the high-order
address.)

e Register Indirect - The branch instruction
indicates a register pair which contains
the address of the next instruction to be
executed. (The high-order bits of the
address are in the first register of the pair,
the loworder bits in the second.)

The RST instruction is a special 1-byte call
instruction (usually wused during interrupt
sequences). RST includes a 3-bit field; program
control is transferred to the instruction whose
address is eight times the contents of this 3-bit field.

Condition Flags

There are five condition flags associated with the
execution of instructions on the 8080. They are
Zero, Sign, Parity, Carry, and Auxiliary Carry, and
are each represented by a 1-bit register in the CPU. A
flag is "set" by forcing the bit to 1; "reset" by forcing
the bit to 0.

Unless indicated otherwise, when an instruction
affects a flag, it affects it in the following manner.

Zero: If the result of an instruction has the
value 0, this flag is set; otherwise it
is reset.

Sign: If the most significant bit of the result

of the operation has the value 1, this
flag is set; otherwise it is reset.

Page 11-34

Parity: If the modulo 2 sum of the bits of
the result of the operation is 0 (for
example, if the result has even parity),
this flag is set; otherwise it is reset (for
example, if the result has odd parity).

Carry: If the instruction resulted in a carry
(from addition), or a borrow (from sub-
traction or a comparison) out of the
high-order bit, this flag is set;
otherwise it is reset.

Auxiliary If the instruction caused a carry out of

Carry: bit 3 and into bit 4 of the resulting,
value the auxiliary carry is set;
otherwise it is reset. This flag is
affected by single precision additions,
subtractions, increments, decrements,
comparisons, and logical operations,
but is principally used with additions
and increments preceding a DAA
(Decimal Adjust Accumulator)
instruction.

Symbols and Abbreviations

The following symbols and abbreviations are used in
the subsequent description of the 8080 instructions:

SYMBOLS MEANING

Accumulator Register A

addr 16-bit address quantity

data 8-bit data quantity

data 16 16-bit data quantity

byte 2 The second byte of the instruction
byte 3 The third byte of the instruction
port 8-bit address of an I/O device

r, rl, r2 One of the registers A, B, C, D, E, H, L.

DDD, SSS The bit pattern designating one of
the registers A, B, C, D, E, H, L. (DDD = destination,
SSS = source).

rp

rh

rl

PC

SP

DDD or SSS REGISTER
BINARY OCTAL NAME
111 7 A
000 0 B
001 1 C
010 2 D
011 3 E
100 4 H
101 5 L

One of the register pairs:

B represents the B, C pair with B as the
high-order register and C as the low-
order register;

D represents the D, E pair with D as the
high-order register and E as the low-order
register;

H represents the H, L pair with H as the
high-order register and L as the low-order
register;

SP represents the 16-bit stack pointer
register.

The bit pattern designating one of the
register pairs B, D, H, SP:

RP REGISTER PAIR
00 B-C

01 DE

10 H-L

11 SP

The first (high-order) register of a desig-
nated register pair.

The second (low-order) register of a
designnated register pair.

16-bit program counter register (PCH and
PCL are used to refer to the high-order
and low-order 8-bits, respectively).

16-bit stack pointer register (SPH and SPL
are used to refer to the high-order and
low-order 8-bits, respectively).

rm

0

Bit m of the register r (bits are numbered
7 through 0 from left to right).

P, The condition flags:

Zero,

and Auxiliary Carry, respectively.

The contents of the memory location or
registers enclosed in the parentheses.

“Is transferred to”

Logical AND

Exclusive OR

Inclusive OR

Addition

Two’s complement subtraction
Multiplication

“Is exchanged with”

The one’s complement (e. g., (A))

The restart number 0 through 7

NNN The binary representation 000

through 111 for restart number 0
through 7 respectively.

Description Format

The following pages provide a detailed description of
the instruction set of the 8080. Each instruction is
described in the following manner:

1.

The numbers above the mnemonic are the octal
opcodes for the instruction.

The assembler format, consisting of the
instruction mnemonic and operand fields, is
printed in BOLDFACE on the left side of the
first line.

The name of the instruction is enclosed in
parentheses on the right side of the first line.

4. The next line(s) contain a symbolic
description of the operation of the instruction.

5. This is followed by a narrative description of
the operation of the instruction.

6. The following line(s) contain the binary fields
and patterns that comprise the machine
instruction.

7. The last four lines contain incidental
information about the execution of the
instruction. The number of machine cycles
and states required to execute the instruction
are listed first. If the instruction has two
possible execution times, as in a conditional
jump, both times will be listed, separated by a
slash. Next, any significant data addressing
modes are listed. The last line lists any of
the five Flags that are affected by the
execution of the instruction.

Data Transfer Group

This group of instructions transfers data to and from
registers and memory. Condition flags are not
affected by any instruction in this group.

1(0-5,7) (0-5.,7)
MOV r1, r2 (Move Register)
(r1) « (r2)
The content of register r2 is moved to register r1.

O[1DIDID SIS,S

Cycles: 1
States: 5
Addressing: register
Flags: = none

1(0-7)6

MOVr, M (Move from memory)
(r) « ((H) (L)
The content of the memory location, whose ad-
dress is in registers H and L, is moved to register
r.

0 1 D ! D D 1 1 0
Cycles: 2
States: 7

Addressing: reg. indirect
Flags: none

Page 11-36

16 (0-7)

MOV M, r (Move to memory)
((H) (L)) « (r)
The content of register r is moved to the memory
location whose address is in registers H and L.

0 0 S S S
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
0 (0-7)6
MVI r, data (Move Immediate) 0(0-7)6

(r) « (byte 2)
The content of byte 2 of the instruction is moved
to register r.

001
021

(B, C)
(D, E)

041
061

(H, L)
(5. P)

LXI rp, data 16
(rh) « (byte 3),
(r]) « (byte 2)
Byte 3 of the instruction is moved into the high-
order register (rh) of the register pair rp. Byte 2 of
the instruction is moved into the low-order regis-
ter (rl) of the register pair rp.

(Load register pair immediate)

| T

ol ol RV Pl 0" 0" o'

low-order data

high-order data

Cycles: 3
States: 10
Addressing: immediate
Flags: none

072

LDA addr (Load Accumulator direct)
(A) « ((byte 3) (byte 2))
The content of the memory location, whose ad-
dress is specified in byte 2 and byte 3 of the
instruction, is moved to the accumulator.

low-order addr

oTolo o'o] 1" 110
data byte
Cycles: 2
States: 7
Addressing: immediate
Flags: none
066
MVI M, data {Move to memory immediate)

high-order addr

Cycles:
States:
Addressing:
Flags:

062
STA addr

4

13
direct
none

(Store Accumulator direct)

((byte 3) (byte 2)) « (A)

((H) (L)) « (byte 2)
The content of byte 2 of the instruction is moved
to the memory location whose address is in regis-

The content of the accumulator is moved to the
memory location whose address is specified in
byte 2 and byte 3 of the instruction.

T To 71 1o

0’0'1’1 0 o0

{ow-order addr

ters H and L.
ol ol 1T T ol 1T 1T
data byte
Cycles: 3
States: 10
Addressing: immed./reg. indirect

Flags:

none

high-order addr
Cycles: 4
States: 13
Addressing: direct

Flags:

none

052

LHLD addr (Load H and L direct)
(L) « ((byte 3) (byte 2))
(H) « ((byte 3) (byte 2) + 1)
The content of the memory location, whose ad-
dress is specified in byte 2 and byte 3 of the
instruction, is moved toregister L. The content of
the memory location at the succeeding address is
moved to register H.

low-order addr

high-order addr

Cycles: 5
States: 16
Addressing: direct
Flags: none
042
SHLD addr (Store H and L direct)

((byte 3) (byte 2)) « (L)

((byte 3) (byte 2) + 1) « (H)

The content of register L is moved to the memory
location whose address is specified in byte 2 and
byte 3. The content of register H is moved to the
succeeding memory location.

0'0'1r0'0'0]1'0

low-order addr

high-order addr
Cycles: 5
States: 16

Addressing: direct

Flags: none

012 (B, C) 032 (D, E)
LDAX rp (Load accumulator indirect)

(A) « ((rp))

The content of the memory location, whose ad-
dress is in the register pair rp, is moved to register
A. NOTE: Only register pairs rp = B (registers B
and C) or rp = D (registers D and E) may be

Page 11-37

002 (B, Q) 022 (D, E)

STAX rp (Store accumulator indirect)
((rp)) < (A)
The content of register A is moved to the memory
location whose address is in the register pair rp.
NOTE: Only register pairs rp = B (registers B and
C) orrp = D (registers D and E) may be specified.

0 ! 0 R I P 0 ! 0 ! 1 ! 0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: none
353
XCHG (Exchange H and L with D and E)
(H) «(D)
(L) «(E)

The contents of registers H and L are exchanged
with the contents of registers D and E.

1'1'1

o Ty

o T, T,

Cycles: 1
States: 4
Addressing: register
Flags: none

Arithmetic Group

This group of instructions performs arithmetic opera-
tions on data in registers and memory.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Carry, and Aux-
iliary Carry flags according to the standard rules.

All subtraction operations are performed via two’s
complement arithmetic and set the carry flag to one to
indicate a borrow and clear it to indicate no borrow.

20 (0-5,7)

ADD r (Add Register)
(A) « (A) + (1)
The content of registerr is added to the content of
the accumulator. The result is placed in the ac-

specified.
0 ! 0 R I P 1] 0 ! 1 ! 0
Cycles: 2
States: 7
Addressing: reg. indirect

Flags:

none

cumulator.
1 ! 0 I 0 ! 0 ! 0 S ! S ! S
Cycles: 1
States: 4
Addressing: register
Flags: 2,S,P,CY,AC

Page 11-38

206

ADD M (Add memory)
(A) « (A) + ((H) (L))
The content of the memory location whose ad-
dress is contained in the H and L registers is
added to the content of the accumulator. The
result is placed in the accumulator.

1ol ol olTolT 1T 4Ty

216

ADCM (Add memory with carry)
(A) « (A) + ((H) (L)) + (CY)
The content of the memory location whose ad-
dress is contained in the H and L registers and the
content of the CY flag are added to the content of
the accumulator. The result is placed in the ac-

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: 2,S,P,CY AC

306

ADI DATA (Add immediate)
(A) « (A) + (byte 2)
The content of the second byte of the instruction
is added to the content of the accumulator. The

cumulator.
1'010’011]111'0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: 2.S,P.CY,AC
316
ACI data (Add immediate with carry)

(A) « (A) + (byte 2) + (CY)

The content of the second byte of the instruction
and the content of the CY flag are added to the
content of the accumulator. The result is placed

result is placed in the accumulator.

1'1]0IO OIIT1I0
data byte
Cycles: 2
States: 7
Addressing: immediate
Flags: 2Z,S,P,CY,AC

21 (0-5,7)
ADCr

(Add Register with carry)

in the accumulator.

1'1‘0'0'1'1'1’0
data byte
Cycles: 2
States: 7
Addressing: immediate
Flags: 2,5,P,CYAC

22 (0-5,7)
SUB r

(Subtract Register)

(A) « (A) + (1) + (CY)

The content of register r and the content of the
carry bit are added to the content of the ac-
cumulator. The result is placed in the ac-

(A) « (A) = (1)

The content of register r is subtracted from the
content of the accumulator. The result is placed
in the accumulator.

cumulator.
1T ol oToT 1 [sTsTys
Cycles: 1
States: 4
Addressing: register
Flags: Z2,S,P.CY,AC

Cycles: 1
States: 4
Addressing: register
Flags: 2,S,P.CYAC

226

SUB M (Subtract memory)
(A) « (A) = ((H) (L))
The content of the memory location whose ad-
dress is contained in the H and L registers is
subtracted from the content of the accumulator.
The result is placed in the accumulator.

1 ol oy Tl ¢ T Ty

SBB M

Page 11-39

236

(Subtract memory with borrow)

(A) « (A) = ((H) (L)) - (CY)

The content of the memory location whose ad-
dress is contained in the H and L registers and the
content of the CY flag are both subtracted from
the content of the accumulator. The result is
placed in the accumulator.

Cycles: 2
States: 7
Addressing: reg. indirect
Flags: Z,SP.CY,AC

326
SUI data
(A) « (A) — (byte 2)

(Subtract immediate)

110’0'1]1'1'1I0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: 2,SPCY,AC
336
SBI data (Subtract immediate with borrow)

(A) « (A) — (byte 2) — (CY)

The content of the second byte of the instruction
is subtracted from the content of the ac-
cumulator. The result is placed in the ac-

The contents of the second byte of the instruction
and the contents of the CY flag are both sub-

- tracted from the content of the accumulator. The
result is placed in the accumulator.

cumulator.
1 P T Ty T T T Ty
data byte
Cycles: 2
States: 7
Addressing: immediate
Flags: 2,SP,CY,AC

23 (0-5,7)
SBB r

(Subtract Register with borrow)
(A) « (A) = (1) - (CY)

1'1'0'1'1'1'1'0
data byte
Cycles: 2
States: 7
Addressing: immediate
Flags: 2,SP,CY,AC

0 (0-57)4
INRT
(r) e (r) + 1

(Increment Register)

The content of register r and the content of the CY
flag are both subtracted from the content of the
accumulator. The result is placed in the ac-

cumulator.
1ol ol a Ty] sl sls
Cycles: 1
States: 4
Addressing: register
Flags: 2,5S,PCY,AC

The content of register r is incremented by one.
NOTE: All condition flags except CY are affected.

olo|olo!lof[1To0'lo
Cycles: 1
States: 5
Addressing: register
Flags: 2,SP.AC

Page 11-40

003 (B,C) 043 (H,L)
023 (D,E) 063 (s,P)
INX rp (Increment register pair)

(rh) (r]) « (rh) (r]) + 1
The content of the register pair rp is incremented
by one. NOTE: No condition flags are affected.

oTo[rTpPp]olols Ty
Cycles: 1
States: 5
Addressing: register
Flags: none

013 (8,C) 053 (H,L)

033 (D,E) 073 (s,P)

DCX rp {Decrement register pair)

(rh) (r]) « (rh) (r]) — 1
The content of the register pair rp is decremented
by one. NOTE: No condition flags are affected.

064
INRM (Increment memory)
((H) (L)) « ((H) (L)) + 1
The content of the memory location whose ad-
dress is contained in the H and L registers is
incremented by one. NOTE: All condition flags
except CY are affected.
0‘01111 0'1'0'0
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: 2Z,SP.AC
0 (0-5,7)5
DCRr (Decrement Register)
(r) «(r) - 1
The content of register r is decremented by one.
NOTE: All condition flags except CY are affected.
0'0 D]D[DTIIOII
Cycles: 1
States: 5
Addressing: register
Flags: Z,S,PAC
065
DCR M (Decrement memory)

((H) (L)) « ((H) (L)) = 1

The content of the memory location whose ad-
dress is contained in the H and L registers is
decremented by one. NOTE: All condition flags
except CY are affected.

olo[rTe [1T o0l 11y
Cycles: 1
States: 5
Addressing: register
Flags: none
o1l (8,C) 051 (H,L)
031 (D,E) 071 (s,P)
DAD rp (Add register pair to H and L)

(H) (L) « (H) (L) + (rh) (r])

The content of the register pair rp is added to the
content of the register pair H and L. The result is
placed in the register pair H and L. NOTE: Only
the CY flag is affected. It is set if there is a carry
out of the double precision add; otherwise it is

ol ol Ty Tgly Toly
Cycles: 3
States: 10
Addressing: reg. indirect

Flags:

ZSPAC

reset.
0 I 0 R I P 1 1 0 | 1] ! 1
Cycles: 3
States: 10
Addressing: register
Flags: CY

047

DAA (Decimal Adjust Accumulator)
The eight-bit number in the accumulator is ad-
justed to form two 4-bit Binary-Coded-Decimal
digits by the following process:

1. If the value of the least significant 4 bits of
the accumulator is greater than 9, or if the
ACflag is set, 6 is added to the accumulator.

2. If the value of the most significant 4 bits of
the accumulator is now greater than 9, or
if the CY flag is set, 6 is added to the most
significant 4 bits of the accumulator.

NOTE: All flags are affected.

0]0l1I0]0I1I1]1

Page 11-41

246

ANA M (AND memory)
(A) < (A) A ((H) (L)
The contents of the memory location whose ad-
dress is contained in the H and L registers is
logically anded with the content of the ac-
cumulator. The result is placed in the ac-
cumulator. The CY flag is cleared.

1IOI1'0'0]1'1'0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: 2,S,P,CY,AC

346
ANI data

(AND immediate)

Cycles: 1
States: 4
Flags: 2,SP,CY,AC

(A) < (A) A (byte 2)

The content of the second byte of the instruction
is logically anded with the content of the ac-
cumulator. The result is placed in the ac-

Logical Group:

This group of instructions performs logical (Boolean)
operations on data in registers and memory and on
condition flags.

Unless indicated otherwise, all instructions in this
group affect the Zero, Sign, Parity, Auxiliary Carry,
and Carry flags according to the standard rules.

24 (0-5,7)

ANAT (AND Register)
(A) « (A) A (1)
The content of register r is logically anded with
the content of the accumulator. The result is
placed in the accumulator. The CY flag is
cleared.

1'0'1'010 SISIS
Cycles: 1
States: 4
Addressing: register
Flags: 2,S,P,CY,AC

cumulator. The CY and AC flags are cleared.

data

byte

Cycles:
States:
Addressing:
Flags:

25 (0-5,7)
XRAT
(A) « (A) W (1)

2

7

immediate
Z2S,PCY,AC

(Exclusive OR Register)

The content of register r is exclusive-OR’d with
the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags

are cleared.
1 ! 0 ! 1 ! 0 ! 1 S ! S ! S
Cycles: 1
States: 4
Addressing: register
Flags: 2,SP,CY,AC

Page 11-42

256
XRA M
(A) « (A) ¥ ((H) (L)

(Exclusive OR Memory)

The content of the memory location whose ad-
dress is contained in the H and L registers is

exclusive-OR’d with

the content of the ac-

cumulator. The result is placed in the ac-
cumulator. The CY and AC flags are cleared.

1'0]1|01|‘II1I0
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: 2,S,P,CY,AC

356
XRI data
(A) « (A) ¥ (byte 2)

(Exclusive OR immediate)

The content of the second byte of the instruction
is exclusive-OR’d with the content of the ac-
cumulator. The result is placed in the ac-
cumulator. The CY and AC flags are cleared.

1'1'1'01'1'1'0
data byte
Cycles: 2
States: 7
Addressing: immediate
Flags: Z,S,P,.CY,AC
26 (0-5,7)

ORAT
(A) « (A) v (r)

(OR Register)

The content of register r is inclusive-OR’d with
the content of the accumulator. The result is
placed in the accumulator. The CY and AC flags

are cleared.
1 Tol 1Ty Tols T's s
Cycles: 1
States: 4
Addressing: register
Flags: 2,S,P,CY,AC

266
ORA M
(A) < (A) V((H) (L)

(OR memory)

The content of the memory location whose ad-
dress is contained in the H and L registers is
inclusive-OR’d with the content of the ac-
cumulator. The result is placed in the ac-
cumulator. The CY and AC flags are cleared.

1'0'1'1'0'11110
Cycles: 2
States: 7
Addressing: reg. indirect
Flags: 2,S,P,CY,AC

366
ORI data
(A) « (A) V (byte 2)

(OR Immediate)

The content of the second byte of the instruction
is inclusive-OR’d with the content of the ac-
cumulator. The result is placed in the ac-
cumulator. The CY and AC flags are cleared.

1'1'1'10'1]1]0
data byte
Cycles: 2
States: 7
Addressing: immediate
Flags: Z2,SP.CYAC

27 (0-5,7)
CMPr
(A) — (1)

(Compare Register)

The content of register r is subtracted from the

accumulator.

The accumulator remains un-

changed. The condition flags are set as a result of
the subtraction. The Z flag is set to 1 if (A) = (r).
The CY flag is set to 1 if (A) < (r).

1 ! 0 ! 1 I 1 1 S ! S ! S
Cycles: 1
States: 4
Addressing: register
Flags: Z,SP.CY.,AC

Page 11-43

276 017

CMP M (Compare memory) RRC (Rotate right)

(A) = ((H) (L)

The content of the memory location whose ad-
dress is contained in the H and L registers is
subtracted from the content of the accumulator.
The accumulator remains unchanged. The con-

(An) « (An-1); (A7) « (Ag)

(CY) « (A

The content of the accumulator is rotated right
one position. The high-order bit and the CY flag
are both set to the value shifted out of the low-

dition flags are set as a result of the subtraction.
The Z flag is set to 1 if (A) = ((H) (L)). The CY flag

order bit position. Only the CY flag is affected.

is set to 1 if (A) < ((H) (L)). ol ololo T Ty Ty
1'0'1'1'1'1'1’0 Cycles: 1
States: 4
Cycles: 2 Flags: CY
States: 7
Addressing: reg. indirect
Flags: Z,S,P,CYAC 027
‘ RAL (Rotate left through carry)
376 (An+1) < (An); (CY) « (Ay)
CPI data (Compare immediate) (Ag) « (CY)

(A) - (byte 2)

The content of the second byte of the instruction
is subtracted from the content of the ac-
cumulator. The condition flags are set by the
result of the subtraction. The Z flag is set to 1 if
(A) = (byte 2). The CY flag is set to 1 if (A) < (byte

The content of the accumulator is rotated left one
position through the CY flag. The low-order bit is
set equal tothe CY flag and the CY flag is set to the
value shifted out of the high-order bit. Only the
CY flag is affected.

2).
) 0'0I0T1r011l1]1
1'1'1'111]1‘110 Cycles: 1
States: 4
data byte Flags: CY
Cycles: 2
States: 7
Addressing: immediate
Flags: 2,SP,CY,AC
037
007 RAR (Rotate right through carry)
A, A1) (CY A
RLC (Rotate left) ((A,)): ((CY;I) (CY) — (Ad)
(Ant)) < (An); (Ag) « (A7) The content of the accumulator is rotated right
(CY) « (A9

The content of the accumulator is rotated left one
position. The low-order bit and the CY flag are
both set to the value shifted out of the high-order
bit position. Only the CY flag is affected.

OIOIOI0l0T1I1]1
Cycles: 1
States: 4

Flags: CY

one position through the CY flag. The high-order
bit is set to the CY flag and the CY flag is set to the
value shifted out of the low-order bit. Only the
CY flag is affected.

0 0 0 1 1 1 1 1
Cycles: 1
States: 4
Flags: CY

Page 11-44

057

CMA (Complement accumulator)
(A) « (A)
The content of the accumulator is complemented
(zero bits become 1, one bits become 0). No flags
are affected.

Cycles: 1
States: 4
Flags: none

077
CMC (Complement carry)
(CY) « (CY)
The CY flag is complemented. No other flags are

affected.
ol ol Ty Ty byl Ty
Cycles: 1
States: 4
Flags: CY
067
STC (Set carry)
(CY) «1

TheCY flag is set to 1. No other flags are affected.

ol ol 1 Ty Tl T 11,

Cycles: 1
States: 4
Flags: CY

Branch Group

This group of instructions alters normal sequential
program flow:

Condition flags are not affected by any instruction in
this group.

The two types of branch instructions are uncondi-
tional and conditional. Unconditional transfers sim-
ply perform the specified operation on register PC
(the program counter). Conditional transfers examine

the status of one of the four processor flags to deter-
mine if the specified branch is to be executed. The
conditions that may be specified are as follows:

CONDITION CCC OCTAL
NZ — not zero (Z = 0) 000 0
Z — zero (Z = 1) 001 1
NC — no carry (CY = 0) 010 2
C — carry (CY = 1) 011 3
PO — parity odd (P = 0) 100 4
PE — parity even (P = 1) 101 5
P — plus (S = 0) 110 6
M — minus (S = 1) 111 7
303
JMP addr (Jump)

(PC) « (byte 3) (byte 2)

Control is transferred to the instruction whose
address is specified in byte 3 and byte 2 of the
current instruction.

0 0 1 1
low-order addr
high-order addr
Cycles: 3
States: 10
Addressing: immediate

Flags: none

3 (0-7)2
Jcondition addr (Condition jump)
If (CCQ),
(PC) « (byte 3) (byte 2)

If the specified condition is true, control is trans-
ferred to the instruction whose address is
specified in byte 3 and byte 2 of the current in-
struction; otherwise, control continues sequen-
tially.

1 Valelelelol1To

low-order addr
high-order addr
Cycles: 3
States: 10
Addressing: immediate
Flags: none

315
CALL addr

3

Ccondition addr

(Call)

((SP) — 1) « (PCH)

((SP) — 2) « (PCL)

(SP) « (SP) — 2

(PC) « (byte 3) (byte 2)

The high-order eight bits of the next instruction
address are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction
address are moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2.
Control is transferred to the instruction whose
address is specified in byte 3 and byte 2 of the
current instruction.

1 gl Ty Ty

low-order addr

high-order addr

Cycles: 5
States: 17
Addressing: immediate/reg. indirect

Flags: none

(0-7) 4
(Condition call)
If (CCCQ),

((SP) - 1) « (PCH)

((SP) — 2) « (PCL)

(SP) « (SP) — 2

(PC) « (byte 3) (byte 2)

If the specified condition is true, the actions
specified in the CALL instruction (see above) are
performed; otherwise, control continues sequen-
tially.

CrC 1

low-order addr

high-order addr

Cycles: 3/5
States: 11/17
Addressing: immediate/reg. indirect
Flags: none

311
RET

Page 11-45

(Return)
(PCL) « ((SP));
(PCH) « ((SP) + 1);
(SP) « (SP) + 2;

The content of the memory location whose ad-
dress is specified in register SP is moved to the
low-order eight bits of register PC. The content of
the memory location whose address is one more
than the content of register SP is moved to the
high-order eight bits of register PC. The content
of register SP is incremented by 2.

1'1'0'0'1T0[0'1

Cycles: 3
States: 10
Addressing: reg. indirect
Flags: none
3 (0-7) O
Rcondition (Conditional return)
If (CCC),
(PCL) « ((SP))
(PCH) « ((SP) + 1)
(SP) « (SP) + 2
If the specified condition is true, the actions
specified in the RET instruction (see above) are
performed; otherwise, control continues sequen-
tially.
1 ! 1 C ! C I Cc 0 ! 0 ! 0
Cycles: 1/3
States: 5/11
Addressing: reg. indirect
Flags: none
3 (0-7)7
RST n (Restart)

((SP) - 1) « (PCH)

((SP) — 2) « (PCL)

(SP) « (SP) — 2

(PC) « 8 * (NNN)

The high-order eight bits of the next instruction
address are moved to the memory location whose
address is one less than the content of register SP.
The low-order eight bits of the next instruction

Page 11-46

address are moved to the memory location whose
address istwo less than the content of register SP.
The content of register SP is decremented by two.
Control is transferred to the instruction whose
address is eight times the content of NNN.

111 N

N N 1 1 1
Cycles: 3
States: 11

Addressing: reg. indirect
Flags: none

[oTe[oTo o e e[oo [e[\[N["]o]s]s]

Program Counter After Restart

351
PCHL (Jump H and L indirect — move H and L
to PC)

(PCH) « (H)
(PCL) « (L)
The content of register H is moved to the high-
order eight bits of register PC. The content of
register L is moved to the low-order eight bits of
register PC.

[—1I1I1IOIITOF0'1

Cycles: 1
States: 5
Addressing: register
Flags: none

Stack, I/0, and Machine Control Group

This group of instructions performs I/O, manipulates
the Stack, and alters internal control flags.

Unless otherwise specified, condition flags are not
affected by any instructions in this group.

305 (B, Q) 345 (H, L)
325 (D, E)
PUSH rp (Push)

((SP) — 1) « (rh)

((SP) — 2) « (1)

(SP) « (SP) - 2

The content of the high-order register of register
pair rp is moved to the memory location whose
address is one less than the content of register SP.
The content of the low-order register of register
pair rp is moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2.
NOTE: Register pair rp = SP may not be
specified.

1 I 1 Rl P 0| 1j 0 I 1
Cycles: 3
States: 11

Addressing: reg. indirect
Flags: none

PUSH PSW (Push processor status word)

((SP) = 1) « (A)

((SP) = 2), « (CY), ((SP) — 2); « 1

((SP) = 2); « (P), ((SP) — 2)3 < 0

((SP) — 2), « (AC), ((SP) = 2); <0

((SP) = 2)g « (Z), ((SP) = 2); « (S)

(SP) « (SP) — 2

The content of the accumulator is moved to the
memory location whose address is one less than
register SP. The contents of the condition flags
are assembled into a processor status word and
the word is moved to the memory location whose
address is two less than the content of register SP.
The content of register SP is decremented by 2.

R

Cycles: 3
States: 11
Addressing: reg. indirect
Flags: none

FLAG WORD

Dy De Ds D4 D3 D7 D, Do

301 (B,C)
321 (D,E) 3 (W,L)
POP rp (Pop)

(r) « ((SP))

(rh) « ((SP) + 1)

(SP) « (SP) + 2

The content of the memory location, whose ad-
dress is specified by the content of register SP is
moved to the low-order register of register pair
rp. The content of the memory location whose
address is one more than the content of register
SP is moved to the high-order register of register
pair rp. The content of register SP is incremented
by 2. NOTE: Register pair rp = SP may not be

Page 11-47

343

XTHL (Exchange stack top with H and L)
(L) & ((SP))
(H) & ((SP) + 1)
The content of the L register is exchanged with
the content of the memory location whose ad-
dress is specified by the content of register SP.
The content of the H register is exchanged with
the content of the memory location whose ad-
dress is one more than the content of register SP.

specified.

1 ! 1 R I P 0 I 0 ! 0 J 1
Cycles: 3
States: 10
Addressing: reg. indirect
Flags: none

361

POP PSW
(CY) « ((SP)),
(P) < ((SP)).
(AC) « ((SP)),
(Z) « ((SP))s
(S) < ((SP)),
(A) « ((SP) + 1)
(SP) « (SP) + 2

(Pop processor status word)

The content of the memory location whose ad-

1'1]1l0]0l011l1
Cycles: 5
States: 18
Addressing: reg. indirect
Flags: none

dress is specified by the content of register SP is
used to restore the condition flags. The content of
the memory location whose address is one more
than the content of register SP is moved to regis-
ter A. The content of register SP is incremented

371
SPHL (Move HL to SP)
(SP) « (H) (L)
The contents of registers H and L (16 bits) are
moved to register SP.
Tl T T Tl ol
Cycles: 1
States: 5
Addressing: register
Flags: none
333
IN port (Input)
(A)—(data)

The data placed on the eight-bit bi-directional
data bus by the specified port is moved to the
accumulator.

1T T Ty Ty Ty

by 2.
1]1[1I1IOIOIOI‘I
Cycles: 3
States: 10
Addressing: reg. indirect

Flags: 2S,P.CY,AC

input port
Cycles: 3
States: 10
Addressing: direct
Flags: none

Page 11-48

323
OUT port (Output)
(data) « (A)
The content of the accumulator is placed on the
eight-bit bi-directional data bus for transmission
to the specified port.
1T ToTly Tololy Ty
output port
Cycles: 3
States: 10
Addressing: direct
Flags: none
373
El (Enable interrupt)

The interrupt system is enabled following the
execution of the next instruction.

T T Ty Ty T by Ty

Cycles: 1
States: 4
Flags: none

363

DI (Disable interrupt)
The interrupt system is disabled immediately
following the execution of the DI instruction.

Cycles: 1
States: 4
Flags: none

166

HLT (Halt)
The processor is stopped. The registers and flags
are unaffected.

Cycles: 1
States: 7
Flags: none

000

NOP (No op)
No operation is performed. The registers and
flags are unaffected.

0]0]0'0'0'0'0'0

Cycles: 1
States: 4
Flags: none

Page 11-49

DEMONSTRATION PROGRAMS

These BASIC programs demonstrate some of the Computer features. These include:

e FErase Page
e Direct Cursor Addressing

e Graphics
e Reverse Video
e 25th Line

If you are using the HDOS, you must first map for lower case output before the programswill work. To do this,
first boot up your system. Then type:

>SET TT: NOMLO

DEMONSTRATION PROGRAM #1

This program draws a simple maze on the screen.

NOTE: Notice the semicolon at the end of line 350. This prevents a Carriage Return and a Line Feed, and the
cursor remains at its present location on the line. Normally this is acceptable. However, some BASIC languages
count the number of characters sent to the Terminal and automatically insert their own Carriage Return and
Line Feed. If this automatic CR & LF comes during a successive execution of line 350, the direct cursor
addressing sequence is upset and the character is placed randomly on the screen. To prevent this, a PRINT
statement has been placed at line 440. This forces a CR & LF every ninth execution of line 350, thus preventing
an automatic CR & LF.

The semicolon at the end of line 350 and the PRINT statement at line 440 can both be eliminated. However,
the cursor will return to the left side of the screen after each execution of line 350. This is also acceptable,
but the cursor will jump back and forthbetween the left side and the center of the screen.

00010 REM Demonstration Program #1
00020 REM

00030 DIM R(8,18),Q%$(6)

00040 REM Read Data

00050 FOR I=1TO 6

00060 READ Q$(I)

00070 NEXT I

00080 REM Erase Page

00090 PRINT CHR$(27);CHR$(69)

00100 REM Print Message

00110 FOR I=1TO 3

00120 PRINT Q$(I)

00130 NEXT I

00140 REM Print message on the bottom line
00150 PRINT CHR$(27);CHR$(89);CHR$(53);CHR$(43);Q$(6)
00160 REM Read Data

Page 11-50

00170 FOR I=0TO 8

00180 FOR J=0TO 18

00190 READ R(l,))

00200 NEXT |

00210 NEXT I

00220 REM Erase Bottom Line

00230 PRINT CHR$(27);CHR$(89);CHR$(53);CHR$(33);CHR$(27);CHR$(75)
00240 REM Enter Reverse Video Mode

00250 PRINT CHR$(27);CHR$(112);

00260 REM Print ‘Start’

00270 PRINT CHR$(27);CHR$(89);CHR$(38);CHR$(46);Q$(4)

00280 REM Exit Reverse Video Mode

00290 PRINT CHR$(27);CHR$(113);

00300 REM Enter Graphics Mode

00310 PRINT CHR$(27);CHR$(70);

00320 I=5

00330 J=11

00340 REM Use Direct Cursor Addressing & Print 1 Graphic Character
00350 PRINT CHR$(27);CHR$(89);CHR$(41+1);CHR$(46+]); CHRS$(R(1,)));
00360 REM Randomly change the values of | &)

00370 I=I1+5
00380 IF I<9 THEN 400
00390 I=I-9

00400 J=J+13

00410 IF J<19 THEN 430

00420 J=J-19

00430 IF I<>5 THEN 350

00440 PRINT

00450 IF J<>11 THEN 350

00460 REM exit Graphics Mode

00470 PRINT CHR$(27);CHR$(71);

00480 REM Enter Reverse Video Mode

00490 PRINT CHR$(27);CHR$(112);

00500 REM Print ‘Finish’

00510 PRINT CHR$(27);CHR$(89);CHR$(52);CHR$(59);Q%(5)
00520 REM Exit Reverse Video Mode

00530 PRINT CHR$(27);CHR$(113);

00540 REM Move the cursor to the bottom line
00550 PRINT CHR$(27);CHR$(89);CHR$(89);CHR$(33)
00560 END

00570
00580
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
00690
00700
00710
00720
00730
00740
00750
00760
00770
00780
00790
00800

DATA “This program demonstrates the ‘Erase Page’, ‘Graphics’,”
DATA “’Erase To End Of Line’,’Reverse Video’, and the ‘Direct Cursor ”
DATA “Addressing’ features of the ZDS Video Computer.”
DATA “Start”

DATA “Finish”

DATA “Hang on while | read the data list”

DATA 102,97,100,101,115,97,115,97,97

DATA 97,97,97,115,97,97,97,97,97,99

DATA 118,32,116,102,100,118,115,100

DATA 101,97,99,101,97,97,97,117,99,32,96

DATA 96,32,117,97,115,100,118,98,99

DATA 96,118,97,117,97,116,96,101,32,96

DATA 118,97,97,100,118,99,101,99,101

DATA 97,100,118,97,32,101,97,98,32,116

DATA 96,102,100,101,100,96,96,101,115

DATA 32,118,100,101,99,118,99,101,97,116

DATA 96,101,99,96,32,96,96,118,97

DATA 97,98,97,100,118,97,117,99,32,96

DATA 96,32,96,101,115,97,117,99,118

DATA 32,98,99,32,100,102,99,96,32,96

DATA 96,32,101,97,116,101,115,97.98

DATA 32,96,101,98,97,100,96,101,97,116

DATA 101,97,97,97,117,97,97,117,97

DATA 97,97,97,117,97,97,99,102,97,100,0

Page 11-51

Page 11-52

DEMONTRATION PROGRAM #2

This program demonstrates the “25" line” and the “remember the cursor position” features.

00010 REM “25th Line Demo Program”

00020 REM Erase Page

00030 PRINT CHR$(27);CHR$(69)

00040 PRINT “This program demonstrates the twenty-fifth line feature.”
00050 PRINT “In this demonstration, the 25th line is being used as a label”
00060 PRINT “for the row of special function keys. Reverse video”

00070 PRINT “is used to make the labels stand out better, and also to”

00080 PRINT “help avoid confusion with any normal text on the screen above”
00090 PRINT “this line. You may now run another program. Line 25 will stay”
00100 PRINT “as it is until it is changed or until this uit is RESET or”

00110 PRINT “turned off.”

00120 REM Remember The Cursor Position

00130 PRINT CHR$(27);CHR$(106)

00140 REM Enable 25th Line

00150 PRINT CHR$(27);CHR$(120);CHR$(49)

00160 REM Position Cursor At Start Of 25th Line

00170 PRINT CHR$(27);CHR$(89);CHR$(56);CHR$(32)

00180 PRINT

00190 REM Enter Reverse Video Mode

00200 PRINT CHR$(27);CHR$(112);

00210 REM Print 25th Line

00220 PRINT “LINE f1 f2 f3 f4 f5 ERASE";

00230 PRINT “ BLU RED GRY RESET BREAK";

00240 REM Exit Reverse Video

00250 PRINT CHR$(27);CHR$(113)

00260 REM Set Cursor To Previously Save Position

00270 PRINT CHR$(27);CHR$(107)

00280 PRINT:PRINT

00290 PRINT “These lines demonstrate the remember cursor position feature.”
00300 PRINT “First, the above paragraph was printed; next, the 25th line”
00310 PRINT “was printed; and then these lines were printed by remembering”
00320 PRINT “the proper cursor position.”

00330 PRINT:PRINT

00340 END

DEMONTRATION PROGRAM #3

This program draws a reasonable facsimile of the American flag.

100
110

(A in quoted strings represents space character.)

REM 49-Star American Flag Program
PRINT CHR$(27);CHR$(120);CHR$(53);

120 S1$="AA*A*A*ARA*AXAXA A A “
130 S2$="AAN*A*A*AFARAXAXAN"

140
150
160

E$=CHR$(155)
R1$=E$+"p"
R2$=E$+"q"

170 G1$=E$+"F”
180 G2$=E$+"G"

190
200
210
220
230
240
250

F$=G1$+""~"+G2%
P1$="AAAAAAAA“+R1$+R2$
P2$=P1$+G1$="9A“+G2%
FOR I1=1 TO 45

L1$=L1$+"i"

L2$=L2$+"A"

NEXT |

260 PRINT “AAAAAAAA"+B$

270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

PRINT “AAAAAAAA" +R1$+"A"+B$+R2$

FOR I=1TO 7

PRINT P2$;

IF I-2*(INT(1/2))<>0 THEN 320

PRINT S2$+R1$+MID$(L2%$,1,45-LEN(S2%$))+R2$:GOTO 330
PRINT S1$+G1$+MID$(L1$,1,45-LEN(S1%$))+G2$
NEXT |

FOR 1=8 TO 13

PRINT P2$;

IF [-2*(INT(1/2))<>0 THEN 380

PRINT R1$+L2$+R2$:GOTO 390

PRINT G1$+L1$+G2$

NEXT I

PRINT “AAAAAAAA"+R1$+"A"+B$+R2$

PRINT P2$

FORI=1TO 6

PRINT P2$

NEXT |

PRINT “AAAA"+G1$+"yyyy”"+R1$+"A"+R2$+"xXxxx"+G2$
LINE INPUT “";Z$

PRINT CHR$(27);"y5";

END

Page 11-53

Page 12-1

Z280° CPU

The following pages are reprinted by permission of Zilog, Inc.

Copyright® 1977 by Zilog, Inc. All rights reserved. No part of
this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written
permission of Zilog.

Zilog assumes no responsibility for the use of any circuitry other than

circuitry embodied in a Zilog product. No other circuit patent licenses
are implied.

TM: Z80 is a trademark of Zilog. Inc

Page 12-2

Chapter

1.0
2.0

3.0
4.0

5.0
6.0

7.0
8.0
9.0
10.0

11.0
12.0

... Page

INEFOAUCEION .eueieeeiiieeete ettt ettt et ettt e st e e e e e e e e eeeeaaaaaes 12-3
Z80-CPU AIChILECIUIEeeeeeveeeiieeeiieeeitee ettt e ereeeerte et e et e et e eaeeeeebie e 12-5
Z.80-CPU Pin DeSCIIPLONvvvtteeerierriiiiiiiieeeeeeeesiiireeeeeeeeeessesireerenaeeeraseeenneees 12-9
CPU THITHIIE . ..veeeeteeeiteeeiteeeieeeetee et e sttt e s bte e st e e et e e sabee e bt e s e eeeeeennaaaeeeas 12-13
Z80-CPU INSruCtion Stcccoeeiiieiimiiieeeiiiteee e e eeeeeee e e e e 12-20
FIAGS ...vveeeieiieee ettt e e e re e e ettt e e s e e s s et a e e e baaaeee e e e et e e e nnaneaas 12-41
Summary of OP Codes and Execution TimesScccceeeeveercrerenrreeeesieereieeensn. 12-45
INtEITUPt RESPONSEevviieieieeeeiiiiiettee et ettt et e e e et e e e e e e e eenseeeaeeenaes 12-57
Hardware Implementation EXamplesccccccvveerieiiieeeiicieeeesinneeeeesineesnnnnns 12-61
Software Implementation EXamplesccccoeceerreereicieeeiieeeeeeeee e 12-65
Electrical SpecifiCationscccvveeeeriieeeeeiiieeeeecireeeeecvreeeessnreesseeesennnnees 12-71
Z.80-CPU Instruction Set SUMIMATYceeeeeeerrrriiiirreeeeeeessnssnineeeeeeeeeesesnnns 12-75

Page 12-3

1.0 INTRODUCTION

The term "microcomputer” has been used to describe virtually every type of small computing device designed
within the last few years. This term has been applied to everything from simple "microprogrammed" controllers
constructed out of TTL MSI up to low end minicomputers with a portion of the CPU constructed out of TTL LSI "bit
slices." However, the major impact of the LSI technology within the last few years has been with MOS LSI. With this
technology, it is possible to fabricate complete and very powerful computer systems with only a few MOS LSI
components.

The Zilog Z-80 family of components is a significant advancement in the state-of-the art of microcomputers.
These components can be configured with any type of standard semiconductor memory to generate computer systems
with an extremely wide range of capabilities. For example, as few as two LSI circuits and three standard TTL MSI
packages can be combined to form a simple controller. With additional memory and I/O devices a computer can be
constructed with capabilities that only a minicomputer could previously deliver. This wide range of computational
power allows standard modules to be constructed by a user that can satisfy the requirements of an extremely wide range
of applications.

The major reason for MOS LSI domination of the microcomputer market is the low cost of these few LSI
components. For example, MOS LSI microcomputers have already replaced TTL logic in such applications as terminal
controllers, peripheral device controllers, traffic signal controllers, point of sale terminals, intelligent terminals and test
systems. In fact the MOS LSI microcomputer is finding its way into almost every product that now uses electronics and
it is even replacing many mechanical systems such as weight scales and automobile controls.

The MOS LSI microcomputer market is already well established and new products using them are being developed
at an extraordinary rate. The Zilog Z-80 component set has been designed to fit into this market through the following
factors:

l. The Z-80 is fully software compatible with the popular 8080A CPU offered from several sources. Existing
designs can be easily converted to include the Z-80 as a superior alternative.

2. The Z-80 component set is superior in both software and hardware capabilities to any other microcomputer
system on the market. These capabilities provide the user with significantly lower hardware and software
development costs while also allowing him to offer additional features in his system.

3. For increased throughput the Z80A operating at a 4 MHZ clock rate offers the user significant speed advantages
over competitive products.

4. A complete product line including full software support with strong emphasis on high level languages and a
disk-based development system with advanced real-time debug capabilities is offered to enable the user to
easily develop new products.

Microcomputer systems are extremely simple to construct using Z-80 components. Any such system consists of
three parts:

1. CPU (Central Processing Unit)
2. Memory
3. Interface Circuits to peripheral devices

The CPU is the heart of the system. Its function is to obtain instructions from the memory and perform the desired
operations. The memory is used to contain instructions and in most cases data that is to be processed. For example, a
typical instruction sequence may be to read data from a specific peripheral device, store it in a location in memory,
check the parity and write it out to another peripheral device. Note that the Zilog component set includes the CPU and
various general purpose I/O device controllers, while a wide range of memory devices may be used from any source.
Thus, all required components can be connected together in a very simple manner with virtually no other external logic.
The user's effort then becomes primarily one of software development. That is, the user can concentrate on describing
his problem and translating it into a series of instructions that can be loaded into the microcomputer memory. Zilog is
dedicated to making this step of software generation as simple as possible. A good example of this is our assembly
language in which a simple mnemonic is used to represent every instruction that the CPU can perform. This language is self
documenting in such a way that from the mnemonic the user can understand exactly what the instruction is doing without constantly
checking back to a complex cross listing.

Page 12-4

(This page deliberately blank.)

2.0 Z-8U CPU ARCHITECTURE

A block diagram of the internal architecture of the Z-80 CPU is shown in figure 2.0-1. The diagram shows
all of the major elements in the CPU and it should be referred to throughout the following description.

13
CPU AND
SYSTEM
CONTROL
SIGNALS

2.1 CPU REGISTERS

Page 12-5

8-BIT
DATA BUS

<>

DATA BUS
CONTROL

INSTRUCTION
DECODE

&

CPU
CONTROL

>

INST. DATABU ALU
K REG < INTERNAL s

<

CPU
REGISTERS

CcPU
CONTROL

<>

ADDRESS
CONTROL

+5V GND ¢ 16.81T
ADDRESS BUS

<=

Z-80 CPU BLOCK DIAGRAM

FIGURE 2.0-1

The Z-80 CPU contains 208 bits of R/W memory that are accessible to the programmer. Figure 2.0-2
illustrates how this memory is configured into eighteen 8-bit registers and four 16-bit registers. All Z-80
registers are implemented using static RAM. The registers include two sets of six general purpose registers
that may be used individually as 8-bit registers or in pairs as 16-bit registers. There are also two sets of

accumulator and flag registers.

Special Purpose Registers

1. Program Counter (PC). The program counter holds the 16-bit address of the current instruction
being fetched from memory. The PC is automatically incremented after its contents have been
transferred to the address lines. When a program jump occurs the new value is automatically placed
in the PC, overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of a stack located
anywhere in external system RAM memory. The external stack memory is organized as a last-in first
out (LIFO) file. Data can be pushed onto the stack from specific CPU registers or popped off of the
stack into specific CPU registers through the execution of PUSH and POP instructions. The data
popped from the stack is always the last data pushed onto it. The stack allows simple implementation
of multiple level interrupts, unlimited subroutine nesting and simplification of many types of data

manipulation.

Page 12-6

MAIN REG SET ALTERNATE REG SET
A A
NS ™~
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A’ F’
8 c 8’ c
GENERAL
D E D’ E’ PURPOSE
REGISTERS
H L H’ L
N\
INTERRUPT MEMORY
VECTOR REFRESH
1 R

INDEX REGISTER IX
SPECIAL
PURPOSE
REGISTERS

INDEX REGISTER IY

STACK POINTER SP

PROGRAM COUNTER PC

Z-80 CPU REGISTER CONFIGURATION
FIGURE 2.0-2

3. Two Index Registers (IX & IY). The two independent index registers hold a 16-bit base address that is
used in indexed addressing modes. In this mode, an index register is used as a base to point to aregion in
memory from which data is to be stored or retrieved. An additional byte is included in indexed
instructions to specify a displacement from this base. This displacement is specified as a two's complement
signed integer. This mode of addressing greatly simplifies many types of programs, especially where
tables of data are used.

4. Interrupt Page Address Register (I). The Z-80 CPU can be operated in a mode where an indirect call to
any memory location can be achieved in response to an interrupt. The I Register is used for this purpose
to store the high order 8-bits of the indirect address while the interrupting device provides the lower 8-
bits of the address. This feature allows interrupt routines to be dynamically located anywhere in memory
with absolute minimal access time to the routine.

5. Memory Refresh Register (R). The Z-80 CPU contains a memory refresh counter to enable dynamic
memories to be used with the same ease as static memories. Seven bits of this 8 bit register are auto-
matically incremented after each instruction fetch. The eighth bit will remain as programmed as the
result of an LD R, A instruction. The data in the refresh counter is sent out on the lower portion of the
address bus along with a refresh control signal while the CPU is decoding and executing the fetched
instruction. This mode of refresh is totally transparent to the programmer and does not slow down the
CPU operation. The programmer can load the R register for testing purposes, but this register is
normally not used by the programmer. During refresh, the contents of the I register are placed on the
upper 8 bits of the address bus.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers. The accumu
lator holds the results of 8-bit arithmetic or logical operations while the flag register indicates specific
conditions for 8 or 16-bit operations, such as indicating whether or not the result of an operation is equal
to zero. The programmer selects the accumulator and flag pair upon which he wishes to work with a single
exchange instruction so that he may easily work with either pair.

Page 12-7
General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8-bit registers that may
be used individually as 8-bit registers or as 16-bit register pairs by the programmer. One set is called BC, DE
and HL while the complementary set is called BC', DE' and HL.'. At any one time the programmer can select
either set of registers to work with through a single exchange command for the entire set. In systems where
fast interrupt response is required, one set of general purpose registers and an accumulator/ flag register may
be reserved for handling this very fast routine. Only a simple exchange commands need be executed to go
between the routines. This greatly reduces interrupt service time by eliminating the requirement for saving
and retrieving register contents in the external stack during interrupt or subroutine processing. These general
purpose registers are used for a wide range of applications by the programmer. They also simplify
programming especially in ROM based systems where little external read/write memory isavailable.

2.2 ARITHMETIC & LOGIC UNIT (ALU)
The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally the ALU

communicates with the registers and the external data bus on the internal data bus. The type of functions
performed by the ALU include:

Add Left or right shifts or rotates (arithmetic and logical)
Subtract Increment

Logical AND Decrement

Logical OR Set bit

Logical Exclusive OR Reset bit

Compare Test bit

2.3 INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is placed in the instruction register and decoded. The
control sections performs this function and then generates and supplies all of the control signals necessaryto
read or write data from or to the registers, control the ALU and provide all required external control signals.

Page 12-8

(This page deliberately blank.)

Page 12-9

3.0 Z-80 CPU PIN DESCRIPTION

The Z-80 CPU is packaged in an industry standard 40 pin Dual In-Line Package. The I/O pins are shown in
figure 3.0-I and the function of each is described, below.

SYSTEM
CONTROL

CPU
CONTROL

CcPU
BUS
CONTROL

A0-A15
(Address Bus)

D¢-Dy
(Data Bus)

M,
(Machine Cycle one)

MREQ
(Memory Request)

27 30
2 3 N
' 19 —, > M
MREQ a@—— L’ A2
— 20 33
IORQ - ——— Aj
RD 21 34
-] ——a A4
— 2
R w22 —::,—’ Ag
——» %%
— 28 37 A
RFSH a— —— 7 ADDRESS
| 38 o Az (BUS
18 39
HALT -a—— — & A9
2 ﬂ_. A'IO
WAIT ——f —;> A
| 2 o A
_ 16 Z-80 CPU 3 12
INT ——— — NE
NMI —E—— —sb Aa
26 —— s
RESET ——f
e 25
BUSRQ — =2 g
__ 23
BUSAK <w—— »
15 ®o
12 01
& —1‘:— <—8—> D,
+6V — le—— Dj DATA
29 7
GND R — ‘T-b D4 BUS
10 Ps
EE %
e———» D,

Z-80 PIN CONFIGURATION
FIGURE 3.0-1

Tri-state output, active high. Ag-A;s constitutes a 16-bit address bus. The address bus
provides the address for memory (up to 64K bytes) data exchanges and for I/O device
data exchanges. 1/0O addressing uses the 8 lower address bits to allow the user to directly
select up to 256 input or 256 output ports. AO is the least significant address bit.
During refresh time, the lower 7 bits contain a valid refresh address.

Tri-state input/output, active high. DO0-D7 constitutes an 8-bit bidirectional data bus.
The data bus is used for data exchanges with memory and I/O devices.

Output, active low. M1 indicates that the current machine cycle is the OP
code fetch_cycle of an instruction execution. Note that during execution of 2 -byte
op-codes, M1 is generated as each op code byte_is fetched These two byte op-codes
always begin with CBH, DDH, EDH or FDH. M1 also occurs with IORQ to indicate
an interrupt acknowledge cycle.

Tri-state output, active low. The memory request signal indicates that theaddress bus
holds a valid address for a memory read or memory write operation.

Page 12-10

IORQ

RD
(Memory Read)

WR
(Memory Write)

RFSH
(Refresh)

HALT
(Halt state)

WAIT
(Wait)

INT

(Interrupt Request)

NMI
(Non Maskable
Interrupt)

Tri-state output, active low. The IORQ signal indicates that the lower half of
(Input/Output Request) the address bus holds a valid I/0 address for a I/O read or
write operation. An IORQ signal is also generated with an M1 signal when an
interrupt is being acknowledged to indicate that an interrupt response vector can be
placed on the data bus. Interrupt Acknowledge operations occur during M1 time
while I/0 operations never occur during M1 time.

Tri-state output, active low. RD indicates that the CPU wants to read data from
memory or an [/O device. The addressed I/O device or memory should use this
signal to gate data onto the CPU data bus.

Tri-state output, active low. WR indicates that the CPU data bus holds valid data
to be stored in the addressed memory or I/O device.

Output, active low. RFSH indicates that the lower 7 bits of the address bus contain
a refresh address for dynamic memories and the current MREQ signal should be
used to do a refresh read to all dynamic memories.

Output, active low. HALT indicates that the CPU has executed a HALT software
instruction and is awaiting either a non maskable or a maskable interrupt (with the
mask enabled) before operation can resume. While halted, the CPU executes
NOP's to maintain memory refresh activity.

Input, active low. WAIT indicates to the Z-80 CPU that the addressed memory or
I/O devices are not ready for a data transfer. The CPU continues to enter wait
states for as long as this signal is active. This signal allows memory or I/O devices
of any speed to be synchronized to the CPU.

Input, active low. The Interrupt Request signal is generated by I/O devices. A re-
quest will be honored at the end of the current instruction if the internal soft-
ware controlled interrupt enable flip-flop (1FF) is enabled and if the BUSRQ
signal is not active. When the CPU accepts the interrupt, an acknowledge signal
(IORQ during M1 time) is sent out at the beginning of the next instruction cycle.
The CPU can respond to an interrupt in three different modes that are described in
detail in section 5.4 (CPU Control Instructions).

Input, negative edge triggered. The non-maskable interrupt request line has a
higher priority than INT and is always recognized at the end of the current instruct-
tion, independent of the status of the interrupt enable flip-flop. NMI automatically
forces the Z-80 CPU to restart to location 0066H. The program counter is
automatically saved in the external stack so that the user can return to the
program that was interrupted. Note that continuous WAIT cycles_can prevent
the current instruction from ending, and that a BUSRQ will override a NMI.

RESET

BUSRQ
(Bus Request)

BUSAK
(Bus Acknowledge)

Page 12-11

Input, active low. RESET forces the program counter to zero and initializes the
CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop

2) Set Register I =004

3) Set Register R =004

4) Set Interrupt Mode 0

During reset time, the address bus and data bus go to a high impedance state and all
control output signals go to the inactive state.

Input, active low. The bus request signal is used to request the CPU address bus, data
bus and tri-state output control signals to go to a high impedance state so that other
devices can control these buses. When BUSRQ is activated, the CPU will set these
buses to a high impedance state as soon as the current CPU machine cycle is
terminated.

Output, active low. Bus acknowledge is used to indicate to the requesting device that
the CPU address bus, data bus and tri-state control bus signalshave been set to their
high impedance state and the external device can now control these signals.

Single phase TTL level clock which requires only a 330 ohm pull-up resistor to +5
volts to meet all clock requirements..

Page 12-12

(This page deliberately blank.)

Page 12-13
4.0 CPU TIMING

The Z-80 CPU executes instructions by stepping through a very precise set of a few basic operations.
These include:
Memory read or write
I/O device read or write
Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations can take from
three to six clock periods to complete or they can be lengthened to synchronize the CPU to the speed of
external devices. The basic clock periods are referred to as T cycles and the basic operations are referred to
as M (for machine) cycles. Figure 4.0-0 illustrates how a typical instruction will be merely a series of specific
M and T cycles. Notice that this instruction consists of three machine cycles (Ml, M2 and M3). The first
machine cycle of any instruction is a fetch cycle which is four, five or six T cycles long (unless lengthened by
the wait signal which will be fully described in the next section). The fetch cycle (M1) is used to fetch the
OP code of the next instruction to be executed. Subsequent machine cycles move data between the CPU and
memory or I/O devices and they may have anywhere from three to five T cycles (again they may be
lengthened by wait states to synchronize the external devices to the CPU). The following paragraphs
describe the timing which occurs within any of the basic machine cycles. In section 7, the exact timing for
each instruction is specified.

Machine Cycle

M1 M2 M3
(OP Code Fetch) (Memory Read) (Memory Write)

Instruction Cycle

BASIC CPU TIMING EXAMPLE
FIGURE 4.0-0

All CPU timing can be broken down into a few very simple timing diagrams as shown in figure 4.0-1
through 4.0-7. These diagrams show the following basic operations with and without wait states (wait states are
added to synchronize the CPU to slow memory or I/O devices).

4.0-1 Instruction OP code .fetch (M1 cycle)
4.0-2 Memory data read or write cycles
4.0-3 I/O read or write cycles

4.0-4 Bus Request/Acknowledge Cycle

4.0-5 Interrupt Request/Acknowledge Cycle
4.0-6 Non maskable Interrupt Request/Acknowledge Cycle
4.0-7 Exit from a HALT instruction

Page 12-14

INSTRUCTION FETCH

Figure 4.0-1 shows the timing during an Ml cycle (OP code fetch). Notice that the PC is placed on the
address bus at the beginning of the Ml cycle. One half clock time later the MREQ signal goes active. At
this time the address to the memory has had time to stabilize so that the falling edge of MREQ can be used
directly as a chip enable clock to dynamic memories. The RD line also goes active to indicate that the
memory read data should be enabled onto the CPU data bus. The CPU samples the data from the memory
on the data bus with the rising edge of the clock of state T3 and this same edge is used by the CPU to turn
off the RD and MRQ signals. Thus the data has already been sampled by the CPU before the RD signal
becomes inactive. Clock state T3 and T4 of a fetch cycle are used to refresh dynamic memories. (The CPU
uses this time to decode and execute the fetched instruction so that no other operation could be performed at
this time). During T3 and T4 the lower 7 bits of the address bus contain a memory refresh address and the
RFSH signal becomes active to indicate that a refresh read of all dynamic memories should be accomplished.
Notice that a RD signal is not generated during refresh time to prevent data from different memory segments
from being gated onto the data bus. The MREQ signal during refresh time should be used to perform a
refresh read of all memory elements. The refresh signal can not be used by itself since the refresh address is
only guaranteed to be stable during MREQ time.

U —— } VT -

T T2 T3 Ta T
" I B W | L \ \
A0 - A1S 1 PC I REFRESH ADDR
MREQ T\ I\ T L
RO T J
(LS it s I s s SOy B
w T ——
DBO - DB7 JLW}
RFSH T

INSTRUCTION OP CODE FETCH
FIGURE 4.0-1

Figure 4.0-1 A illustrates how the fetch cycle is delayed if the memory activates the WAIT line. Dur-
ing T2 and every subsequent Tw, the CPU samples the WAIT line with the falling edge of ®. If the WAIT
line is active at this time, another wait state will be entered during the following cycle. Using this
technique the read cycle can be lengthened to match the access time of any type of memory device.

MI Cycle
T1 Tz Tw Tw T3 T4
* — \ -\ \ \ J 1 \ B
A0 ~ A15 T PC] REFRESHADDR. B
MREQ 1 / -
= ——
DBO ~ DB7? E'\
i T]
war CTZTTTOTN STION TN OIS TITTICoIC
RFSH I
INSTﬁUCTION OP CODE FETCH WITH WAIT STATES
FIGURE 4.0-1A
MEMORY READ OR WRITE

Page 12-15

Figure 4.0-2 illustrates the timing of memory read or write cycles other than an OP code fetch (Ml cycle).
These cycles are generally three clock periods long unless wait states are requested by the memory via the
WAIT signal. The MREQ signal and the RD signal are used the same as in the fetch cycle. In the case of a
memory write cycle, the MREQ also becomes active when the address bus is stable so that it can be used
directly as a chip enable for dynamic memories. The WR line is active when data on the data bus is stable so
that it can be used directly as a R/W pulse to virtually any type of semiconductor memory. Furthermore the
WR signal goes inactive one half T state before the address and data bus contents are changed so that the
overlap requirements for virtually any type of semiconductor memory type will be met.

L y Read Cycle M y Write Cycle ———————&1
T T2 T3 T T2 T3
! 1 \ \ \ \ 1 \
A0~ A1S MEMORY ADDR.)| MEMORY ADDR. 1
MREQ [\ [
AD 1 /
WA) U Y B
DATA BUS [N} { DATA OUT | S
(D0~ 07) i v '
— — — —— — - — c— — — pr o — — — — — — — — — — ——
war 1 T\ T T Y U I A

MEMORY READ OR WRITE CYCLES
FIGURE 4.0-2

Page 12-16

Figure 4.0-2A illustrates how a WAIT request signal will lengthen any memory read or write operaion.
This operation is identical to that previously described for a fetch cycle. Notice in this figure that aseparate
read and a separate write cycle are shown in the same figure although read and write cycles can never occur
simultaneously.

T, T, Tw Tw T3 T
O s U s VR s W e W .
A0 ~ A15 MEMORY ADDR.
MREQ -\ J
5 -1 1\ J }READ

CYCLE
DATA BUS N
(D0~ 07) B o
WR L I WRITE
DATABUS L [DATA OUT CveLE
0o~o07) |
war TN A O oI 1T
MEMORY READ OR WRITE CYCLES WITH WAIT STATES
FIGURE 4.0-2A
INPUT OR OUTPUT CYCLES

Figure 4.0-3 illustrates an I/O read or I/O write operation. Notice that during I/O operations a single
wait state_is automatically inserted. The reason for this is that du ring I/O operations, the time from
when the IORQ signal goes active until the CPU must sample the WAIT line is very short and without this
extra state sufficient time does not exist for an I/O port to decode its address and activate the WAIT line if a
wait is required. Also, without this wait state it is difficult to design MOS 1/O devices that can operate at full
CPU s peed. During this wait state time the WAIT request signal is sampled. During a read I/O operation,
the line is used to enable the addressed port onto the data bus just as in the case of a memory read. For I/O
write operations, the WR line is used as a clock to the I/O port, again with sufficient overlap timing
automatically provided so that the rising edge may be used as a data clock.

Figure 4.0-3A illustrates how additional wait states may be added with the WAIT line. The operation is
identical to that previously described.

BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-4 illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQsignal is sampled
by the CPU with the rising edge of the last clock period of any machine cycle. If the BUSRQ signal is
active, the CPU will set its address, data and tri-state control signals to the high impedance state with the
rising edge of the next clock pulse. At that time any external device can control the buses to transfer data
between memory and I/O devices. (This is generally known as Direct Memory Access [DMA] using cycle
stealing). The maximum time for the CPU to respond to a bus request is the length of a machine cycle and
the external controller can maintain control of the bus for as many clock cycles as is desired. Note,
however, that if very long DMA cycles are used, and dynamic memories are being used, the external
controller must also perform the refresh function. This situation only occurs if very large blocks of data are
transferred under DMA control. Also note that during a bus request cycle, the CPU cannot be interrupted by
either a NMI or an INT signal.

T T2 Tw' T3 T

¢ 1 \ ‘ \ \ — _

A0 ~ A7 PORT ADDRESS 1

iORQ l

RD J } Read

Cycle

DATA BUS —{_IN }— {in}

waw o] I VO A A

WR] }wme

Cycle
DATA BUS —{ ouT —
INPUT OR OUTPUT CYCLES
FIGURE 4.0-3
T T2 L™ Tw T3

® — . \ \ | \ \ |
A0 ~ A7) | PORT ADDRESS
iorRa 1 1
DATA BUS —{ N}
RD [
L2 S IS Y i WY UM N G O
DATA BUS ———g——d ouT) S—
WA — 1

INPUT OR OUTPUT CYCLES WITH WAIT STATES
FIGURE 4.0-3A

* Automatically inserted WAIT state

Page 12-17

Page 12-18

Any M Cycle Bus Available States
Last T State Tx Ty Tx Th

* \ 1 \ \ \ I\
BUSRQ \ 3

Sample —o Sample
BUSAK \ '—_____
A0~ A1S)..__._‘....____4______...:
Do~ D7 —-—._.‘F—____..__..___4.,(
MREQ, RD, ——t—
TW_E_IW Floating .(:
RFSH

BUS REQUEST/ACKNOWLEDGE CYCLE
FIGURE 4.0-4

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Figure 4.0-5 illustrates the timing associated with an interrupt cycle. The interrupt signal (INT) is
sampled by the CPU with the rising edge of the last clock at the end of any instruction. The signal_will not
be accepted if the internal CPU software controlled interrupt enable flip-flop is not set or if the BUSRQ
signal is active. When the signal is accepted a special M1 cycle is generated. During this special M1 cycle
the IORQ signal becomes active (instead of the normal MREQ) to indicate that the interrupting device can
place an 8-bit vector on the data bus. Notice that two wait states are automatically added to this cycle.
These states are added so that a ripple priority interrupt scheme can be easily implemented. The two wait
states allow sufficient time for the ripple signals to stabilize and identify which I/O device must insert the
response vector. Refer to section 8.0 for details on how the interrupt response vector is utilized by the CPU.

Last M Cycle M
of Instruction

Last T State T, T, Tw* Tw* T3
0 4\ \ L\ \ 1\
fran— — e c—] —— e man e w— w————— — v w— — s —— — — —
N i U i ey A S S
A0 ~ A15 1 PC | REFRESH
i \ [
MREQ)
iGRG L
DATA BUS Lr__'.i)
L7 (R (i P S W
RD

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE
FIGURE 4.0-5

Page 12-19

Figures 4.0-5A and 4.0-5B illustrate how a programmable counter can be used to extend interrupt
acknowledge time. (Configured as shown to add one wait state)

iGRa

7432 o—
(To
PERIPHERAL)
WAIT

7432 o
(TO cPU)

74504 | 1
] —Do——o LOAD DN/UP G
7as
745191 apl——0 04
K 7432
¢ —0] A 8B ¢ o _
M1 —Of

+5V —AAA—— -

EXTENCING INTERRUPT ACKNOWLEDGE TIME WITH WAIT STATE
FIGURE 4.0-5A

g
\V4
well

LAST T STATE OF

AUTOMATIC WAIT
LAST M CYCLE OF N\ USER WAIT
o
N/ \ /

INSTRUCTION . .
T2 I Tw ‘ Tw l Tw l T3 l
® I \ / AN / N/ 1
P 11 ,———t
Ag-Ars XC X
i \L /
ioRa _ /
ioRQ" |\ /7
——
DATA BUS ~—
wat - - T DALE-/M\z==-—Z- T
NORMAL ACKNOWLEDGE
- TIME >
ACKNOWLEDGE TIME WITH ONE
ADDITIONAL WAIT STATE

REQUEST/ACKNOWLEDGE CYZLE WITH ONE ADDITIONAL WAIT STATE
FIGURE 4.0-5B

Page 12-20

NON MASKABLE INTERRUPT RESPONSE

Figure 4.0-6 illustrates the request/acknowledge cycle for the non maskable interrupt. This signal is
sampled at the same time as the interrupt line, but this line has priority over the normal interrupt and it can
not be disabled under software control. Its usual function is to provide immediate response to important
signals such as an impending power failure. The CPU response to a non maskable interrupt is similar to a
normal memory read operation. The only difference being that the content of the data bus is ignored while
the processor automatically stores the PC in the external stack and jumps to location 0066s. The service
routine for the non-maskable interrupt must begin at this location if this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing NOP's until an interrupt is
received (either a non maskable or a maskable interrupt while the interrupt flip flop is enabled). The two
interrupt lines are sampled with the rising clock edge during each T4 state as shown in figure 4.0-7. If a
non-maskable interrupt has been received or a maskable interrupt has been received and the interrupt enable
flip-flop is set, then the halt state will be exited on the next rising clock edge. The following cycle will then
be an interrupt acknowledge cycle corresponding to the type of interrupt that was received. If both are
received at this time, then the non-maskable one will be acknowledged since it has highest priority. The
purpose of executing NOP instructions while in the halt state is to keep the memory refresh signals active.
Each cycle in the halt state is a normal M1(fetch) cycle except that the data received from the memory is
ignored and a NOP instruction is forced internally to the CPU. The halt acknowledge signal is active during
this time to indicate that the processor is in the halt state.

Last M Cycle Mi
Last T Time Ty T, T3 Tq T
@ T T 1\ \ \ \ (N
_ —— ——— ——— v c— —— ———— — — —— —— —— — e —————— —— — — p
L ISR W Y i A S IR RN ERR [
A0 ~ A15) § PC 1 REFRESH
i /
MREQ \ /
RD L i
RFSH [.
NON MASKABLE INTERRUPT REQUEST OPERATION
FIGURE 4.0-6
M M M
T‘ T" Tz T3 T4 T1 T2
. —J L \ \ \ \ 1\ L
RALF \ [
INT or "—_t""—_"'___- _____ == _[_"""—"____' _____
il —_— 1 I W Y SR (A Sy
HALT INSTRUCTION
IS RECEIVED
DURING THIS HALT EXIT

MEMORY CYCLE FIGURE 4.0-7

Page 12-21

5.0 Z-80 CPU INSTRUCTION SET

The Z-80 CPU can execute 158 different instruction types including all 78 of the 8080A CPU. The
instructions can be broken down into the following major groups:

e [oad and Exchange

e Block Transfer and Search

e Arithmetic and Logical

e Rotate and Shift

e Bit Manipulation (set, reset,, test)
e Jump, Call and Return

¢ Input/output

e Basic CPU Control

5.1 INTRODUCTION TO INSTRUCTION TYPES

The load instructions move data internally between CPU registers or between CPU registers and exter
nal memory. All of these instructions must specify a source location from which the data is to be moved and a
destination location. The source location is not altered by a load instruction. Examples of load group
instructions include moves between any of the general purpose registers such as move the datato Register B from
Register C. This group also includes load immediate to any CPU register or to any external memory location.
Other types of load instructions allow transfer between CPU registers and memory locations. The exchange
instructions can trade the contents of two registers.

A unique set of block transfer instructions is provided in the Z-80. With a single instruction a block of
memory of any size can be moved to any other location in memory. This set of block moves is extremely
valuable when large strings of data must be processed. The Z-80 block search instructions are also valuable for
this type of processing. With a single instruction, a block of external memory of any desired length can be
searched for any 8-bit character. Once the character is found or the end of the block is reached, the instruction
automatically terminates. Both the block transfer and the block search instructions can be interrupted during
their execution so as to not occupy the CPU for long periods of time.

The arithmetic and logical instructions operate on data stored in the accumulator and other general purpose
CPU registers or external memory locations. The results of the operations are placed in the accumulator and
the appropriate flags are set according to the result of the operation. An example of an arithmetic operation
is adding the accumulator to the contents of an external memory location. The results of the addition are placed
in the accumulator. This group also includes 16-bit addition and subtraction between 16-bit CPU registers.

The rotate and shift group allows any register or any memory location to be rotated right or left with or
without carry either arithmetic or logical. Also, a digit in the accumulator can be rotated right or left with two
digits in any memory location.

The bit manipulation instructions allow any bit in the accumulator, any general purpose register or any
external memory location to be set, reset or tested with a single instruction. For example, the most significant
bit of register H can be reset. This group is especially useful in control applications and for controlling
software Nags in general purpose programming.

The jump, call and return instructions are used to transfer between various locations in the user's program. This
group uses several different techniques for obtaining the new program counter address from specific external
memory locations. A unique type of call is the restart instruction. This instruction actually contains the new
address as a part of the 8-bit OP code. This is possible since only 8 separate addresses located in page zero of
the external memory may be specified. Program jumps may also be achieved by loading register HL, IX or
IY directly into the PC, thus allowing the jump address tobe a complex function of the routine being executed.

Page 12-22

The input/output group of instructions in the Z-80 allow for a wide range of transfers between external
memory locations or the general purpose CPU registers, and the external I/0 devices. In each case, the port
number is provided on the lower 8 bits of the address bus during any I/O transaction. One instruction allows
this port number to be specified by the second byte of the instruction while other Z-80 instructions allow it
to be specified as the content of the C register. One major advantage of using the C register as a pointer to
the 1/0O device is that it allows different I/O ports to share common software driver routines. This is not
possible when the address is part of the OP code if the routines are stored in ROM. Another feature of these
input instructions is that they set the flag register automatically so that additional operations are not required
to determine the state of the input data (for example its parity). The Z-80 CPU includes single instructions
that can move blocks of data (up to 256 bytes) automatically to or from any I/O port directly to any
memory location. In conjunction with the dual set of general purpose registers, these instructions provide
for fast I/0 block transfer rates. The value of this I/O instruction set is demonstrated by the fact that the Z-
80 CPU can provide all required floppy disk formatting (i.e., the CPU provides the preamble, address, data
and enables the CRC codes) on double density floppy disk drives on an interrupt driven basis.

Finally, the basic CPU control instructions allow various options and modes. This group includes
instructions such as setting or resetting the interrupt enable flip flop or setting the mode of interrupt
response.

5.2 ADDRESSING MODES

Most of the Z-80 instructions operate on data stored in internal CPU registers, external memory or in
the I/O ports. Addressing refers to how the address of this data is generated in each instruction. This
section gives a brief summary of the types of addressing used in the Z-80 while subsequent sections detail the
type of addressing available for each instruction group.

Immediate. In this mode of addressing the byte following the OP code in memory contains the actual
operand.

OP Code } one or 2 bytes

Operand
dq do

Examples of this type of instruction would be to load the accumulator

with a constant, where the constant is the byte immediately following

the OP code.

Immediate Extended. This mode is merely an extension of immediate addressing in that the two bytes
following the OP codes are the operand.

OP code | one or 2 bytes

Operand | low order

Operand | high order

Examples of this type of instruction would be to load the HL register pair (16-bit register) with 16
bits (2 bytes) of data.

Page 12-23

Modified Page Zero Addressing. The Z-80 has a special single byte CALL instruction to any of locations
in page zero of memory. This instruction (which is referred to as a restart) sets the PC to an effective
address in page zero. The value of this instruction is that it allows a single byte to specify a complete 16-bit
address where commonly called subroutines are located, thus saving memory space.

OP Code | one byte

b7 bo
Effective address is (bg b4 b3 000),

Relative Addressing. Relative addressing uses one byte of data following the OP code to specify a
displacement from the existing program to which a program jump can occur. This displacement is a signed
two's complement number that is added to the address of the OP code of the following instruction.

OP Code Jump relative (one byte OP code)
Operand 8-bit two’s complement displacement added to Address (A+2)

The value of relative addressing is that it allows jumps to nearby locations while only requiring two bytes of
memory space. For most programs, relative jumps are by far the most prevalent type of jump due to the
proximity of related program segments. Thus, these instructions can significantly reduce memory space
requirements. The signed displacement can range between +127 and -128 from A + 2. This allows for a
total displacement of +129 to -126 from the jump relative OP code address. Another major advantage is that
it allows for relocatable code.

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to be included in
the instruction. This data can be an address to which a program can jump or it can be an address where an
operand is located.

OP Code }one or two bytes

Low Order Address or Low order operand

High Order Address or high order operand

Extended addressing is required for a program to jump from any location in memory to any other location,
or load and store data in any memory location.

When extended addressing is used to specify the source or destination address of an operand, the
notation (nn) will be used to indicate the content of memory at nn, where nn is the 16-bit address specified
in the instruction. This means that the two bytes of addressing are used as a pointer to a memory location.
The use of the parentheses always means that the value enclosed within them is used as a pointer to a
memory location. For example, (1200) refers to the contents of memory at location 1200.

Indexed Addressing. In this type of addressing, the byte of data following the OP code contains a
displacement which is added to one of the two index registers (the OP code specifies which index register is
used) to form a pointer to memory. The contents of the index register are not altered by this operation.

OP Code
OP Code

two byte OP code

Displacement Operand added to index register to form a pointer to memory.

Page 12-24

An example of an indexed instruction would be to load the contents of the memory location (Index
Register + Displacement) into the accumulator. The displacement is a signed two's complement number.
Indexed addressing greatly simplifies programs using tables of data since the index register can point to the start
of any table. Two index registers are provided since very often operations require two or more tables. Indexed
addressing also allows for relocatable code.

The two index registers in the Z-80 are referred to as IX and I'Y. To indicate indexed addressing the
notation:

(IX+d) or (IY+d)

is used. Here d is the displacement specified after the OP code. The parentheses indicate that this value is used
as a pointer to external memory.

Register Addressing. Many of the Z-80 OP codes contain bits of information that specify which CPU
register is to be used for an operation. An example of register addressing would be to load thedata in register B
into register C.

Implied Addressing. Implied addressing refers to operations where the OP code automatically implies
one or more CPU registers as containing the operands. An example is the set of arithmetic operations where the
accumulator is always implied to be the destination of the results.

Register Indirect Addressing. This type of addressing specifies a 16-bit CPU register pair (such as HL) to
be used as a pointer to any location in memory. This type of instruction is very powerful and it is used in a
wide range of applications.

OP Code }one or two bytes

An example of this type of instruction would be to load the accumulator with the data in the memory
location pointed to by the HL register contents. Indexed addressing is actually a form of register indirect
addressing except that a displacement is added with indexed addressing Register indirect addressing allows
for very powerful but simple to implement memory accesses. The block move and search commands in the Z-
80 are extensions of this type of addressing where automatic register incrementing, decrementing and
comparing has been added. The notation for indicating register indirect addressing is to put parentheses
around the name of the register that is to be used as the pointer. For example, the symbol

(HL)

specifies that the contents of the HL register are to be used as a pointer to a memory location. Often register
indirect addressing is used to specify 16 bit operands. In this case, the register contents point to the lower
order portion of the operand while the register contents are automatically incremented to obtain the upper
portion of the operand.

Bit Addressing. The Z-80 contains a large number of bit set, reset and test instructions. These
instructions allow any memory location or CPU register to be specified for a bit operation through one of three
previous addressing modes (register, register indirect and indexed) while three bits in the OP code specify
which of the eight bits is to be manipulated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as arithmetic instructions or loads). In these
cases, two types of addressing may be employed. For example, load can use immediate addressing to specify
the source and register indirect or indexed addressing to specify the destination.

Page 12-25

5.3 INSTRUCTION OP CODES

This section describes each of the Z-80 instructions and provides tables listing the OP codes for every
instruction. In each of these tables the OP codes in shaded areas are identical to those offered in the 8080A CPU.
Also shown is the assembly language mnemonic that is used for each instruction. All instruction OP codes are
listed in hexadecimal notation. Single byte OP codes require two hex characters while double byte OP codes
require four hex characters. The conversion from hex to binary is repeated here for

convenience.
Hex Binary = Decimal Hex Binary Decimal
0 = 0000 = 0 8 = 1000 = 8
1 = 0001 = 1 9 = 1001 = 9
2 = 0010 = 2 A = 1010 = 10
3 = 0011 = 3 B = 1011 = 11
4 = 0100 = 4 c = 1100 = 12
5 = 0101 = 5 D = 100 = 13
6 = 0110 = 6 E = 1110 = 14
7 = 0111 = 7 F = 111 = 15

Z-80 instruction mnemonics consist of an OP code and zero, one or two operands. Instructions in which
the operand is implied have no operand. Instructions which have only one logical operand or those in which one
operand is invariant (such as the Logical OR instruction) are represented by a one operand mnemonic.
Instructions which may have two varying operands are represented by two operand mnemonics.

LOAD AND EXCHANGE

Table 5,3-1 defines the OP code for all of the 8-bit load instructions implemented in the Z-80 CPU. Also
shown in this table is the type of addressing used for each instruction. The source of the data is found on the top
horizontal row while the destination is specified by the left hand column. For example, load register C from
register B uses the OP code 48H. In all of the tables the OP code is specified in hexadecimal notation and the
48H (=01001000 binary) code is fetched by the CPU from the external memory during M1 time, decoded and
then the register transfer is automatically performed by the CPU.

The assembly language mnemonic for this entire group is LD, followed by the destination followed by the
source (LD DEST., SOURCE). Note that several combinations of addressing modes are possible. For
example, the source may use register addressing and the destination may be register indirect; such as load the
memory location pointed to by register HL. with the contents of register D. The OP code for this operation
would be 72. The mnemonic for this load instruction would be as follows:

LD (HL), D

The parentheses around the HL. means that the contents of HL are used as a pointer to a memory location. In all
7-80 load instruction mnemonics the destination is always listed first, with the source following. The Z-80
assembly language has been defined for ease of programming. Every instruction is self documenting and
programs written in Z-80 language are easy to maintain.

Note in table 5.3.1 that some load OP codes that are available in the Z-80 use two bytes. This is anefficient
method of memory utilization since 8, 16, 24 or 32 bit instructions are implemented in the Z-80. Thus often
utilized instructions such as arithmetic or logical operations are only 8 bits which results in better memory
utilization than is achieved with fixed instruction sizes such as 16 bits.

All load instructions using indexed addressing for either the source or destination location actually use three
bytes of memory with the third byte being the displacement d. For example a loadregister E with the operand
pointed to by IX with an offset of +8 would be written:

LD E, (IX +8)

Page 12-26

The instruction sequence for this in memory would be:

Address A |DD
OP Code
A+l}|SE
A+2] 08 Displacement operand

The two extended addressing instructions are also three byte instructions.

accumulator with the operand in memory location 6F32H would be written:
LD A, (6F32H)

and its instruction sequence would be:
Address A
A+l
A+2

3A

32

6F

OP Code
low order address

high order address

Notice that the low order portion of the address is always the first operand.

The load immediate instructions for the general purpose 8-bit registers are two-byte instructions. The

instruction load register H with the value 36H would be written:

LD H, 36H

and its sequence would be:

Address A
A+l

Loading a memory location using indexed addressing for the destination and immediate addressing for the

source requires four bytes. For example:

26

36

OP Code
Operand

LD (IX -15),21H

would appear as:

AddressA | DD
OP Code
A+1] 36
A+2| F1 d.isplaceme,nt (-15in
signed two’s complement)
At+3] 21 operand to load

For example the instruction to load the

Notice that with any indexed addressing the displacement always follows directly after the OP code.

Table 5.3.2 specifies the 16-bit load operations. This table is very similar to the previous one. Notice
that the extended addressing capability covers all register pairs. Also notice that register indirect operations
specifying the stack pointer are the PUSH and POP instructions. The mnemonic for these instructions is
"PUSH" and "POP." These differ from other 16-bit loads in that the stack pointer is automatically decre-
mented and incremented as each byte is pushed onto or popped from the stack respectively. For examplethe
instruction:

Page 12-27

PUSH AF

is a single byte instruction with the OP code of F5H. When this instruction is executed the following sequence
is generated:
Decrement SP

LD(SP), A
Decrement SP

LD (SP), F

Thus the external stack now appears as follows:

(SP) F « Top of stack
(SP+1) A
SOURCE
Implied REGISTER [REG INDIRECT | INDEXED | Addr | IMME. |
] R E (IX+d) n
A ED ED
57 5F
B8
c
REGISTER D
E
H
L
D
E
s (HL)
T
I | REG.
N | INDIRECT (BC)
A
T
| (DE)
o
N
(IX+d) 77 70 7 72 73 74 75 36
d d d d d d d d
INDEXED n
FD | FD | FD FD FD FD FD FD
(IY+d) 77 70 7 72 73 74 75 36
d d d d d d d d
n
Ext. Addr. (nn) .
ED
47
IMPLIED
ED
R 4F

8 BIT LOAD GROUP
‘LDJ
TABLE 5.3-1

Page 12-28

The POP instruction is the exact reverse of a PUSH. Notice that all PUSH and POP instructions utilize a16-
bit operand and the high order byte is always pushed first and popped last. That is a:

PUSH BC is PUSH B then C

PUSH DE is PUSH D then E

PUSH HL is PUSH H then-L

POP HL is POP L then H

The instruction using extended immediate addressing for the source obviously requires 2 bytes of data
following the OP code. For example

LD DE, 0659H
will be

Address A 11 | OP Code

A+1 | 59 | Low order operand to register E

A+2 | 06 | High order operand to register D

In all extended immediate or extended addressing modes, the low order byte always appears first after the op
code.

Table 5.3.3 lists the 16-bit exchange instructions implemented in the Z-80. OP code 08H allows the
programmer to switch between the two pairs of accumulator flag registers while DOH allows the pro-
grammer to switch between the duplicate set of six general purpose registers. These OP codes are only onebyte in
length to absolutely minimize the time necessary to perform the exchange so that the duplicate banks can be
used to effect very fast interrupt response times.

BLOCK TRANSFER AND SEARCH

Table 5.3.4 lists the extremely powerful block transfer instructions. All of these instructions operate with
three registers.

HL points to the source location.
DE points to the destination location.
BC is a byte counter.

After the programmer has initialized these three registers, any of these four instructions may be used. The LDI
(Load and Increment) instruction moves one byte from the location pointed to by HL to the location pointed
to by DE. Register pairs HL. and DE are then automatically incremented and are ready to point to the following
locations. The byte counter (register pair BC) is also decremented at this time. This instrudion is valuable
when blocks of data must be moved but other types of processing are required between each move. The LDIR
(Load, increment and repeat) instruction is an extension of the LDI instruction. The same load and increment
operation is repeated until the byte counter reaches the count of zero. Thus, this single instruction can move any
block of data from one location to any other.

Note that since 16-bit registers are used, the size of the block can be up to 64K bytes (1K =1024) long and it
can be moved from any location in memory to any other location. Furthermore the blocks canbe overlapping
since there are absolutely no constraints on the data that is used in the three register pairs.

The LDD and LDDR instructions are very similar to the LDI and LDIR. The only difference is that register
pairs HL. and DE are decremented after every move so that a block transfer starts from the highest address of the
designated block rather than the lowest.

SOURCE
IMM EXT REG
REGISTER EXT ADDR INDIR
AF BC DE HL SP 1X 1Y nn (nn) SP
AF Fl
01 ED
BC n 48 Cl
n n
n
D 11 ED
E R DE n 58 DI
S E n n
T G n
| 1 21 2A
N S HL n n El
A T n n
T E ED
] R sp F9 DD FD 31 78
0 F9 Fo n n
N n n
DD DD
X 21 2A DD
n n El
n n
FD FD
Iy 21 2A FD
n n El
n n
ED ED ED DD FD
EXT (nm) 43 53 22 73 22 22
ADDR n n n n n n
n n n n n n
REG
’_' moR | sp) | Fs | cs | ps | Es
PUSH T
INSTRUCTIONS
POP
NOTE: The Push & Pop Instructions adjust INSTRUCTIONS
the SP after every execution.
16 BIT LOAD GROUP
lLD‘
‘PUSH’ AND ‘POP’
TABLE 5.3-2
IMPLIED ADDRESSING
AF’ BC’, DE’ & HI” HL X 1Y
AF 08
BC,
IMPLIED | o D9
HL
DE EB
REG DD FD
INDIR. (SP) E3 E3 E3
EXCHANGES

‘EX’ AND ‘EXX’
TABLE 5.3-3

Page 12-29

Page 12-30

SOURCE
REG.
INDIR.
(HL)
ED ‘LDI’ — Load (DE }=e— (HL)
A0 Inc HL & DE, Dec BC
ED ‘LDIR,” — Load (DE)-e—(HL)
REG BO Inc HL & DE, Dec BC, Repeat until BC = 0
DESTINATION INDI.R. (DE)
ED ‘LDD’ — Load (DE)<e—(HL)
A8 Dec HL & DE, Dec BC
ED ‘LDDR’ - Load (DE)<e—(HL)
B8 Dec HL & DE, Dec BC, Repeat until BC =0

Reg HL points to source
Reg DE points to destination
Reg BC is byte counter

BLOCK TRANSFER GROUP
TABLE 5.3—-4

Table 5.3-5 specifies the OP codes for the four block search instructions. The first, CPI (compare and
increment) compares the data in the accumulator, with the contents of the memory location pointed to by
register HL.. The result of the compare is stored in one of the flag bits (see section 6.0 for a detailed expla-
nation of the flag operations) and the HL register pair is then incremented and the byte counter (register pair
BC) is decremented.

The instruction CPIR is merely an extension of the CPI instruction in which the compare is repeated
until either a match is found or the byte counter (register pair BC) becomes zero. Thus, this single instruc-
tion can search the entire memory for any 8-bit character.

The CPD (Compare and Decrement) and CPDR (Compare, Decrement and Repeat) are similar
instructions, their only difference being that they decrement HL after every compare so that they search the
memory in the opposite direction. (The search is started at the highest location in the memory block).

It should be emphasized again that these block transfer and compare instructions are extremely
powerful in string manipulation applications.

ARITHMETIC AND LOGICAL

Table 5.3-6 lists all of the 8-bit arithmetic operations that can be performed with the accumulator, also
listed are the increment (INC) and decrement (DEC) instructions. In all of these instructions, except INC and
DEC, the specified 8-bit operation is performed between the data in the accumulator and the source data
specified in the table. The result of the operation is placed in the accumulator with the exception of
compare (CP) that leaves the accumulator unaffected. All of these operations affect the flag register as a
result of the specified operation. (Section 6.0 provides all of the details on how the flags areaffected by any
instruction type). INC and DEC instructions specify a register or a memory location as both source and
destination of the result. When the source operand is addressed using the index registers the displacement
must follow directly. With immediate addressing the actual operand will follow directly. For example the
instruction:

AND 07H

would appear as:

Address A E6 | OP Code
A+1] 07 | Operand

Page 12-31

SEARCH
LOCATION
REG.
INDIR.
(HL)
ED ‘cPI’
Al Inc HL, Dec BC
ED ‘CPIR’, Inc HL, Dec BC
B1 repeat until BC = 0 or find match
ED o .
BC
A9 'CPD’ Dec HL &
ED ‘CPDR’ Dec HL & BC
B9 Repeat until BC = 0 or find match

HL points to location in memory
to be compared with accumulator
contents
BC is byte counter
BLOCK SEARCH GROUP

TABLE 5.3-5

Assuming that the accumulator contained the value F3H the result of 0311 would be placed in the
accumulator:

Acc before operation 11110011= F3H

Operand 00000111=07H

Result to Acc 00000011= 03H

The Add instruction (ADD) performs a binary add between the data in the source location and the data in the
accumulator. The subtract (SUB) does a binary subtraction. When the add with carry is specified (ADC) or
the subtract with carry (SBC), then the carry flag is also added or subtracted respectively. The flags and
decimal adjust instruction (DAA) in the Z-80 (fully described in section 6.0) allow arithmetic operations for:

multi-precision packed BCD numbers
multi-precision signed or unsigned binary numbers

multi-precision two's complement signed numbers

Other instructions in this group are logical and (AND), logical or (OR), exclusive or (XOR) and compare (CP).

There are five general purpose arithmetic instructions that operate on the accumulator or carry flag.
These five are listed in table 5.3.7. The decimal adjust instruction can adjust for subtraction as well as add
ition, thus making BCD arithmetic operations simple. Note that to allow for this operation the flag N is used.
This flag is set if the last arithmetic operation was a subtract. The negate accumulator (NEG) instruction forms
the two's complement of the number in the accumulator. Finally notice that a reset carry instruction is not
included in the Z-80 since this operation can be easily achieved through other instructions such as a logical
AND of the accumulator with itself.

Table 5.3-8 lists all of the 16-bit arithmetic operations between 16-bit registers. There are five groups of
instructions including add with carry and subtract with carry. ADC and SBC affect all of the flags. These two
groups simplify address calculation operations or other 16-bit arithmetic operations.

Page 12-32

REG
REGISTER ADDRESSING INDIR INDEXED IMME
D
A[B[C[D|E[H] L | HL) | ax+d) [aY+d) n
DD FD
ADD 87 | 80 | 81 | 82 | 83 | 84 | 85 86 86 86 c6
d d -
ADD w/ CARRY DD FD E
‘ADC’ 8F | 88 | 89 | 8A | 8B | 8C | 8D 8E BE BE
d d o
SUBTRACT 97 | 90 | 91 | 92 | 93 | 94 | 95 96 g]s) l;]G) D6
‘SUB d d n
SUB w/ 9F | 98 | 99 | 9A | 9B | 9C | 9D 9E];ED 1;2 DE
CARRY ‘SBC’ d d n
DD FD
‘AND’ A7 | A0 | A1 | A2 | A3 | A4 | A5 A6 A6 A6 }‘if
d d
DD FD
‘XOR’ AF | A8 | A9 | AA | AB | AC | AD AE AE AE E:Z
d d
DD FD
‘OR’ B7 | BO | B1 | B2 | B3 | B4 | B5 B6 B6 B6 F6
d d n
COMPARE DD FD cE
Py BF | B8 | B9 | BA | BB | BC | BD BE BE BE
CP d d n
INCREMENT DD FD
INC 3c | 04 |[oc | 14 | 1c | 24 | 2C 34 34 34
d d
DECREMENT 3D | 05 | oD | 15 | 1D | 25 | 2D 35 2? F
‘DEC’ d

8 BIT ARITHMETIC AND LOGIC

TABLE 5.3-6
Decimal Adjust Acc. ‘DAA’ 27
Complement Acc. ‘CPL’ 2F
Negate Acc. ‘NEG’ ED
(2’s complement) 44

Complement Carry Flag, ‘CCF’ | 3f

Set Carry Flag, ‘SCF’ 37

GENERAL PURPOSE AF OPERATIONS
TABLE 5.3-7

Page 12-33

SOURCE
BC DE HL SP IX 1Y
HL | 09 19 29 39
D
E DD | DD DD | DD
g | APP IX 1 09 | 19 39 | 29
FD | FD FD FD
T IY | 99 | 19 39 29
I "ADD WITH CARRY AND ur | EP | ED | ED | ED
N | SETFLAGS ‘ADC’ 4A | 5A | 6A | 7A
A
T | SUB WITH CARRY AND g | ED | ED | ED | ED
I SET FLAGS ‘SBC’ 42 52 62 72
o DD | FD
O | INCREMENT “INC 03 13 23 33 >3 23
N | DECREMENT ‘DEC’ 0B 1B | 2B | 3B 12)13? EBD
16 BIT ARITHMETIC
TABLE 5.3-8
ROTATE AND SHIFT

A major capability of the Z-80 is its ability to rotate or shift data in the accumulator, any general pur
pose register, or any memory location. All of the rotate and shift OP codes are shown in table 5.3.9. Also
included in the Z-80 are arithmetic and logical shift operations. These operations are useful in an extremely
wide range of applications including integer multiplication and division. Two BCD digit rotate instructions
(RRD and RLD) allow a digit in the accumulator to be rotated with the two digits in a memory location
pointed to by register pair HL. (See figure 5.3-9). These instructions allow for efficient BCD arithmetic.

BIT MANIPULATION

The ability to set, reset and test individual bits in a register or memory location is needed in almost
every program. These bits may be flags in a general purpose software routine, indications of external control
conditions or data packed into memory locations to make memory utilization more efficient.

The Z-80 has the ability to set, reset or test any bit in the accumulator, any general purpose register or
any memory location with a single instruction. Table 5.3.10 lists the 240 instructions that are available for
this purpose. Register addressing can specify the accumulator or any general purpose register on which the
operation is to be performed. Register indirect and indexed addressing are available to operate on external
memory locations. Bit test operations set the zero flag (Z) if the tested bit is a zero. (Refer to section 6.0 for
further explanation of flag operation).

JUMP, CALLAND RETURN

Figure 5.3-11 lists all of the jump, call and return instructions implemented in the Z-80 CPU. A jump is a
branch in a program where the program counter is loaded with the 16-bit value as specified by one of the three
available addressing modes (Immediate Extended, Relative or Register Indirect). Notice that the jump group
has several different conditions that can be specified to be met before the jump will be made, if these
conditions are not met, the program merely continues with the next sequential instruction. The conditions are
all dependent on the data in the flag register. (Refer to section 6.0 for details on the flag register). The
immediate extended addressing is used to jump to any location in the memory. This instructionrequires three
bytes (two to specify the 16-bit address) with the low order address byte first followed by the high order
address byte.

Page 12-34

Source and Destination
H Rotew
A 8 c o E H L (HL} [(1X + @) (1Y + @) [P ——— Laft Circuler
oD | FD
mc| ca | co | ool ca| | cs) ca|ca|cs| co H roue
o | o2 | o3 | o0 d
il % | 06 [] Right Circular
Do | FD
Rc | ca | ca | co | c8 | c8 | Co | o8 | cB | cs | c8
oc
AR o8 —
00 | FD . -— Lott
m | ca | cs| ca| ca| ca|ocs| caloca|ca|oce
d
17 10 n 12 13 14 15 16 e s .
fD . - . otate
vvee |RRT | c8 | CB [cB | cB | CB | c8 | CB) CB @ ® (] Right
1F 18 19 1A 18 1c 10 1€ d d
forate 1e_| 1€
o0 | FD shitt
sta| ca | 8| c8| ce | c8 | 8| c8 | c8 | C8 | cB cv <—— o -
SHIFT 27 20 2t 22 23 24 %5 | 2% d d . Laft arithmetic
% | 2%
B0 | fp ~)
SNBHBBRBEBENE — =
—_—
LU 2 % | 3 (] Right Arithmetic
DD | D
wau | oce | ca | cs | ca | ce | ca|oce|cece | ca o
ft
i Ml Bl ” L (] o Lowen
RLO :E’ °
_ Rotste Digit
€0 by-by by~ byj B3~ bg[(HL) | g
‘RROD’ & R Ty]
Rotate Digit
ML) o
Acc
TABLE 5.3-9

For example an unconditional Jump to memory location 3E32H would be:

Address A C3 | OP Code
A+1] 32 | Low order address
A+2 | 3E | High order address

The relative jump instruction uses only two bytes, the second byte is a signed two's complement displacement
from the existing PC. This displacement can be in the range of +129 to -126 and is measured from the address
of the instruction OP code.

Three types of register indirect jumps are also included These instructions are implemented by loading
the register pair HL or one of the index registers IX or IY directly into the PC. This capability allows for
program jumps to be a function of previous calculations.

A call is a special form of a jump where the address of the byte following the call instruction is pushed
onto the stack before the jump is made. A return instruction is the reverse of a call because the data on the top
of the stack is popped directly into the PC to form a jump address. The call and return instructions allow for
simple subroutine and interrupt handling. Two special return instructions have been included in the Z-80
family of components. The return from interrupt instruction (RETT) and the return from non-maskable interrupt
(RETN) are treated in the CPU as an unconditional return identical to the OP code COH. The difference is that
(RETT) can be used at the end of an interrupt routine and all Z-80 peripheral chips will recognize the execution
of this instruction for proper control of nested priority interrupt handling. This instruction coupled with the Z-
80 peripheral devices implementation simplifies the normal return fromnested interrupt. Without this feature the
following software sequence would be necessary to inform the interrupting device that the interrupt routine is
completed:

Page 12-35

(1Y+d)

288|284 mm&_mmau_mman mman_mmau 284|288 maauTuau 08,4 288|128 vm (288 mudm—maum 28.8|28.8(28

INDEXED
(I1X+d)

Q [=] O
Wmd“ Mmd“ Mﬂd“ W%d.& Dﬂdn Wudm W@d“ Wmd“ W@d“ mmd“—wudw Wmdﬂ Wud“ Wmd“ Mmdm Mmd% Wﬂdm W“d“ Dmd“ DMGH

REG.
INDIR,
{HL)

B |B8 |88 | 8% |82 | 8w 88|84 |88 |8% |82 |8¢ |88 |88 |88 88888888 88

L

82 |82 |88 |88 82|82 88|88 |88 |82 |82 82|82 |83 |38|88|88]|33|8s|82

83|83 | 83|88 (82|82 |83|8y|8%x|82|83[82)83 88| 838383888382

83|82 |82 |82 |8r |82 |83|88 |83 |88 |82 8282|8380 83|83 88)8z|82

88 |82 |82 |8y |85 |8y 8588382835 8y 835|83| 85| 83|83

ce
52
cB
5A
cB
62

REGISTER ADDRESSING

85|82 |8 |82 | 8~|82 | 85|88 |85 |82 (8% |82 |8z (82| 85(88|8z]|838|8z) 8

32 |82 (88|88 382 |8= |88 |88 |33 |8%|82|8% |83 |88|388|58|828) 8388|8283

8IT

o~ ™ - o -] ~ o - o~ ™ - w © ~ o - o~ ™ - w
[.
= 3 -
” I -
=] wey $ad

BIT MANIPULATION GROUP
TABLE 5.3-10

Page 12-36

Disable Interrupt

LDAn
OUTn A

Enable Interrupt

Return

- prevent interrupt before routine is exited

- notify peripheral that service routine is complete

This seven byte sequence can be replaced with the one byte EI instruction and the two byte RETI instruction
in the Z80. This is important since interrupt service time often must be minimized.

To facilitate program loop control the instruction DJNZ a can be used advantageously. This two byte,
relative jump instruction decrements the B register and the jump occurs if the B register has not been decre-
mented to zero. The relative displacement is expressed as a signed two's complement number. A simple ex-
ample of its use might be;

Address Instruction Comments
N,N+1 LDB,7 ; set B register to count of 7
N+2toN+9 (Perform a sequence
of instructions) ; loop to be performed 7 times
N+10,N+11 DINZ -8 ; tojump from N+ 12to N + 2
N+12 (Next Instruction)
CONDITION
UN- CARRY NON ZERO NON PARITY PARITY SIGN SIGN REG
COND CARRY ZERO EVEN OoDD NEG POS B#0
C3 DA D2 CA c2 EA E2 FA F2
JUMP “JP’ IMMED nn n n n n n n n n n
EXT.
n n n n n n n n n
P 1B 3B 30 2B 20
JUMP ‘JR RELATIVE PC+e o2 e2 e e-2 oD
JUMP JP’ (HL) E9
ap’ (Ix) DD
JUMP JP E9
ps (IY) FD
JUMP ‘JP E9
CD DC D4 CC C4 EC E4 FC F4
‘CALL’ IMMED nn n n n n n n n n n
EXT
n n n n n n n n n
DECREMENT B, 10
JUMP IF NON RELATIVE PC+e e2
ZERO ‘DIJNZ’
RETURN REGISTER (SP) c9 D8 DO c8 co E8 E0 F8 FO
‘RET’ INDIR. (SP+1)
RETURN FROM REG. (SP) ED
INT ‘RETI’ INDIR (SP+1) 4D
RETURN FROM
NON MASKABLE :{I\JIE];;IR (S(ls’l:')l)]::']5)
INT ‘RETN’

NOTE - CERTAIN
FLAGS HAVE MORE
THAN ONE PURPOSE
6.0 FOR DETAILS

JUMP, CALL and RETURN GROUP

TABLE 5.3-11

Page 12-37

Table 5.3-12 lists the eight OP codes for the restart instruction This instruction is a single byte call to any of
the eight addresses listed. The simple mnemonic for these eight calls is also shown. The value of this in-
struction is that frequently used routines can be called with this instruction to minimize memory usage.

op
CODE
0000, | C7 | ‘RsT O’
C | 0008, | DF | ‘RST®
A
']: 00105 | D7 | ‘RST 16’
A | 0018y | DF | ‘RST 24’
D
D | 0020, | E7 | ‘RST32
R
'; 0028, | EF | ‘RST 40’
S
0030, | F7 | ‘RST 48’
0038, | FF | ‘RST 56

RESTART GROUP
TABLE 5.3-12

INPUT/OUTPUT

The Z-80 has an extensive set of Input and Output instructions as shown in table 5 and table 5.3.14. The
addressing of the input or output device can be either absolute or register indirect, using the C register. Notice that
in the register indirect addressing mode data can be transferred between the I/O devices and any of the internal
registers. In addition eight block transfer instructions have been implemented. These instructions are similar to the
memory block transfers except that they use register pair HL. for a pointer to the memory source (output
commands) or destination (input commands) while register B is used as a byte counter. Register C holds the
address of the port for which the input or output command is desired. Since register B is eight bits in length, the
I/0 block transfer command handles up to 256 bytes.

In the instructions IN A, n and OUT n, A the I/O device address n appears in the lower half of the address bus
(Ao-A7) while the accumulator content is transferred in the upper half of the address bus. In all register indirect
input output instructions, including block I/O transfers the content of register C is transferred to the lower half of
the address bus (device address) while the content of register B is transferred to the upper half of the address bus.

Page 12-38

SOURCE
PORT ADDRESS
IMMED | REG
. INDIR.
@) ©
DB ED
A
R n 78
E ED
G B 40
A C ED
INPUT “IN’ D 48
D
R ED
E D 50
INPUT s . ED
DESTINATION 58
ED
H 60
ED
L 68
‘INT - INPUT & ED
Inc HL, Dec B A2
‘INIR’ - INP, Inc, HL ED
Dec B, REPEAT IF B0 REC | o B2 BLOCK INPUT
)
IND’— INPUT & . ED OMMANDS
Dec HL, Dec B AA
‘INDR’ - INPUT, Dec HL, ED
Dec B, REPEAT IF B#0 BA
INPUT GROUP

TABLE 5.3-13

CPU CONTROL GROUP

The final table, table 5.3-15 illustrates the six general purpose CPU control instructions. The NOP is a do nothing
instruction. The HALT instruction suspends CPU operation until a subsequent interrupt is received, while the DI
and El are used to lock out and enable interrupts. The three interrupt mode commands set the CPU into any of
the three available interrupt response modes as follows. If mode zero is set the interrupting device can insert
any instruction on the data bus and allow the CPU to execute it. Mode 1 is a simplified mode where the CPU
automatically executes a restart (RST) to location 0038H so that no external hardware is required (The old PC
content is pushed onto the stack). Mode 2 is the most powerful in that it allows for an indirect call to any
location in memory. With this mode the CPU forms a 16-bit memory address where the upper 8-bits are the
content of register 1 and the lower 8-bits are supplied by the interrupting device. This address points to the
first of two sequential bytes in a table where the address of the service routine is located. The CPU
automatically obtains the starting address and performs a CALL to this address.

8—— Pointer to Interrupt table. Reg.
I is upper address,
Peripheral supplies lower address

Address of interrupt
service routine

Page 12-39

SOURCE
REG.
REGISTER IND.
A | B|C]| D E H | L | HD
IMMED | (m) | DB
n
‘ouT
REG. | () | ED | ED | ED | ED | ED | ED | ED
IND. 79 |41 |49 |51 |59 |61 |69
‘OUTI’ - OUTPUT REG. ED | ED | ED | ED | ED | ED | ED | ED
Inc HL, Dec B IND © | 79 | 41 |40 |51 |50 |61 |69 A3
‘OTIR’ — OUTPUT, Inc HL REG. ED BLOCK
Dec B, REPEAT IF B#0 IND. © B3 | OUTPUT
COMMANDS
‘OUTD’ - OUPUT REG. ED
Dec HL & B IND © A8
‘OTDR’ - OUTPUT, DEC HL REG. ED
& B, REPEAT IF B#0 IND. © B8
PORT
DESTINATION
ADDRESS
OUTPUT GROUP
TABLE 5.3-14
‘NOP’ 00
‘HALT’ 76
DISABLE INT (DI)’ | F3
ENABLE INT ‘(EI)’ FB
SET INT MODE 0 ED | 3080A MODE
IMO’ 46
SET INT MODE 1 ED | CALL TO LOCATION 0038y
IM1 56
SET INT MODE 2 ED | INDIRECT CALL USING REGISTER
IM2’ sg | I AND 8 BITS FROM INTERUPTING
DEVICE AS A POINTER

MISCELLANEOUS CPU CONTROL
TABLE 5.3-15

Page 12-40

(This page deliberately blank.)

Page 12-41

6.0 FLAGS

Each of the two Z-80 CPU Flag registers contains six bits of information which are set or reset by
various CPU operations. Four of these bits are testable; that is, they are used as conditions for jump, call or
return instructions For example a jump may be desired only if a specific bit in the flag register is set. The
four testable flag bits are:

1)

2)

3)

4)

Carry Flag (C) - This flag is the carry from the highest order bit of the accumulator. For example,
the carry flag will be set during an add instruction where a carry from the highest bit of the
accumulator is generated This flag is also set if a borrow is generated during a subtraction
instruction. The shift and rotate instructions also affect this bit.

Zero Flag (Z) - This flag is set if the result of the operation loaded a zero into the accumulator.
Otherwise it is reset.

Sign Flag (S) - This flag is intended to be used with signed numbers and it is set if the result of the
operation was negative. Since bit 7 (MSB) represents the sign of the number (A negative number
has a 1 in bit 7), this flag stores the state of bit 7 in the accumulator.

Parity/Overflow Flag (P/V) - This dual purpose flag indicates the parity of the result in the
accumulator when logical operations are performed (such as AND A, B) and it represents overflow
when signed two's complement arithmetic operations are performed. The Z80 overflow flag
indicates that the two's complement number in the accumulator is in error since it has exceeded
the maximum possible (+127) or is less than the minimum possible (-128) number than can be
represented in two's complement notation. For example consider adding:

+120 = 01111000
+105 = 01101001
(C=0) 11100001 = 95 (wrong) Overflow has occurred

Here the result is incorrect. Overflow has occurred and yet there is no carry to indicate an error.
For this case the overflow flag would be set. Also consider the addition of two negative numbers:

5 = 11111011
-16_ = 11110000
(C=1) 111101011 = -21 correct

Notice that the answer is correct but the carry is set so that this flag can not be used as an overflow
indicator. In this case the overflow would not be set.

For logical operations (AND, OR, XOR) this flag is set if the parity of the result is even and it is
reset if it is odd.

There are also two non-testable bits in the flag register. Both of these are used for BCD arithmetic. They are:

1)

2)

Half carry (H) - This is the BCD carry or borrow result from the least significant four bits of
operation. When using the DAA (Decimal Adjust instruction) this flag is used to correct the result
of a previous packed decimal add or subtract.

Subtract Flag (N) - Since the algorithm for correcting BCD operations is different for addition or
subtraction, this flag is used to specify what type of instruction was executed last so that the DAA
operation will be correct for either addition or subtraction.

The Flag register can be accessed by the programmer and its format is as follows:

SIZ|X|H|X|P/VIN]|C

X means flag is indeterminate.

Page 12-42

Table 6.0-1 lists how each flag bit is affected by various CPU instructions. In this table a ‘*’ indicates
that the instruction does not change the flag, an ‘X’ means that the flag goes to an indeterminate state, a ‘0’
mans that it is reset, a ‘1’ means that it is set and the symbol ‘V’ indicates that it is set or reset according to the
previous discussion. Note that any instruction not appearing in this table does not affect any of the flags.

Table 6.0-1 includes a few special cases that must be described for clarity. Notice that the block search
instruction sets the Z flag if the last compare operation indicated a match between the source and the
accumulator data. Also, the parity flag is set if the byte counter (register pair BC) is not equal to zero. This
same use of the parity flag is made with the block move instructions. Another special case is during block input
or output instructions, here the Z flag is used to indicate the state of register B which is used as a byte counter.
Notice that when the I/O block transfer is complete, the zero flag will be reset to a zero (i.e. B0) while in the
case of a block move command the parity flag is reset when the operation is complete. A final case is when the
refresh or I register is loaded into the accumulator, the interrupt enable flip flop is loaded into the parity flag so
that the complete state of the CPU can be saved at any time.

Page 12-43

Instruction ClZ 1’1 S|NJH | Comments

ADD A,s; ADC A s t]t[v]t]0o]t | 8-bitadd or add with carry

SUBs: SBC A, s, CP s, NEG ${¢iVv|t]|1]% | 8-bit subtract, subtract with carry, compare and

negate accumulator

AND s o|¢{P{t]oq1t } Logical operations

ORs; XOR s 0|$|P[$]0[0 | And set’sdifferent flags

INC s o[t(V|$]|0]f | 8-bitincrement

DEC m e|tiVit|l]|s 8-bit decrement

ADD DD, ss t|ejele|0|X 16-bit add

ADC HL, ss $12]|V]|s]0]|X | 16-bit add with carry

SBC HL, ss ¢t vlt]|1]X | 16-bit subtract with carry

RLA; RLCA, RRA RRCA t{e|o|o®|0O]O Rotate accumulator

RL m; RLC m; RR m; RRC m t1t(p[t10]0 Rotate and shift location m

SLAm;SRAm;SRLm

RLD, RRD e|tiP|t]|O]O Rotate digit left and right

DAA $13|P|t]|el3 | Decimal adjust accumulator

CPL olelejel)] Complement accumulator

SCF 1(eio|®|0]0 Set carry

CCF t|eje|e]|0[X [Complement carry

INT1,(C) o(3|P1$[0[0 | Input registerindirect

INI; IND; OUTI;, OUTD o2 |X|X]1]X l Block input and output

INIR; INDR; OTIR; OTDR e|1|X]|X]1|X Z=0if B+#0otherwise Z=1

LDI,LDD olx|t|x|o}j0 ' Block transfer instructions

LDIR, LDDR e|Xi0]|X]|0]|0 P/V = 1if BC # 0, otherwise P/V =0

CPI, CPIR, CPD, CPDR o|dit(d|1{X Block search instructions

Z=1if A=(HL), otherwiseZ =0
P/V = 1 if BC # 0, otherwise P/V =0

LDA,;LDA,R o| JFF|/0| 0 | The content of the interrupt enable flip-flop (IFF)

is copied into the P/V flag

BITb,s oft|X|X[|0]1 The state of bit b of location s is copied into the Z flag

NEG $13IVvITI11 $ | Negate accumulator

The following notation is used in this table:

Symbol Operation

C Carry/link flag. C=1 if the operation produced a carry from the MSB of the operand or result.

z Zero flag. Z=1 if the result of the operation is zero.

S Sign flag. S=1 if the MSB of the result is one.

P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag .
with the parity of the result while arithmetic operations affect this flag with the overflow of the result. If P/V
holds parity, P/V=1 if the result of the operation is even, P/V=0 if result is odd. If P/V holds overflow, P/V=1
if the result of the operation produced an overflow.

H Half-carry flag. H=1 if the add or subtract operation produced a carry into or borrow from into bit 4 of the accumulator.

N Add/Subtract flag. N=1 if the previous operation was a subtract.

H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the re-
sult into packed BCD format following addition or subtraction using operands with packed BCD format.

] The flag is affected according to the result of the operation.

° The flag is unchanged by the operation.

0 The flag is reset by the operation.

1 The flag is set by the operation.

X The flag is a ““don’t care.”

v P/V flag affected according to the overflow result of the operation.

P P/V flag affected according to the parity result of the operation.

r Any one of the CPU registers A,B,C, D, E, H, L.

s Any 8-bit location for all the addressing modes allowed for the particular instruction. .

L] Any 16-bit location for all the addressing modes allowed for that instruction.

i Any one of the two index registers IX or 1Y.

R Refresh counter.

n 8-bit value in range <0, 255>

an 16-bit value in range <0, 65535>

m Any 8-bit location for all the addressing modes allowed for the particular instruction.

SUMMARY OF FLAG OPERATION
TABLE 6.0-1

Page 12-44

(This page deliberately blank.)

Page 12-45

7.0 SUMMARY OF OP CODES AND EXECUTION TIMES

The following section gives a summary of the Z-80 instructions set. The instructions are logically
arranged into groups as shown on tables 7.0-1 through 7.0-11. Each table shows the assembly language
mnemonic op code, the actual OP code, the symbolic operation, the content of the flag register following the
execution of each instruction, the number of bytes required for each instruction as well as the number of
memory cycles and the total number of T states (external clock periods) required for the fetching and
execution of each instruction. Care has been taken to make each table self-explanatory without requiring
any cross reference with the test or other tables.

Page 12-46

Mnemonic

Symbolic
Operation

Op-Code

<- bit # ->
76 543 210

No.
of
Bytes

No.
of M
Cycles

No.
of T
States

Comments

LD r,r

0l r r

LD r,n

00 r 110

« n -

LD r,(HL)

(HL)

_1
1

01 r 110

LD r,(IX+d)

r — (IX+d)

11 011101
01 r 110

« d -

19

LD r,(IY+d)

r < (IY+d)

11111101
01 r 110

« d -

19

LD (HL),r

(HL) « r

01110 r

LD (IX+d),r

1
=

(IX+d)

11 011 101
01110 r

« d -

19

LD (IY+d),r

(IY+d)

p
=

11111101
01110 r

« d -

19

LD HL,n

00 110 110

« n -

10

LD (IX+d),n

=
n
e
1
5

11 011 101
00 110 110
« d -
« n -

19

LD (IY+d),n

(IY+d) < n

11111101
00 110 110
« d -
« n -

19

LD A,(BC)

00 001 010

LD A,(DE)

00 011 010

LD A,(nn)

00 111 010
« n -
« n -

13

LD (BC),A

00 000 010

LD (DE),A

00 010 010

LD (nn),A

00 110 010
« n -
« n -

13

LD A,l

11101101
01 010 111

LD AR

A-R

11101101
01 011 111

LD ILA

I <A

11 101 101
01 000 111

LD R,A

R ~A

11101101
01 001 111

rr’
000
001
010
011
100
101
111

>I—ImUnmL§

Notes: 1, I’ means any of the registers A, B, C, D, E, H, L.

IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag.

Flag Notation

« = flag not affected.

1 = flag set.

X = flag unknown.

T = flag is affected according to the result of the operation.

8-BIT LOAD GROUP

TABLE 7.0-1

Page 12-47

. Flags Op-Code
Symbolic No. No. No.
Mnemonic Operation P of of M of T Comments
C /]S <- bit # -> Bytes Cycles States
\% 76 543 210
LD dd,nn dd - nn . of o 00 ddo0 001 3 3 10 | dd Pair
< n - 00 BC
<« n - 01 DE
LD IX,nn IX < nn . ol o 11 011 101 4 4 14 10 HL
00 100 001 11 SP
« n -
« n -
LD 1Y,nn IY « nn . ol o 11 111 101 4 4 14
00 100 001
« n -
« n -
LD HL,(nn) H < (nn+1) . ol o 00 101 010 3 5 16
L < (nn) « n -
« n -
LD dd,(nn) ddu < (nn+1) . ol o 11101 101 4 6 20
dd. < (nn) 01 dd1 011
« n -
L n -
LD IX,(nn) IXq = (Nn+1) . ol o 11 011 101 4 6 20
IXL < (nn) 00 101 010
« n -
«— n -
LD IY,(nn) IYy <« (nn+1) . ol 11 111 101 4 6 20
1YL < (nn) 00 101 010
« n -
« n -
LD (nn),HL (nn+1) <« H . ol o 00 100 010 3 5 16
(nn) <« L « n -
«— n -
LD (nn),dd (nn+1) < ddy . ol o 11 101 101 4 6 20
(nn) < dd, 01 dd0 011
« n -
«— n -
LD (nn),IX (nn+1) <« Xy . ol o 11 011 101 4 6 20
(nn) < IX, 00 100 010
« n -
« n -
LD (nn),IY (nn+1) < IYy o ol 11 111 101 4 6 20
(nn) < 1Y, 00 100 010
L n -
« n -
LD SP,HL SP — HL . ol 11 111 001 1 6
LD SP,IX SP « IX . ol o 11 011 101 2 10
11111 001
LD SP,IY SP ~ 1Y . ol o 11111 101 2 2 10
11 111 001
PUSH qq (SP-2) ~ ddu . of o 11 qq0 101 1 1 11 aq. Pair
(SP-1) ~ dd. 00 BC
PUSH IX (SP-2) < IXy . ol o 11 011 101 2 4 15 01 DE
(SP-1) < IX. 11100 101 10 HL
PUSH IY (SP-2) « 1Yy . N 11 111 101 2 4 15 1 AF
(SP-1) < 1YL 11100 101
POP qq ddy < (SP+1) o ol 11 gqq0 001 1 3 10
ddL e (SP)
POP IX IXq <« (SP+1) . ol 11 011 101 2 4 14
IX, < (SP) 11 100 001
POP 1Y Yy <« (SP+1) . ol o 11111 101 2 4 14
Y, < (SP) 11 100 001

Notes: dd is any of the register pairs BD, DE, HL, SP

(PAIR)y, (PAIR)L refer to high order and low order eight bits of the register pair respectively (e.g. BCy = C, AFyz =A)

Flag Notation

* = flag not affected. 0 = flag reset.

1 = flag set.
T-= flag is affected according to the result of the operation.

X = flag unknown.

16-BIT LOAD GROUP

TABLE 7.0-2

Page 12-48

. Flags Op-Code
Symbolic No. No. No.
Mnemonic Operation P of of M of T Comments
Z|/|S|NlH <- bit # -> Bytes Cycles States
\ 76543 210
EX DE HL DE -~ HL o of o of @ 11101011 1 1 4
EX AF AF’ AF - AF’ o| o «| | «| 00001000 1 1 4
BC -~ BC’ o of of of o 11 011 001 1 1 4 RegilétEF b;ﬂk_ﬂ[ﬂd
EXX DE - DE ey Segser
EX (SP),HL H - (SP+1) o| of o o| o/ 11100011 1 5 19
L - (SP)
EX (SP) IX Xy - (SP+1) ol o| of o o] 11011101 2 6 23
IX, ~ (SP) 11100 011
EX (SP) IY Yy < (SP+1) ol of of of o 11111101 2 6 23
Y, ~ (SP) 11100 011
LDI (DE) < (HL) el 3 o] 0/ of 11101101 2 4 16 Load (HLt)ﬂilmo (1_3115),
DE - DE+1 v 10 100 011 incemen b e
HL < HL+1 counter (BC)
BC « BC-1
LDIR (DE) « (HL) el 0| o/ 0l 0] 11101101 2 5 21 IfBC#0
DE « DE+1 10110 000 2 4 16 IfBC=0
HL « HL+1
BC « BC-1
Repeat until BC=0
LDD (DE) « (HL) | 3 o] 0|/ 0| 11101101 2 4 16
DE « DE-1 “ 10 101 000
HL « HL-1
BC « BC-1
LDDR (DE) « (HL) ol <ol ol 11101101 2 5 21 | 1iBC#0
DE « DE-1 10111 000 2 4 16 IfBC=0
HL « HL-1
BC « BC-1
Repeat until BC=0
CPI A-(HL) 23 a1 11101101 2 4 16
HL « HL+1 $| # 10100 001
BC « BC-1
CPIR A-(HL) D 9 o 1] o] 11101101 2 5 21 | 1fBC#0and
HL « HL+1 of # 10110001 A# (HL)
BC « BC-1 2 4 16 | lfBC=0or
Repeat until A=(HL)
A=(HL) OR BC=0
CPD A-(HL) o o 31| ¢ 1r101101
HL « HL-1 o # 10101 001
BC « BC-1
CPDR A-(HL) o9 o1 ¢ 11101101 IFBC# 0and
HL « HL-1 o # 10111 001 A# (HL)
BC « BC-1 IfBC=0or
Repeat until A=(HL)
A=(HL) OR BC=0
Notes: # P/V flag is 0 if the result of BC-1 = 0, otherwise P/V=1.

%

Flag Notation

Z flag is 1 if A = (HL), otherwise Z = 0.

« = flag not affected. 0 = flag reset.

1 =flag set. X = flag unknown.

T-= flag is affected according to the result of the operation.

EXCHANGE GROUPAND BLOCK TRANSFER AND SEARCH GROUP

TABLE 7.0-3

Page 12-49

. Flags Op-Code
Symbolic No. No. No.
Mnemonic Operation cl 2 }’ sInl | <- bit # -> of of M of T Comments
v 76 543 210 Bytes Cycles States
ADD Ar A < Atr T Pv| Yol § 10000 r 1 1 4 | _xr_ Reg.
ADD An A~ A+ § v fo| ¥ 11000110 000 B
< n - 001 C
010 D
ADD A,(HL) A < A+(HL) T Jv| Yol § 10000110 1 2 7 _|on1 £
ADD A, (IX+d) A « A+(IX+d) T Jv| Yol § 11011101 3 5 19 | 100 H
10 000 110 101 L
e d > 111 A
ADD A,(IY+d) A < A+(TY+d) TBvi Yol § 11111101 3 5 19
10 000 110
« d -

ADC A,s A « A+s+CY T Jv| Yol T 001

SUBA,s A < A-s T Jv 1| 7 10

SBCA,s A < A-sCY JAviU1 Y 11 " 1Xody, (-4) a v

AND S AHA/\S $ $ V $ O 1 1 0 for ADD instruction.

OR's A<AVs d v Yoo 11 T 100 o oA et

XOR s A-A®s JUviYolo 101 bove

CPs A-s JTUv Y1 7 11 /

INC r Rer+1 ‘v Yol ¥ o0 r 100 1 1 4

INC (HL) (HL) « (HL)+1 ‘I qvi Jo| ¥ 00110100 1 1 11

INC (IX+d) (IX+d) « X+d)+1 | | Jv| Jo| § 11011101 21

00 110 100
« d -
INC (IY+d) ay+d) « ay+dy+1 | | Jv| Yol ¥ 11111101 3 6 21
00110 100
« d -

DEC m me-m-1 T8v U1 9 101 misany of s (L), o
for INC. Same format and
states as INC. Replace
100 with 101 in Opcode.

Notes: The V symbol in the P/V flag column indicates that the P/V flag contains the overflow of the result of the operation. Similarly the P symbol

indicates parity. V = 1 means over flow. V = 0 means not overflow. P =1 means parity of the result is even. P =0 means parity of the result is
odd.

Flag Notation « = flag not affected. 0 = flagreset. 1= flagset. X = flag unknown.

T = flag is affected according to the result of the operation.

Symbolic Operators: /\ represent AND V represents OR O represents XOR

8-BIT ARITHMETIC AND LOGICAL GROUP
TABLE 7.0-4

Page 12-50

. Flags Op-Code
Symbolic No. No. No.
Mnemonic Operation }) S <- bit # -> of of M of T Comments
v 76 543 210 Bytes Cycles | States
DAA Contvertts_ acc. Pl J 00 100 111 1 1 4 | Decimaladjust
content Into
packed BCD
following add or
subtract with
packed BCD
operands. Complement
accumulator (one’s
CPL | 00101 111 1 1 4 complement).
— N (o’
A« (A) “omplemen,
NEG A<0-A v| 3 11101 101 2 2 8 Complement carry
01 000 100 flag.
Set carry flag.
CCF _ el ° 00111111 1 1 4
CY <« (CY)
SCF CYe1 ol o 00110111 1 1 4
NOP No operation of o 00 000 000 1 1 4
HALT CPU halted ol e 01110110 1 1 4
DI IFF < O ol o 11110011 1 1 4
El IFF « 1 ol o 11111 011 1 1 4
IM O Set interrupt of 11 101 101 2 2 8
mode 0. 01 000 110
IM 1 Set interrupt of o 11 101 101 2 2 8
mode 1. 01 010 110
IM 2 Set interrupt of 11 101 101 2 2 8
mode 2. 01011110
Notes: IFF indicates the interrupt enable flip-flop.
CY indicates the carry flip-flop.
Flag Notation « = flag not affected. 0 = flagreset. 1= flagset. X = flag unknown.

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUP

T = flag is affected according to the result of the operation.

TABLE 7.0-5

Page 12-51

. Flags Op-Code
Symbolic No. No. No.
Mnemonic Operation }) S <- bit # -> of of M of T Comments
v 76 543 210 Bytes Cycles | States
ADD HL,ss HL « HL+ss of o 00 ss1 001 1 3 11 | = g—é&
ADC HL,ss HL « HL+ss+CY v| J 11 101 101 2 4 15 1 DE
01 551 010 0 o
SBC HL,ss HL « HL-ss-CY v| J 11 101 101 2 4 15
01 ss0 010 o Reg.
ADD IX,pp IX « IX+pp of o 11 011 101 2 4 15 | o BC
00 ppl 001 }0 gf
ADD IY,rr Y « IX+rr ol o 11111101 2 4 15 11 Sp
00 rrl 001
INC ss SS « ss+1 of o 00 ss0 001 1 1 6 rr Reg.
INC IX IX « IX+1 of o 11 011 101 2 2 10 |9 oS
00 100 011 10 Y
INC IY IY « IY+1 of o 11111 101 2 2 10 | M SP
00 100 011
DEC ss SS « ss-1 of o 00 ss1 011 1 1 6
DEC IX IX « IX-1 of o 11 011101 2 2 10
00101 011
DEC Y Y « IY-1 of o 11111101 2 2 10
00101 011

Notes: ss is any of the register pairs BC, DE, HL, SP.
pp is any of the register pairs BC, DE, IX, SP
i is any of the register pairs BC, DE, TY, SP

Flag Notation » = flag not affected. 0 = flagreset. 1= flagset. X = flag unknown.

T = flag is affected according to the result of the operation.

16-BIT ARITHMETIC GROUP
TABLE 7.0-6

Page 12-52

ROTATE AND SHIFT GROUP

TABLE 7.0-7

Flags Op-Code
No. No. No.
| Symbolic . bit # —oees of | oM | ofT |~ nt
Mnemonic | Operation [C|Z | V|S|N|H| 76 543 210 | Bytes | Cycles States) LOMMENLS
Rotate left circu-
RLCA I e oo (00| 00000111 1 1 4 lar accumulator
Rotate left
RLA I oloele O O 00 010 111 1 1 4 accumulator
A
Rotate right
RRCA = I i
[BN BN) 00 001 111 circular
O O 1 ! 4 accumulator
Rotate right
RRA .——7-. I { BN BN J O O 00 011 111 1 1 4 accumulator
A
Rotate left circu-
RLC I I P I O O (1)(1) Olrl ? 2 8 lar register r
Reg
RLC (HL 11 001011 S
C (HL) P|{/0|0| oomooino | 2 4 | 15 | g% 2
010 D
—_— CY[™ L. g
rLC (xed) [erFe o b
1 1 P 1 010 =" "= 4 6 23 101 L
- 00 [00Q 110 11 A
11 111 101
RLC (IY+d) 1 1 P 1 0|Q| 1t oot o1 4 5 03
00 [00gl 110
Instruction format
RL m .-f—. I I P I O O 010 and states are as
i} shown for RLC m.
m=r, (HL), (IX+d), (IY+d) Todform ”leW Op-
code, replace
RRC m —] 1 1 1 000 of RLC m
P 0 O 001 with shown code.
m=r, (HL), (X+d), (1Y+d)
RR m =r= |J}IP|}|0]0
m= r (HL), (IX+d), (IY+d)
SLAm g=|]{[}|P|}|0]O
m=r, (HL), (ﬁuu), (IY+d)
SRA mM A I I P I 00 101
m=r, (HL), (IX+d), (IY+d)
SRLm | t14ipls T
Pl{lolo
m=r, (HL), (IX+d), (IY+d)
RLD 13] Rt Detoe
L EL dew and right between
| 1 1 P 1 0|0 31101 104 2 5 18 |the accumulator
and location (HL).
X The cor?ttﬁ(ntfm;1 the
RRD A(HL) I I I upper half of the
o 11 101 101 accumulator is
2 P 00 01 100 111 2 5 18 onaffected.
Flag Notation: @ =flag not affected. O=flag reset. 1=flag set. X=flag unknown.
I = flag is affected according to the result of the operation.

Page 12-53

) Flags Op-Code
Symbolic No. No. No.
Mnemonic Operation P of of M of T Comments
C|lz|/]|S|N|H <- bit # -> Bytes Cycles States
A% 76 543 210
BIT b,r o ol U x| xlo| ¥ 11001011 2 2 8 o R—}gg
Zerp 01 b r 001 C
BIT b, (HL) « ¥ x| x{o] § 11001011 2 3 12 | o 0
Z « (HL) 01 b 110 100 H
BIT b,(IX+d) o U x| x{o] ¥§ 11011101 4 5 20 | "
Z « (IX+d), 00 001 011
« d - b Reg.
000 0
01 b 110 001 1
. 010 2
BIT b,(IY+d) x| xjol § 11111101 4 5 20 | 09 :
Z « (IY+d)o 00 001 011 100 4
c d - 101 5
110 6
01 b 110 111 7
SET b,r el | o o] of o] ¢ 11 001 011 2 2 8
11 b r
SET b,(HL) (HL)p«< 1 | o o of o] ¢ 11 001 011 2 4 15
11 b 110
SET b, (IX=d) (IX+d)pe< 1 | o) o] o o e 11 011 101 4 6 23
11 001 011
« d -
11 b 110
SET b,(IY=d) (IY+d)o< 1 | o) o] o o 11111101 4 6 23
11 001 011
« d -
11 b 110
RES b,m Spe O Q To form RES OP-
M=r, (HL), (IX+d), code, replace 11 of
(IY+d) SET b,m with 10.
Flags and time
states for SET
instruction.

Notes: The notation s, indicates bit b (0 to 7) of location s.

Flag Notation * = flag not affected. 0 =flagreset. 1= flagset. X = flagunknown.
T =flag is affected according to the result of the operation.

BIT SET, RESET AND TEST GROUP
TABLE 7.0-8

Page 12-54

. Flags Op-Code
Symbolic No. No. No.
Mnemonic Operation P of of M of T Comments
/]S <- bit # -> Bytes Cycles States
\ 76 543 210
JP nn PCe nn ol . 11 000 011 3 3 10 -
cc Condition
<-n-= 000 NZ non zero
<-n -> 001 Z zero
JP cc,nn If condition cc is true, of o 11 cc 010 3 3 10 | 010 NC non carry
PC « nn, < n -> 011 C carry
otherwise continue. 100 PO parity odd
<-n -> 101 PE parity even
Re PC=PC + e of o 00 011 000 2 3 12 | 1O P sign
posmve
<-e-2 -> 111 M sign
negative
JRC,e If C=0, continue. of . 00 111 000 2 2 7 If condition not met.
<-e2 -> 2 3 12 If condition met.
IfC=1,
PC « PC+e
JRNC,e FC=1, .| - 00 110 000 2 2 7 | If condition not met.
Continue. <-e-2 -> 2 3 12 If condition met.
IfC=0,
PC « PC+e
JR Z,e IfZ = 0, . . 00 101 000 2 2 7 If condition not met.
Continue. <-e2 -> 2 3 12 If condition met.
fz=1,
PC « PC+e
JRNZ,e fz=1, of . 00 100 000 2 2 7 | I condition not met.
Continue. <-e2 -> 2 3 12 If condition met.
Ifz=0,
PC « PC+e
JP (HL) PC « HL ol 11 101 001 1 1 4
JP (1X) PC « IX o| o 11 011 101 2 2 8
11 101 001
JP (1Y) PC « IY o| o 11 111101 2 2 8
11 101 001
DINZ,e B =B-1 ol . 00 010 000 2 2 8 IfB=0.
IfB =0, <-e-2 -> 2 3 13 IfB =0.
Continue.
If B =0,
PC « PC+e

Notes: e represents the extension in the relative addressing mode.

e is a signed two’s complement number in the range <-126, 129>
e-2 in the op-code provides an effective address of PC+e as PC is incremented by 2 prior to the addition of e.

Flag Notation < = flag not affected. 0 =flagreset. 1= flagset. X = flag unknown.

T =flag is affected according to the result of the operation.

JUMP GROUP
TABLE 7.0-9

Page 12-55

Flags Op-Code
Symbolic No. No. No.
Mnemonic Operation }’ s - <- bit # -> of of M of T Comments
v 76 543 210 Bytes Cycles | States
CALL nn (SP-1) « PCy of o | 11001101 3 5 17
(SP-Z) « PC, <- n ->
PC « nn <-n->
CALL cc,nn If condition cc is o| o . 11 cc 100 3 3 10 | Mfecisfalse.
false, continue, <-n -> 3 5 17 | Ifccis tue.
otherwise same as
<-n->
CALL nn
RET PC. « (SP) o o | 11001001 1 3 10
PCy « (SP+1)
RET cc If condition cc is el o] ¢l | 11 cc000 1 3 5 | Mfecisfalse.
faIse, 1 3 11 If cc is true.
Contin U &, cc Condition
otherwise same as 000 NZ non zero
RET 001 Z zero
010 NC non carry
RETI Returns from of o . 11101 101 2 4 14 011 C carry
Interrupt. 01 001 101 101 PE party even
RETN Return from non- of o | 11101101 2 4 14 110 P sign positive
111 M sign negative
maskable 01 000 101
interrupt. t D
RST p (SP-1) « PCy el o] ele] 11t111 1 3 11 | o
(SP-Z) P PCL 010 10H
011 18H
PCy <0 100 20H
101 28H
PCL « P 110 30H
111 38H
Flag Notation < = flag not affected. 0 =flag reset. 1= flagset. X = flag unknown.

T =flag is affected according to the result of the operation.

CALL AND RETURN GROUP

TABLE 7.0-10

Page 12-56

Symbolic Flags Op-Code No. No. No.
Mnemonic Operation P Of Of M of T Comments
Z\ /18 <- bit # -> Bytes Cycles | States
v 76 543 210
IN A,(n) A« (n) o o] e 11 011 011 2 3 11 ntoAo—A;
< n -> Acc to As —Ais
IN 1,(C) r<(C) Jp| O 11 101 101 2 3 12 | CtoA-As
If r=110, only the flags 01 r 000 BtoAs—Aus
will be affected
INI (HL) « (C) ¥ x| x 11 101 101 2 4 16 | CtoA-A;
B=B-1 # 10 100 010 B0 As—Ass
HL=HL + 1
INIR (HL) « (C) 1] X| X 11 101 101 2 5 21 | CtoAi—-As
B =B-1 10 110 010 1B #0 BtoAs—Ass
HL = HL + 1 2 4 16
Repeat until B=0. IfB=0
IND (HL) « (C) ¥ x| x 11 101 101 2 4 16 | CtoAi—-As
B =B-1 # 10 101 010 BtoAs—Aus
HL=HL-1
INDR (HL) « (C) 1] x| x 11 101 101 2 5 21 | CtoAi-As
B = B-1 10 111 010 1B #0 BtoAs—Ais
HL = HL-1 2 4 16
Repeat until B=0. IfB=0
OUT n,A (n) « A oo 11 010 011 2 3 11 | ntoA—A;
< n -> Acc to As —Ais
OUT (C),r (C)er o] 11 101 101 2 3 12 | CtoA-A;
01 r 001 B0 As—Ass
OUTI (C) « (HL) ¥ x| x 11 101 101 2 4 16 | CtoAi-A;
B=B1 # 10 100 011 BoAs—Aus
HL=HL +1
OTIR (C) « (HL) 1| x| X 11 101 101 2 5 21 | CtoA-4Ay
B=B1 10 110 011 1B %0 B0 As—Aus
HL=HL + 1 2 4 16
Repeat until B=0. ItB=0
OUTD (C) « (HL) ¥ x| x 11 101 101 2 4 16 | CtoAi-A;
B = B-1 # 10 101 011 BtoAs—Ass
HL = HL-1
OTDR (C) « (HL) 1] X| X 11 101 101 2 5 21 | CtoA—As
B=B-1 10111 011 1fB #0 BtoAs—Aus
HL = HL-1 2 4 16
Repeat until B=0. IEB=0
Notes: # If the result of B-1 is zero, the Z flag is set, otherwise it is reset.

Flag Notation

+ = flag not affected.
T =flag is affected according to the result of the operation.

0 = flag reset.

INPUT AND OUTPUT GROUP

TABLE 7.0-11

1 = flag set. X = flag unknown.

Page 12-57

8.0 INTERRUPT RESPONSE

The purpose of an interrupt is to allow peripheral devices to suspend CPU operation in an orderly manner
and force the CPU to start a peripheral service routine. Usually this service routine is involved with the
exchange of data, or status and control information, between the CPU and the peripheral. Once the service
routine is completed, the CPU returns to the operation from which it was interrupted.

INTERRUPT ENABLE - DISABLE

The Z80 CPU has two interrupt inputs, a software maskable interrupt and a non-maskable interrupt.
The non-maskable interrupt (NMI) can not be disabled by the programmer and it will be accepted whenever a
peripheral devise requests it. This interrupt is generally reserved for very important functions that must be
serviced whenever they occur, such as an impending power failure. The maskable interrupt (INT) can be
selectively enabled or disabled by the programmer. This allows the programmer to disable the intemrupt
during periods where his program has timing constraints that do not allow it to be interrupted. In the Z80
CPU there is an enable flip flop (called IFF) that is set or reset by the programmer using the Enable Interrupt
(EI) and Disable Interrupt (DI) instructions. When the IFF is reset, an interrupt can not be accepted by the
CPU.

Actually, for purposes that will be subsequently explained, there are two enable flip .flops, called IFF
and 1FF,.

IFF, IFF,
Actually disables interrupts Temporary storage location
from being accepted. for lFF].

The state of IFF; is used to actually inhibit interrupts while IFF, is used as a temporary storage location for
IFF,. The purpose of storing the IFF; will be subsequently explained.

A reset to the CPU will force both IFF, and IFF, to the reset state so that interrupts are disabled. They
can then be enabled by an EI instruction at any time by the programmer. When an EI instruction is
executed, any pending interrupt request will not be accepted until after the instruction following EI hasbeen
executed. This single instruction delay is necessary for cases when the following instruction is a return
instruction and interrupts must not be allowed until the return has been completed. The EI instruction sets
both IFF; and IFF, to the enable state. When an interrupt is accepted by the CPU, both IFF; and IFF, are
automatically reset, inhibiting further interrupts until the programmer wishes to issue a new El instruction.
Note that for all of the previous cases, IFF; and IFF, are always equal.

The purpose of IFF; is to save the status of IFF; when a non-maskable interrupt occurs. When a non-
maskable interrupt is accepted, IFF; is reset to prevent further interrupts until reenabled by the programmer.
Thus, after a non-maskable interrupt has been accepted, maskable interrupts are disabled but the previous
state of IFF; has been saved so that the complete state of the CPU just prior to the non-maskable interrupt
can be restored at any time. When a Load Register A with Register I (LD A, I) instruction or a Load
Register A with Register R (LD A, R) instruction is executed, the state of IFF is copied into the parity flag
where it can be tested or stored.

A second method of restoring the status of IFF; is thru the execution of a Return From Non-Maskable
Interrupt (RETN) instruction. Since this instruction indicates that the non-maskable interrupt service routine
is complete, the contents of IFF, are now copied back into 1FF;, so that the status of 1FF; just prior to the
acceptance of the non-maskable interrupt will be restored automatically.

Page 12-58

Figure 8.0-1 is a summary of the effect of different instructions on the two enable flip

flops.

Action IFF, IFFE,

CPU Reset 0 0

DI 0 0

EI 1 1

LDAI . . IFF, — Parity flag
LDAR . . IFF, — Parity flag
Accept NMI 0 .

RETN IFF, - IFF, — IFF,

"" indicates no change

FIGURE 80-1
INTERRUPT ENABLE/DISABLE FLIP FLOPS

CPU RESPONSE Non-Maskable

A non-maskable interrupt will be accepted at all times by the CPU. When this occurs, the CPU ignores
the next instruction that it fetches and instead does a restart to location 0066H. Thus, it behaves exactly as if
it had received a restart instruction but, it is to a location that is not one of the 8 software restart locations. A
restart is merely a call to a specific address in page O of memory.

Maskable

The CPU can be programmed to respond to the maskable interrupt in any one of three possible modes.

Mode 0

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupting device
can place any instruction on the data bus and the CPU will execute it. Thus, the interrupting device provides
the next instruction to be executed instead of the memory. Often this will be a restart instruction since the
interrupting device only need supply a single byte instruction. Alternatively, any other instruction such as a 3
byte call to any location in memory could be executed.

The number of clock cycles necessary to execute this instruction is 2 more than the normal number for
the instruction. This occurs since the CPU automatically adds 2 wait states to an interrupt response cycle to
allow sufficient time to implement an external daisy chain for priority control. Section 5.0 illustrates the
detailed timing for an interrupt response. After the application of RESET the CPU will automatically enter
interrupt Mode O.

Mode 1

When this mode has been selected by the programmer, the CPU will respond to an interrupt by
executing a restart to location 0038H. Thus the response is identical to that for a non-maskable interrupt
except that the call location is 0038H instead of 0066H. Another difference is that the number of cycles
required to complete the restart instruction is 2 more than normal due to the two added wait states.

Page 12-59

Mode 2

This mode is the most powerful interrupt response mode. With a single 8 bit byte from the user an
indirect call can be made to any memory location.

With this mode the programmer maintains a table of 16 bit starting addresses for every interrupt service
routine. This table may be located anywhere in memory. When an interrupt is accepted, a 16 bit pointer
must be formed to obtain the desired interrupt service routine starting address from the table. The upper 8
bits of this pointer is formed from the contents of the I register. The I register must have been previously
loaded with the desired value by the programmer, i.e. LD I, A. Note that a CPU reset clears the I register so
that it is initialized to zero. The lower eight bits of the pointer must be supplied by the interrupting device.
Actually, only 7 bits are required from the interrupting device as the least significant bit must be a zero.
This is required since the pointer is used to get two adjacent bytes to form a complete 16 bit service routine
starting address and the addresses must always start in even locations.

/
desired starting address

Interrupt pointed to by:
Service
Routine { low order } 1 REG 7 BITS FROM |/
Starting high order CONTENTS PERIPHERAL
Address [
Table

\

The first byte in the table is the least significant (low order) portion of the address. The programmer must
obviously fill this table in with the desired addresses before any interrupts are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/Write
Memory) to allow different peripherals to be serviced by different service routines.

Once the interrupting devices supplies the lower portion of the pointer, the CPU automatically pushes
the program counter onto the stack, obtains the starting address from the table and does a jump to this
address. This mode of response requires 19 clock periods to complete (7 to fetch the lower 8 bits from the
interrupting device, 6 to save the program counter, and 6 to obtain the jump address.)

Note that the Z80 peripheral devices all include a daisy chain priority interrupt structure that auto-
matically supplies the programmed vector to the CPU during interrupt acknowledge. Refer to the Z80-P10,
7.80-SI0 and Z80-CTC manuals for details.

Page 12-60

(This page deliberately blank.)

Page 12-61
9.0 HARDWARE IMPLEMENTATION EXAMPLES

This chapter is intended to serve as a basic introduction to implementing systems with the Z80-CPU.

MINIMUM SYSTEM

Figure 9.0-1 is a diagram of a very simple Z-80 system. Any Z-80 system must include the following five
elements:

1) Five volt power supply
2) Oscillator
3) Memory devices
4) I/0O circuits
5) CPU
os¢ POWER SUPPLY

0 !

Ag- Ag +5VOLTS GND

ADDRESS
{} "

8KBIT
ROM

— cE,

CE,

(o)

+5V

RESET TORQ

Z80 PIO

w on jg— A

PORT A PORT B
OUTPUT INPUT
DATA DATA

FIGURE 9.0-1
MINIMUM 280 COMPUTER SYSTEM

Since the Z80-CPU only requires a single 5 volt supply, most small systems can be implemented using
only this single supply.

The oscillator can be very simple since the only requirement is that it be a 5 volt square wave. For systems
not running at full speed, a simple RC oscillator can be used When the CPU is operated near the highest possible
frequency, a crystal oscillator is generally required because the system timing will not tolerate the drift or jitter
that an RC: network will generate. A crystal oscillator can be made from inverters and a few discrete

components or monolithic circuits are widely available.

The external memory can be any mixture of standard RAM, ROM, or PROM. In this simple example
we have shown a single 8K bit ROM (1K bytes) being utilized as the entire memory system. For this example
we have assumed that the Z-80 internal register configuration contains sufficient Read/Write storage so that

external RAM memory is not required.

Page 12-62

Every computer system requires I/O circuits to allow it to interface to the "real world." In this simple
example it is assumed that the output is an 8 bit control vector and the input is an 8 bit status word. The
input data could be gated onto the data bus using any standard tri-state driver while the output data could
be latched with any type of standard TTL latch. For this example we have used a Z80-PIO for the I/O
circuit. This single circuit attaches to the data bus as shown and provides the required 16 bits of TTL
compatible I/0. (Refer to the Z80-PIO manual for details on the operation of this circuit.) Notice in this
example that with only three LSI circuits, a simple oscillator and a single 5 volt power supply, a powerful
computer has been implemented.

ADDING RAM

Most computer systems require some amount of external Read/Write memory for data storage and to
implement a "stack." Figure 9.0-2 illustrates how 256 bytes of static memory can be added to the previous
example. In this example the memory space is assumed to be organized as follows:

Address
0000H

1K bytes
ROM

03FFH
256 bytes 0400H

RAM
04FFH

ADDRESS BUS

lleo—Ag 1J[AO-A7 lVLAO-A7

oD CE, |
256 x 4

|
2
3
]
o
o
2
2
o

3
3
]
S
2
ENE
3 |o
2
>
2
>
]
s
P

W RAM Ao
CE, R/W CE, R/W CE o p——

dg-dz dg-d3 da-dy

DATA BUS

FIGURE 9.0-2
ROM & RAM IMPLEMENTATION EXAMPLE

In this diagram the address space is described in hexadecimal notation. For this example, address bit Ay
separates the ROM space from the RAM space so that it can be used for the chip select function. Forlarger
amounts of external ROM or RAM, a simple TTL decoder will be required to form the chip selects.

MEMORY SPEED CONTROL

For many applications, it may be desirable to use slow memories to reduce costs. The WAIT line on
the CPU allows the Z-80 to operate with any speed memory. By referring back to section 4 you will notice
that the memory access time requirements are most severe during the M1 cycle instruction fetch. All other
memory accesses have an additional one half of a clock cycle to be completed. For this reason it may be
desirable in some applications to add one wait state to the MI cycle so that slower memories can be used.
Figure 9.0-3 is an example of a simple circuit that will accomplish this task. This circuit can be changed to
add a single wait state to any memory access as shown in Figure 9.0-4.

Page 12-63

WAIT
+5V -
l Tl T2 Tw il Ta | Taf
Wi s s ®
D Q D Q
» 7474 7478 - —\——j-—-—-
c al ~—c Q
R : R
T T WAIT \ /
+5V +5V
FIGURE 9.0-3
ADDING ONE WAIT STATE TO AN M1 CYCLE
o
+5V +5V 7400
l tL T1 1'2 Tw
MREQ s s ¢
D Q D Q
7474 7474 e
MREQ \
¢ c [o] c Q]
WAIT \ /

R R
T+5v T4-5V
FIGURE 9.0-4

ADDING ONE WAIT STATE TO ANY MEMORY CYCLE

INTERFACING DYNAMIC MEMORIES

This section is intended only to serve as a brief introduction to interfacing dynamic memories. Each
individual dynamic RAM has varying specifications that will require minor modifications to the description
given here and no attempt will be made in this document to give details for any particular RAM. Separate
application notes showing how the Z80-CPU can be interfaced to most popular dynamic RAM's are available
from Zilog,.

Figure 9.0-5 illustrates the logic necessary to interface 8K bytes of dynamic RAM using 18 pin 4K
dynamic memories. This figure assumes that the RAM's are the only memory in the system so that A is
used to select between the two pages of memory. During refresh time, all memories in the system must be read.
The CPU provides the proper refresh address on lines A, through As. To add additional memory to the system it
is necessary to only replace the two gates that operate on A, with a decoder that operates on all required address
bits. For larger systems, buffering for the address and data bus is also generallyrequired.

Page 12-64

—
MREQ

>

=
A1z

—0
—)—1
Ag-Aqq CE
> 4K x8 RAM ARRAY
RMW
PAGE 1
<d0-d7 DATA BUS (1000 to 1FFF)
CE
WR. [—> 4K x8 RAM ARRAY
R/W
PAGE 0
(0000 to OFFF)

FIGURE 9.0-5
INTERFACING DYNAMIC RAMS

Page 12-65

10.0 SOFTWARE IMPLEMENTATION EXAMPLES
10.1 METHODS OF SOFTWARE IMPLEMENTATION

Several different approaches are possible in developing software for the Z-80 (Figure 10.1). First of
all, Assembly Language or PL/Z may be used as the source language. These languages may then be trandated
into machine language on a commercial time sharing facility using a cross-assembler or cross-compiler or, in
the case of assembly language, the translation can be accomplished on a Z-80 Development System using a
resident assembler. Finally, the resulting machine code can be debugged either on a time-sharing facility using
a Z-80 simulator or on a Z-80 Development System which usesa Z80-CPU directly.

SOURCE
LANGUAGE TRANSLATION DEBUGGING
RESIDENT ASSEMBLER
ASSEMBLY DEVELOPMENT
LANGUAGE SYSTEM
MACHINE
CROSS ASSEMBLER N NCUAGE
PL/Z OR OTHER
HIGH LEVEL SIMULATOR
LANGUAGE _L—[CROSS COMPILER
FIGURE 10.1

In selecting a source language, the primary factors to be considered are clarity and ease of programming
vs. code efficiency. A high level language such as PL/Z with its machine independent constructs is typically
better for formulating and maintaining algorithms, but the resulting machine code is usually somewhat less
efficient than what can be written directly in assembly language. These tradeoffs can often be balanced by
combining PL/Z and assembly language routines, identifying those portions of a task which must be
optimized and writing them as assembly language subroutines.

Deciding whether to use a resident or cross assembler is a matter of availability and short-term vs.
long-term expense. While the initial expenditure for a development system is higher than that for a time-
sharing terminal, the cost of an individual assembly using a resident assembler is negligible while the same
operation on a time-sharing system is relatively expensive and in a short time this cost can equal the total cost
of a development system.

Debugging on a development system vs. a simulator is also a matter of availability and expense com-
bined with operational fidelity and flexibility. As with the assembly process, debugging is less expensive on
a development system than on a simulator available through time-sharing. In addition, the fidelity of the
operating environment is preserved through real-time execution on a Z80-CPU and by connecting the 1/0
and memory components which will actually be used in the production system. The only advantage to the
use of a simulator is the range of criteria which may be selected for such debugging procedures as tradng and
setting breakpoints. This flexibility exists because a software simulation can achieve any degree of
complexity in its interpretation of machine instructions while development system procedures have hard
ware limitations such as the capacity of the real-time storage module, the number of breakpoint registers and
the pin configuration of the CPU. Despite such hardware limitations, debugging on a development system is
typically more productive than on a simulator because of the direct interaction that is possible between the
programmer and the authentic execution of his program.

Page 12-66

The Z-80 instruction set provides the user with a large and flexible repertoire of operations with which
to formulate control of the Z80-CPU.

The primary, auxiliary and index registers can be used to hold the arguments of arithmetic and logical
operations, or to form memory addresses, or as fast-access storage for frequently used data.

Information can be moved directly from register to register; from memory to memory; from memory
to registers; or from registers to memory. In addition, register contents and register/memory contents can be
exchanged without using temporary storage. In particular, the contents of primary and auxiliary registers
can be completely exchanged by executing only two instructions, EX and EXX. This register exchange
procedure can be used to separate the set of working registers between different logical procedures or to
expand the set of available registers in a single procedure.

Storage and retrieval of data between pairs of registers and memory can be controlled on a last-in first-
out basis through PUSH and POP instructions which utilize a special stack pointer register, SP. This stack
register is available both to manipulate data and to automatically store and retrieve addresses for subroutine
linkage. When a subroutine is called, for example, the address following the CALL instructionis placed on
the top of the push-down stack pointed to by SP. When a subroutine returns to the calling routine, the
address on the top of the stack is used to set the program counter for the address of the next instruction.
The stack pointer is adjusted automatically to reflect the current "top" stack position during PUSH, POP,
CALL and RET instructions. This stack mechanism allows pushdown data stacks and subroutine calls to be
nested to any practical depth because the stack area can potentially be as large as memory space.

The sequence of instruction execution can be controlled by six different flags (carry, zero, sign,
parity/overflow, add-subtract, half carry) which reflect the results of arithmetic, logical, shift and compare
instructions. After the execution of an instruction which sets a flag, that flag can be used to control a
conditional jump or return instruction. These instructions provide logical control following the manipula
tion of single bit, eight-bit byte (or) sixteen-bit data quantities.

A full set of logical operations, including AND, OR, XOR (exclusive - OR), CPL (NOR) and NEG
(two's complement) are available for Boolean operations between the accumulator and 1) all other eight-bit
registers, 2) memory locations or 3) immediate operands.

In addition, a full set of arithmetic and logical shifts in both directions are available which operate on
the contents of all eight-bit primary registers or directly on any memory location. The carry flag can be
included or simply set by these shift instructions to provide both the testing of shift results and to link
register/register or register/memory shift operations.

10.3 EXAMPLES OF USE OF SPECIAL Z80 INSTRUCTIONS

A. Let us assume that a string of data in memory starting at location "DATA" is to be moved into another
area of memory starting at location "BUFFER" and that the string length is 737 bytes. This
operation can be accomplished as follows:

LD HL,DATA ; START ADDRESS OF DATA STRING

LD DE,BUFFER ; START ADDRESS OF TARGET BUFFER

LD BC,737 ; LENGTH OF DATA STRING

LDIR ; MOVE STRING - TRANSFER MEMORY POINTED TO BY HL

INTO MEMORY LOCATION POINTED TO BY DE
; INCREMENT HL AND DE, DECREMENT BC
; PROCESS UNTIL BC = 0.

11 bytes are required for this operation and each byte of data is moved in 21 clock cycles.

Page 12-67

Let's assume that a string in memory starting at location "DATA" is to be moved into another area of
memory starting at location "BUFFER" until an ASCII $ character (used as string delimiter) is found.
Let's also assume that the maximum string length is 132 characters. The operation can be performed as
follows:

LD HL,DATA ; STARTING ADDRESS OF DATA STRING
LD DE,BUFFER ; STARTING ADDRESS OF TARGET BUFFER
LD BC,132 ; MAXIMUM STRING LENGTH
LD A'$; STRING DELIMITER CODE
LOQP: CP (HL) ; COMPARE MEMORY CONTENTS WITH DELIMITER
JR Z ,END-$; GO TO END IF CHARACTERS EQUAL
LDI ; MOVE CHARACTER (HL) to (DE)
; INCREMENT HL AND DE, DECREMENT BC
JP PE, LOOP ; GOTO "LOOP" IF MORE CHARACTERS
END: ; OTHERWISE, FALL THROUGH

; NOTE: P/V FLAG IS USED
; TO INDICATE THAT REGISTER BC WAS
; DECREMENTED TO ZERO.

19 bytes are required for this operation.
Let us assume that a 16-digit decimal number represented in packed BCD format (two BCD digits/byte)

has to be shifted as shown in the Figure 10.2 in order to mechanize BCD multiplication or division.
The operation can be accomplished as follows:

LD HL,DATA ; ADDRESS OF FIRST BYTE
LD B,COUNT ; SHIFT COUNT
XOR A : CLEAR ACCUMULATOR
ROTAT: RLD : ROTATE LEFT LOW ORDER DIGIT IN ACC
: WITH DIGITS IN (HL)
INC HL ; ADVANCE MEMORY POINTER

DINZ ROTAT - $; DECREMENT B AND GO TO ROTAT IF
; BIS NOT ZERO, OTHERWISE FALL THROUGH

11 bytes are required for this operation.

4

VNN

FIGURE 10.2

Page 12-68

D. Let us assume that one number is to be subtracted from another and a) that they are both in packed BCD
format, b) that they are of equal but varying length, and c) that the result is to be stored in the location
of the minuend. The operation can be accomplished as follows:

LD HL, ARG1 ; ADDRESS OF MINUEND
LD DE, ARG2 : ADDRESS OF SUBTRAHEND
LD B, LENGTH ; LENGTH OF TWO ARGUMENTS
AND A : CLEAR CARRY FLAG
SUBDEC: LD A, (DE) ; SUBTRAHEND TO ACC
SBC A, (HL) ; SUBTRACT (HL) FROM ACC
DAA : ADJUST RESULT TO DECIMAL CODED VALUE
LD (HL), A ; STORE RESULT
INC HL ; ADVANCE MEMORY POINTERS
INC DE
DINZ SUBDEC-$; DECREMENT B AND GO TO "SUBDEC"

; IF BNOT ZERO, OTHERWISE FALL THROUGH

17 bytes are required for this operation.

104 EXAMPLES OF PROGRAMMING TASKS

A. The following program sorts an array of numbers each in the range (0,255) into ascending order using a
standard exchange sorting algorithm.

01/22/76

LOC

0000
0003
0005
0006
0007
000B
000E
000F
0012
0013
0015
0018
001B
001D
001F

0021
0023
0025

0026
0026

222600
CB84

41

05
DD2A2600
DD7E00
57
DDSEO1
93

3008
DD7300
DD7201
CBC4
DD23
10EA

CB44
ODE
C9

11:14:37
OBJCODE STMT

© O N DUl kA W N

N NN R B2 R B 2 2 92 3 @92
N P © ©W 0 N O Ul N W= ©

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

BUBBLE LISTING PAGE 1

SOURCE STATEMENT

; ¥ STANDARD EXCHANGE (BUBBLE) SORT ROUTINE ***

>
>

>

AT ENTRY: HL CONTAINS ADDRESS OF DATA
C CONTAINS NUMBER OF ELEMENTS TO BE SORTED
(1<C<256)

AT EXIT: DATA SORTED IN ASCENDING ORDER

USE OF REGISTERS

REGISTER CONTENTS 12 ;

;A TEMPORARY STORAGE FOR CALCULATIONS
: B COUNTER FOR DATA ARRAY
; C LENGTH OF DATA ARRAY
; D FIRSTELEMENT IN COMPARISON
; E SECOND ELEMENT IN COMPARISON
; H FLAG TO INDICATE EXCHANGE
;L UNUSED
; IX POINTER INTO DATA ARRAY
;1Y UNUSED
SORT: LD (DATA), HL : SAVE DATA ADDRESS
LOOP: RES FLAG, H ; INITIALIZE EXCHANGE FLAG
LD B,C ; INITIALIZE LENGTH COUNTER
DEC B ; ADJUST FOR TESTING
IX, (DATA) ; INITIALIZE ARRAY POINTER
NEXT: LD A, (IX) : FIRST ELEMENT IN COMPARISON
ID D,A ; TEMPORARY STORAGE FOR ELEMENT
LD E, (IX+1) ; SECOND ELEMENT IN COMPARISON
SUB E ; COMPARISON FIRST TO SECOND
JR NC, NOEX-$; IF FIRST > SECOND, NO JUMP
D (IX), E ; EXCHANGE ARRAY ELEMENTS
LD (IX+1),D
SET FLAG, H :RECORD EXCHANGE OCCURRED
NOEX: INC X ; POINT TO NEXT DATA ELEMENT
DINZ NEXT-$; COUNT NUMBER OF COMPARISONS
; REPEAT IF MORE DATA PAIRS
BIT FLAG, H ; DETERMINE IF EXCHANGE OCCURRED
JR NZ, LOOP-$; CONTINUE IF DATA UNSORTED
RET :OTHERWISE, EXIT
FLAG: EQU 0 ; DESIGNATION OF FLAG BIT
DATA: DEFS 2 ; STORAGE FOR DATA ADDRESS

END

Page 12-69

Page 12-70

B. The following program multiplies two unsigned 16 bit integers and leaves the result in the HL register pair.

01/22/76 11:32:36 MULTIPLY LISTING PAGE 1
LOC OBJCODE STMT SOURCE STATEMENT
0000 1 MULT: ; UNSIGNED SIXTEEN BIT INTEGER MULTIPLY.
2 ; ON ENTRANCE: MULTIPLIER IN DE.
3 ; MULTIPLICAND IN HL.
4 ;
5 ; ON EXIT: RESULT IN HL.
6 ;
7 ; REGISTER USES:
8 ;
9 ;
10 ; H HIGH ORDER PARTIAL RESULT
1 ; L LOW ORDER PARTIAL RESULT
12 ; D HIGH ORDER MULTIPLICAND
13 ; E LOW ORDER MULTIPLICAND
14 ; B COUNTER FOR NUMBER OF SHIFTS
15 ; C HIGH ORDER BITS OF MULTIPLIER
16 ; A LOW ORDER BITS OF MULTIPLIER
17 ;
0000 0610 18 LD B, 16 ; NUMBER OF BITS- INITIALIZE
0002 4A 19 LD CD ; MOVE MULTIPLIER
0003 7B 20 LD AE ;
0004 EB 21 EX DE, HL ; MOVE MULTIPLICAND
0005 210000 22 LD HL, O ; CLEAR PARTIAL RESULT
0008 CB39 23 MLOOP SRL C ; SHIFT MULTIPLIER RIGHT
000A 1F 24 RRA ; LEAST SIGNIFICANT BIT IS
25 ; IN CARRY.
000E 3001 26 JR NC, NOADD-$;IF NO CARRY, SKIP THE ADD.
000D 19 27 ADD HL, DE ; ELSE ADD MULTIPLICAND TO
28 ; PARTIAL RESULT. '
000E EB 29 NOADD: EX DE, HL ; SHIFT MULTIPLICAND LEFT
000F 29 30 ADD HL, HL ; BY MULTIPLYING IT BY TWO.
0010 EB 31 EX DE, HL ;
0011 10F5 32 DINZ MLOOP-$; REPEAT UNTIL NO MORE BITS.
0013 C9 33 RET ;

34 END 5

Page 12-71

Absolute Maximum Ratings

Temperature Under Bias Specified operating range. *Comment Note: For Z80-CPU all AC and DC characteristics remain the
Storage Temperature -65°C 10 +150°C Stre : “ same for the military grade parts except I ...

sses above those listed under **Absolute cc
Voltage On Any Pin 0.3V to +7V

Maximum Rating’* may cause permanent
damage to the device. This is a stress rating
only and functional operation of the device
at these or any other condition above those
indicated in the operational sections of this
specification is not implied. Exposure to
absolute maximum rating conditions for
extended periods may affect device reliability.

with Respect to Ground

1,c = 200mA
Power Dissipation 1.5W

Capacitance

T, =25°C,f=1 MHz,
unmeasured pins returned to ground

Z80-CPU D.C. Characteristics

Tpo= 0°C 10 70°C. Ve =5V £ 5% unless otherwise specified

Symbol | Parameter Min. Typ. | Max. | Unit Test Condition Symbol | Parameter Max. | Unit
ViLe Clock Input Low Voltage -0.3 045 v Co Clock Capacitance 35 pF
ViHC Clock Input High Voltage Voo -6 V3|V CiN Input Capacitance 5 pF
ViL Input Low Voltage -0.3 08 v Cout Output Capacitance 10 pF
Vi Input High Voltage 2.0 Vcc A%
VoL Output Low Voltage 04 v loL=18mA
v Output High Voltage 24 V | 1y = -250uA 280-CPU
OH OH . .
Ordering Information
lce Power Supply Current 150 mA
c- .
I Input Leakage Current 10 MA VIN=0toV P I(’:I:::i"c“c
. S — Standard 5V 5% 0° to 70°C
ILOH Tri-State Output Leakage Current in Float 10 MA VouTt=24toV E — Extended 5V 5% -40° to 85°C
M — Military SV £10% -55° to 125°C
ILoL Tri-State Output Leakage Current in Float -10 MA Vout=04v
'p Data Bus Leakage Current in Input Mode +10 HA OSV|INS Vcc
. Capacitance
Z80A-CPU D.C. Characteristics o ¢
L) TA=2'5(.t=ll\rlH7..
TpA =0 C70°C. V=5V ¢ 5 unless otherwise specified unmeasured pins returned to ground
Symbol Parameter Min. Typ. Max. Unit Test Condition Symbol Parameter Max. Unit
ViLe Clock Input Low Voltage -0.3 045 v Co Clock Capacitance 35 pk
Vine Clock Input High Voluage vcc _6 Vect3| v N Input Capacitance < pk
ViL Input Low Voltage 0.3 0x v ot Output Capacitance 10 pF
3% Input High Voltage 20 V.. \Y
1H o
Vot Output Low Voltage 04 v |0L=I BimA
Von Output High Voluage AR} % lop = =250uA ZSOA_CPU
h(Power Supply Current 90 200 mA Ordering Information
ha Input Leakage Current 10 uA VINTO OV C - Ceramic
- P - Plast
hon To-State OQuiput Leakage Current m Float 10 MA Vour==to V“_ S - St:sn:‘lcard 5V £5% 0° to 70°C
|I ol Tr-State Output | eakage Currentin Float -10 HA VOUT=0.4V
ip Data Bus Leakage Current ain Input Mode *10 HA 0KV INSV

Page 12-72

A.C. Characteristics

780-CPU

Tp =0°C 10 70°C, Ve = +5V £ 5%, Unless Otherwise Noted.

Signal Symbol Parameter Min Max Unit Test Condition
1 Clock Period 4 [12] usec
@ ty (PH) Clock Pulse Width, Clock High 180 (E} nsec
ty (L) Clock Pulse Width, Clock Low 180 2000 nsec
Yoy Clock Rise and Full Time 30 nsec
D (AD) Address Output Delay 145 nsec
tF (AD) Delay to Float 110 nsec
A tacm Address Stable Prior to MREQ (Memory Cycle) 117 nsec C. = 50pF
0-15 Lyci Address Stable Prior to TORQ. RD or WR (1/0 Cycle) T3] nsec L=0P
ey Address Stable from R_D, W_]S_,m or MREQ (3] nsec
teaf Address Stable From RD or WR During Float (4] sec
'D(D) Data Qutput Delay 230 nsec
'F (D) Delay to Float During Write Cycle nsec
1S¢ (D) Data Setup Time to Rising Edge of Clock During M1 Cycle ~ 50 nsec
Dy_; 1S$ (D) Data Setup Time to Falling Edge of Clock During M2 to MS 60 nsec Cp =50pF
tdem Data Stable Prior to WR (Memory Cycle) (5] nsec
dci Data Stable Prior to WR (1/0 Cycle) 6] nsec
tedf Data Stable From WR 171
tH Any Hold Time for Setup Time 0 nsec
DL (MR) MREQ Delay From Falling Edge of Clock, MREQ Low 100 nsec
'DH® (MR) MREQ Delay From Rising Edge of Clock, MREQ High 100 nsec
MREQ {DH® (MR) MREQ Delay From Falling Edge of Clock, MRE') High 100 nsec CL = 50pF
tw (MRL) Pulse Width, MREQ Low 81 nsec
tw (MRH) Pulse Width, MREQ High 191 nsec
{DL® (IR) IORQ Delay From Rising Edge of Clock, IORQ Low 90 nsec
ORO 'DL® (IR) IORQ Delay From Falling Edge of Clock, IORQ Low 110 nsec C, = SOpF
{DH® (IR) I0RQ Delay From Rising Edge of Clock, IORQ High 100 nsec L
'DH® (IR) IORQ Delay From Falling Edge of Clock, IORQ High 110 nsec
DL (RD) R—_D Delay From Rising Edge of Clock, @Low 100 nsec
) {DLP (RD) RD Delay From Falling Edge of Clock, RD Low 130 nsec C. = S0pF
tDH® (RD) RD Delay From Rising Edge of Clock, RD High 100 nsec L P
'DH® (RD) RD Delay From Falling Edge of Clock, RD High 110 nsec
1pLe (WR) | WR Delay From Rising Edge of Clock, WR Low 80 | nsec
R tDLE (WR) | WR Delay From Falling Edge of Clock, WR Low 90 | msec | . SOpF
{DH® (WR) WR Delay From Falling Edge of Clock, WR High T00 nsec L
tw (WRL) Pulse Width, WR Low (10] nsec
i DL (M1) _M__I Delay From R::sfng Edge of Clock,E L(‘>w 130 nsec oo 50pF
'DH (M1) M1 Delay From Rising Edge of Clock, M1 High 130 nsec L
RFSH DL (RF) RFSH Delay From Rl:S!ng Edge of Clock, RFSH ng 180 nsec CL = 50pF
'DH (RF) RFSH Delay From Rising Edge of Clock, RFSH High 150 nsec
WAIT ts (WT) WAIT Setup Time to Falling Edge of Clock 70 nsec
HALT D (HT) HALT Delay Time From Falling Edge of Clock 300 | nsec C, =50pF
INT 53T) INT Setup Time to Rising Edge of Clock 80 nsec
NMI tw (NML) Pulse Width, NM1 Low 80 nsec
BUSRQ ts (BQ) BUSRQ Setup Time to Rising Edge of Clock 80 nsec
BUSAK tDL (BA) BUSAK Delay From Rising Edge of Clock, BUSAK Low 120 nsec C, = SOpF
{DH (BA) BUSAK Delay From Falling Edge of Clock, BUSAK High 110 nsec L
RESET 15 (RS) RESET Setup Time to Rising Edge of Clock 90 nsec
tF(C) Delay to Float (MREQ. TORQ. RD and WR) 100 | nsec
tmr M1 Stable Prior to IORQ (Interrupt Ack.) 1 nsec
NOTES
— TEST POINT
A. Duta should be enabled onto the CPU' data bus when RD 1s active. Duning interrupt acknowledge data
should be enabled when M1 and IORQ are both acuive. l':‘:::’:;"
B. All control signals are internally synchromzed. so they may be totally asynchronous with respect
(o the clock
(. The RESET signal must be active tor a mumimum of 3 clock cycles.
D. Output Delay vs. Loaded Capacitance

TA=70(

Vee = #5V + 57

Add 10nsec delay for each SOpf increase in load up to a maximum of 200pf for the data bus & 100pf for

address & control lines

Although static by design. testing guarantees 1, pH) of 200 usec maximum
.

112 1e = tyaH) * twol) * 4t Y

M tyem= twdH) - 75

[2] t,=1t -80
3] 1, = twoL) -40

(4) teaf = IM¢L)+ t -60
[S] tgem=tc-210

o] tgei = tw(or) * i - 210
171 'Cdf= tW(d’L) + tr -80

18] lw(MRL) = 1. -40

9] tyMRH) = twaH) * 11~ 30

101ty (WRL) =t - 40

{11] ‘mx:z‘c”wwH)“f‘BD

Ve

R -21K0

Load circuit for Qutput

A.C. Characteristics

Z80A-CPU

Page 12-73

Tp =0°Ct070°C. Vee =45V #

5% . Unless Otherwise Noted.

Signal Symbol Parameter Min Max Unit Test Condition
[Clock Period 28 112) usec (12] te=ty@H) t twon) * it
@ tw (PH) Clock Pulse Width, Clock High 110 |E] nsec
ty (PL) Clock Pulse Width, Clock Low 110 2000 nsec
o Clock Rise and Fall Time 30 nsec
D (AD) Address Output Delay 110 nsec
'F (AD) Delay to Float 90 nsec
A taem Address Stable Prior to MREQ (Memory Cycle) 1 nsec C) = 50pF
0-15 i Address Stable Prior to TORQ, RD or WR (1/0 Cycle) 7 nsec L=P 1 taom ™ tw(aH) * 1§~ 03
tea Address Stable from RD. WR. TORQ or MREQ 137 nsec
teaf Address Stable From RD or WR During Float TaT nsec 2] tyei=1t-70
D (D) Data Output Delay 150 nsec B ta=ty@r)t - 50
'F (D) Delay to Float During Write Cycle 90 nsec
. 1S (D) Data Setup Time to Rising Edge of Clock During M1 Cycle 35 nsec (4] tear=twoL) -4
Dy_; 1S& (D) Data Setup Time to Falling Edge of Clock During M2 to MS 50 nsec CL = 50pt
tdem Data Stable Prior to WR (Memory Cycle) 137 nsec 151 tgem=tc - 170
tdci Data Stable Prior to WR (1/0 Cycle) T67 nsec
Ledf Data Stable From WR kA (6] t4ei= tw@L) * - 170
tH Any Hold Time for Setup Time 0 nsec M tegr= tw(d>L) +t,-70
'DL® (MR) MREQ Delay From Falling Edge of Clock, MREQ Low 85 nsec
!DH® (MR) MREQ Delay From Rising Edge of Clock, MREQ High 85 nsec
MREQ ‘DHg(MR) MREQ Delay From Falling Edge of Clock. MREQ High 85 nsec (‘L = 50pF
w (MRL) Pulse Width, MREQ Low 18] nsec (8] tw(MRL)='c™ 30
w (MRH) Pulse Width, MREQ High 9] nsec
(91 GWMRH) = tw(eH) * 1~ 20
{DL® (IR) IORQ Delay From Rising Edge of Clock, IORQ Low 75 nsec
Y Tal {DL® (IR) ORQ Delay From Falling Edge of Clock, IORQ Low 5 nsec -
IORQ Cp = SOpF
{DH® (IR) IORQ Delay From Rising Edge of Clock, IORQ IORQ High S nsec
{DHP (IR) TORQ Delay From Falling Edge of Clock, TORQ High 5 nsec
tDL® (RD) RD Delay From Rising Edge of Clock, RD Low 85 nsec
) DL (RD) RD Delay From Falling Edge of Clock, RD Low 95 nsec C. = S0pF
tDH® (RD) &) Delay From Rising Edge of Clock, IiD_Hngh 85 nsec L P
'DH® (RD) RD Delay From Falling Edge of Clock, RD High 85 nsec
DL (WR) WR Delay From Rising Edge of Clock, WR Low 65 nsec
== IDLF (WR) WR Delay From Falling Edge of Clock, WR Low 80 nsec _
WR 'DH® (WR) WR Delay From Falling Edge of Clock, WR High 80 nsec €= SOpF
tw (WRL) Pulse Width, WR Low 1ol nsec
— — (0] ty(WRL) = tc -30
Wi DL (M1) M1 Delay From Rising Edge of Clock, M1 Low 100 nsec 1 ¢ = S0pF
'DH (M1) M1 Delay From Rising Edge of Clock, M1 High 100 nsec L P
RFSH DL (RF) RFSH Delay From Rn:s?ng Edge of Clock, RFSH ng 130 nsec CL = 50pF
'DH (RF) RFSH Delay From Rising Edge of Clock, RFSH High 120 nsec
WAIT 15 (WT) WAIT Setup Time to Falling Edge of Clock 70 nsec
HALT D (HT) HALT Delay Time From Failing Edge of Clock 300 nsec €\ = 50pF
INT 53IT) INT Setup Time to Rising Edge of Clock 80 nsec
) tw (NML) Pulse Width, NM1 Low 80 nsec
BUSRQ 15 (BQ) BUSRQ Setup Time to Rising Edge of Clock 50 nsec
—— DL (BA) BUSAK Delay From Rising Edge of Clock, BUSAK Low 100 nsec - .
BUSAK 'DH (BA) BUSAK Delay From Falling Edge of Clock, BUSAK High 100 nsec CL S0pF
RESET ts (RS) RESET Setup Time to Rising Edge of Clock 60 nsec
tF(C) Delay to Float (MREQ, IORQ. RD and WR) 80 | nsec
tmr M1 Stable Prior to IORQ (Interrupt Ack.) [RR1] nsec (1} tnr = 2(C + ‘w(OH) +ip- 65
Ve
NOTES:
TEST POINT w210
A. Data should be enabled onto the CPU data bus when RD is active. During interrupt acknowledge data [
should be enabled when M1 andm“e both active. UNDER TEST

All control signals are internally synchronized, so they may be totally asynchronous with respect

10 the clock

The RESET signal must be active for a minimum of 3 clock cycles.
. Output Delay vs. Loaded Capacitance

TA=70°C Vcc=+5V +5%

Add 10nsec delay for each 5Opf increase in load up to maximum of 200pf for data bus and 100pf for

address & control lines.

Although static by design, testing guarantees (w(’,H) of 200 usec maximum

Load circuit for Output

Page 12-74

A.C. Timing Diagram

Timing measurements are made at the following

voltages, unless otherwise specified: . “0”
CLOCK Ve -6V 45V
OUTPUT 20V 8V
— e INPUT 20V 8V
FLOAT Av +05V
W (dH)
' (AD)
W (L) —==ted
Ao-Ats >
'0 (AD)
4 , < e <% !
N 4
Ao-15 A X (« L e s
14 R Al
| ST (D) =] =
. '.-- N ,-h
IN I-’\ ﬂ o o
o o (D) —] .)
0-7 teq, 1 W] ¢ — H—'F (0
out S¢ (D) +=t ﬂ"'Sr 4.
>
._/‘:'.._t,g 1
‘oL (m1) '0H (M1)— f— 4= teat
M N <C v IN e
2 'OH (RF) 4= M teqt
0L (RF)—=] i
_ 1
RFSH / ﬁ‘ F (C)
53 =]
"DuT» (MR) 'DHI: (MR} ‘.D_"l]""“’ OHT (MR)—] >|__\
MREQ ! y \ S g
| (c H W (MRL) N v doa
It = W W (MRH) ' Y A
OLT (RD) DH» (RD)—= DHT (RD)— -
ﬁ e — —“
()L {,‘ v, '~
) LT
LT (WR),] k_(nw "l
- am S '—\‘ ﬁ
WR Lt tdem Ll‘w (W iw) “od--
'oLd: (1R) oL (IR) T
'DH: (IR)—=] 'DHT (1IR) = 'J;_
o —‘\
IORQ F ¢ t J N g
mr A —t—‘ac1 \ . v
‘oL (D) [T }:
DN’MRD)ﬂ —
- _‘ h
RD A Sedea
40
oL (WR) ’
'DHT (WR)~ |
o H\ /—_
R ‘-qp-
'Swr) (| W [N,
_ ¢
WAIT X 4
d 7. ' (HT) 1 (HT)
HALT \ A
sanl| tw S—y
iNT b
—---I’ _-—_
NMI Y
__ s (80) W |
w (NML)
=== Lo 'OH (8A)
DL (BA)|
BUSAK
'S (RS)| | M
RESET

% - Z80-CPU

Zilog INSTRUCTION SET

ADC HL, ss
ADCA,s
ADD A, n
ADD A, r
ADD A, (HL)

ADD A, (I1X+d)
ADD A, (1Y+d)

ADD HL, ss
ADD IX, pp
ADD LY, rr
AND s

BIT b, (HL)
BIT b, (I1X+d)
BIT b, (1Y+d)
BITb, r
CALL cc, nn

CALL nn

CCF
CPs
CPD

CPDR

CPI

CPIR

CPL
DAA
DECm
DEC IX

Add with Carry Reg. pair ss to HL
Add with carry operand s to Acc.
Add value n to Acc.

Add Reg. r to Acc.

Add location (HL) to Acc.

Add location (I1X+d) to Acc.

Add location (1Y+d) to Acc.

Add Reg. pair ss to HL

Add Reg. pair pp to IX

Add Reg. pair r to lY

Logical ‘AND’ of operand s and Acc.

Test BIT b of location (HL)
Test BIT b of location (1X+d)
Test BIT b of lozation (1Y+d)
Test BIT b of Reg. r

Call subroutine at location nn if
condition cc if true

Unconditional call subroutine at
location nn

Complement carry flag
Compare operand s with Acc.

Compare location (HL) and Acc.
decrement HL and BC

Compare location (HL) and Acc.
decrement HL and BC, repeat
until BC=0

Compare location (HL) and Acc.
increment HL and decrement BC

Compare location (HL)} and Acc.
increment HL, decrement BC
repeat until BC=0

Complement Acc. (1°s comp)
Decimal adjust Acc.
Decrement operand m

Decrement 1 X

DEC 1Y
DEC ss
DI

DINZ e

El

EX (SP), HL
EX (SP), IX
EX (SP), 1Y

EX AF, AF’

EX DE, HL

EXX

HALT
MO
M1
M2
INA,(n)

iNr, (C)

INC (HL)
iNC IX
INC (1X+d)
INC 1Y

INC (IY+d)
INCr

INC ss
IND

INDR

Page 12-75

Decrement |Y
Decrement Reg. pair ss
Disable interrupts

Decrement B and Jump
relative if B#0

Enable interrupts

Exchange the location (SP) and HL
Exchange the location (SP) and I X
Exchange the location (SP) and IY

Exchange the contents of AF
and AF’

Exchange the contents of DE
and HL

Exchange the contents of BC, DE,
HL with contents of BC’, DE’, HL’
respectively

HALT (wait for interrupt or reset)
Set interrupt mode 0
Set interrupt mode 1
Set interrupt mode 2

Load the Acc. with input from
device n

Load the Reg. r with input from
device (C)

Increment location (HL)
Increment IX
Increment location (I X+d)

Increment |Y

Increment location (1Y+d)
Increment Reg. r
Increment Reg. pair ss

Load location (HL) with input
from port (C), decremenit HL
and B

Load location (HL) with input
from port (C), decrement HL and
decrement B, repeat until B=0

Load location (HL) with input
from port (C); and increment HL
and decrement B

Page 12-76

INIR

JP (HL)
JP (1X)
JP (1Y)

JP cc, nn

JP nn

JPC, e
JRe

JPNC, e
JRNZ, e

JRZ, e

LD A, (BC)
LD A, (DE)
LD A, I

LD A, (nn)
LDA,R

LD (BC), A
LD (DE), A
LD (HL),n
LD dd, nn
LD HL, (nn)
LD (HL), r
LDI, A

LF IX, nn
LD IX, (nn)
LD (IX+d), n
LD (IX+d), r
LD 1Y, nn
LD 1Y, (nn)
LD (1Y+d), n
LD (1Y+d), r

Load location (HL) with input
from port (C), increment HL
and decrement B, repeat until
B=0

Unconditional Jump to (HL)
Unconditional Jump to (1X)
Unconditonal Jump to (1Y)

Jump to location nn if
condition cc is true

Unconditional jump to location
nn

Jump relative to PC+e if carry=1

Unconditional Jump relative
to PC+e

Jump relative to PC+e if carry=0

Jump relative to PC+e if non
zero (Z=0)

Jump relative to PC+e if zero (2=1)
Load Acc. with location (BC)

Load Acc. with location (DE)
Load Acc. with |

Load Acc. with location nn

Load Acc. with Reg. R

Load location (BC) with Acc.

Load location (DE) with Acc.
Load location (HL) with value n

Load Reg. pair dd with value nn

Load HL with location (nn)

Load location (HL) with Reg. r
Load | with Acc.

Load 1X with value nn

Load IX with location (nn)

Load location (1X+d) with value n
Load location (1X+d) with Reg. r
Load 1Y with value nn

Load IY with location (nn)

Load location (1Y+d) with value n

Load location (1Y+d) with Reg. r

LD (nn), A
LD (nn), dd
LD (nn), HL
LD (nn), IX
LD (nn), 1Y
LDR,A

LD r, (HL)
LD r, (IX+d)
LD r, (1Y+d)
LDr,n
LDr,r

LD SP, HL
LD SP, IX
LD SP, IY
LDD

LDDR

LDI

LDIR

NEG
NOP

ORs
OTDR

OTIR

ouT (C), r

OuUT (n), A
OouTD

ouTI

Load location (nn) with Acc.
Load location (nn) with Reg. pair dd
Load location (nn) with HL
Load location (nn) with I1X

Load location (nn) with 1Y

Load R with Acc.

Load Reg. r with location (HL)
Load Reg. r with location (1X+d)
Load Reg. r with location (1 Y+d)
Load Reg. r with value n

Load Reg. r with Reg. r’

Load SP with HL

Load SP with IX

Load SP with |Y

Load location (DE) with location
(HL), decrement DE, HL and BC

Load location (DE) with location
(HL), decrement DE, HL and BC;
repeat until BC=0

Load location (DE) with location
(HL), increment DE, HL,
decrement BC

Load location (DE) with location
(HL), incremeént DE, HL,
decrement BC and repeat until
BC=0

Negate Acc. (2's complement)
No operation

Logical ‘OR’ or operand s and Acc.
Load output port (C) with location
(HL) decrement HL and B, repeat
until B=0

Load output port (C) with location
(HL), increment HL, decrement B,
repeat until B=0

Load output port (C) with Reg. r

Load output port (n) with Acc.

Load output port (C) with location
(HL), decrement HL and B

Load output port (C) with location
(HL), increment HL and decrement
B

POP IX
POP IY
POP qq
PUSH IX
PUSH IY
PUSH qq
RES b, m

RET
RET cc

RETI
RETN
RLm

RLA

RLC (HL)
RLC (IX+d)
RLC (1Y+d)
RLCr
RLCA
RLD

Load IX with top of stack

Load 1Y with top of stack

Load Reg. pair qq with top of stack
Load IX onto stack

Load 1Y onto stack

Load Reg. pair qq onto stack

Reset Bit b of operand m

Return from subroutine

Return from subroutine if condition
cc is true

Return from interrupt

Return from non maskable interrupt
Rotate left through carry operand m
Rotate left Acc. through carry
Rotate location (HL) left circular
Rotate location (I1X+d) left circular
Rotate location (1Y+d) left circular
Rotate Reg. r left circular

Rotate left circular Acc.

Rotate digit left and right between
Acc. and location (HL)

RR m
RRA
RRC m
RRCA
RRD

RST p

SBCA,s

SBC HL, ss

SCF

SET b, (HL)
SET b, {1X+d)
SET b, (1Y+d)
SET b, r
SLAm

SRA m

SRL m

SUB s

XOR s

Page 12-77

Rotate right through carry operand m
Rotate right Acc. through carry
Rotate operand m right circular
Rotate right circular Acc.

Rotate digit right and left between
Acc. and location (HL)

Restart to location p

Subtract operand s from Acc. with
carry

Subtract Reg. pair ss from HL with
carry

Set carry flag (C=1)

Set Bit b of location (HL)

Set Bit b of location (1X+d)

Set Bit b of location (1Y+d)

Set Bit b of Reg. r

Shift operand m left arithmetic
Shift operand m right arithmetic
Shift operand m right logical
Subtract operand s from Acc.

Exclusive ‘OR’ operand s and Acc.

Page 12-78

(This page deliberately blank.)

Page 13-1

INS8250 ASYNCHRONOUS COMMUNICATIONS ELEMENT™*

INS8250 Functional Pin Description

The function of all INS8250 input/output pins are
described in the following paragraphs. (See the
INS8250 Block Diagram, Illustration Booklet, Page
16). Some of these descriptions reference internal cir-
cuits. A low in these descriptions represents a logic 0
(0 volt nominal) and a high represents a logic
1(+2.4 volts nominal).

INPUT SIGNALS

Chip Select (CS0, CS1, CS2), Pins 12 -14: When CS0
and CS1 are high and CS2 is low, the chip is selected.
Chip selection is complete when the decoded chip
select sib is latched with an active (low) Address
Strobe (ADS) input. This enables communication be-
tween the INS8250 and the CPU.

Data Input Strobe (DISTR, DISTR), Pins 22 and 21:
When DISTR is high or DISTR is low while the chip
is selected, this allows the CPU to read status
information or data from a selected register of the
INS8250.

NOTE: Only an active DISTR or DISTR input is
required to transfer data from the INS8250 during a
read operation. Therefore, tie either the DISTR input
permanently low or the DISTR input permanently
high, if not used.

Data Output Strobe (DOSTR, DOSTR), Pins 19 and
18: When DOSTR is high or DOSTRis low while the
chip is selected, this allows the CPU to write data or
control words into a selected register of the INS8250.

NOTE: Only an active DOSTR or DOSTR input is
required to transfer data to the INS8250 during a
write operation. Therefore, tie either the DOSTR
input permanently low or the DOSTR input
permanently high, if not used.

Address Strobe (ADS), Pin 25: When low, it pro-
vides latching for the Register Select (A0, A1, A2) and
Chip Select (CS, CS1, CS2) signals.

* Portions of this section are reprinted with the permission of
National Semiconductor.

NOTE: An active ADS input is required when the
Register Select (A0, Al, A2) signals are not stable
for the duration of a_read or write operation. If
not required, tie the ADS input permanently low.

Register Select (A0, A1, A2), Pins 26 - 28: These
three inputs are used during a read or write operation
to select an INS8250 register to read from or write into
as indicated in the table below. Note that the state of
the Divisor Latch Access Bit (DLAB), which is the
most significant bit of the line control register, affects
the selection of certain INS8250 registers. The DLAB
is reset low when the Master Reset (MR) input is
active (low); the DLAB must be set high by the system
software to access the baud generator divisor latches.

DLAB | A | A, | A, Register

0 0|0 |oO Receiver Buffer (read), Transmitter

Holding Register (write)
0 0|0 |1 Interrupt Enable
x |o |1 |o | interrupt identification (read only)
X o |1 |1 Line Control
X 1 10 |0 MODEM Control
X 110 |1 Line Status
X 1 11 |0 MODEM Status
X 1 1 1 None

-
o
o
o

Divisor Latch (least significant byte)

Divisor Latch (most significant byte)

Master Reset (MR), Pin 35: When high, it clears all
the registers (except the receiver buffer, transmitter
holding, and divisor latches), and the control logic of
the INS8250. Also, the state of various output
signals (SOUT, INTRPT, OUT 1, OUT 2, RTS, DTR)
are affected by an active MR input. (Refer to Table 1 on
Page 14-3.)

Receiver Clock (RCLK), Pin 9: This input is the 16x
baud rate clock for the receiver section of the chip.

Serial Input (SIN), Pin 10: Serial data input from
the communications link (peripheral device,
MODEM, or data set).

Page 13-2

Clear to Send (CTS), Pin 36: The CTS signal is a
MODEM control function input whose condition
can be tested by the CPU by reading bit 4 (CTS)
of the MODEM status register. Bit 0 (DCTS) of the
MODEM status register indicates whether the CTS
input has changed state since the previous
reading of the MODEM status register.

NOTE: Whenever the CTS bit of the MODEM
status register changes state, an interrupt is generated
if enabled.

Data Set Ready (DSR), Pin 37: When low, it indi-
cates that the MODEM or data set is ready to establish
the communications link and transfer data with the
INS8250. The DSR signal is a MODEM-control
function input whose condition can be tested by the
CPU by reading bit 5 (DSR) of the MODEM status
register. Bit 1 (DDSR) of the MODEM status register
indicates whether the DSR input has chaged state
since the previous reading of the MODEM status reg-
ister.

NOTE: Whenever the DSR bit of the MODEM
status register changes state, an interrupt is
generated if enabled.

Received Line Signal Detect (RLSD), Pin 38: When
low, it indicates that the data carrier has been de-
tected by the MODEM or data set. The RLSD signal is a
MODEM-control function input whose condition can
be tested by the CPU by reading bit 7 (RLSD) of
the MODEM status register. Bit 3 (DRLSD) of the
MODEM status register indicates whether the RLSD
input has changed state since the previous read-
ing of the MODEM status register.

NOTE: Whenever the RLSD bit of the MODEM
status register changes state, an interrupt is
generated if enabled.

Ring Indicator (RI), Pin 39: When low, it
indicates that a telephone ringing signal has been
received by the MODEM or data set. The RI signal
is a MODEM control function input whose condition
can be tested by the CPU by reading bit 6 (RI) of the
MODEM status register. Bit 2 (TERI) of the
MODEM status register indicates whether the RI
input has changed from a low to a high state since
the previous reading of the MODEM status register.

NOTE: Whenever the RI bit of the MODEM
status register changes from a high to a low state, an
interrupt is generated if enabled.

Vcc, Pin 40: +5-volt supply.
Vss, Pin 20: Ground (0-volt) reference.

OUTPUT SIGNALS

Data Terminal Ready (DTR), Pin 33: When
low, it informs the MODEM or data set that the
INS8250 is ready to communicate. The DTR output
signal can be set to an active low by programming bit
0 (DTR) of the MODEM control register to a high
level. The DTR signal is set high upon a Master
Reset operation.

Request to Send (RTS), Pin 32: When low, it informs
the MODEM-or data set that the INS8250 is ready to
transmit data. The RTS output signal can be set to an
active low by programming bit 1(RTS) of the
MODEM control register. The RTS signal is set
high upon a Master Reset operation.

Output 1 (OUT1), Pin 34: A user-designated
output that can be set to an active low by
programming bit 2 (OUT1) of the MODEM control
register to a high level. The OUT1 signal is set
high upon a Master Reset operation.

Output 2 (OUT2), Pin 31: A user-designated
output that can be set to an active low by
programming bit 3 (OUT2) of the_ MODEM control
register to a high level. The OUT?2 signal is set
high upon a Master Reset operation.

Chip Select Out (CSOUT), Pin 24: When
high, it indicates that the chip has been selected by
active CS0, CS1, and CS2 inputs. No data transfer
can be initiated until the CSOUT signal is a logic 1.

Driver Disable (DDIS), Pin 23: Goes low
whenever the CPU is reading data from the
INS8250. A high level DDIS output can be used to
disable an external transceiver (if used between the
CPU and INS8250 on the D; — D, Data Bus) at all
times, except when the CPU is reading data.

Baud Out (BAUDOUT), Pin 15: 16x clock signal
for the transmitter section of the INS8250 . The clock
rate is equal to the main reference oscillator
frequency divided by the specified divisor in the
baud generator divisor latches. The BAUDOUT may
also be used for the receiver section by typing this
output to the RCLK input of the chip.

Interrupt (INTRPT), Pin 30: Goes high
whenever any one of the following interrupt
sources has an active high condition: Receiver
Error Flag; Received Data Available; Transmitter
Holding Register Empty; and MODEM Status.
The INTRPT signal is reset low upon a Master
Reset operation.

Serial Output (SOUT), Pin 11: Composite serial
data output to the communications link (peripheral,
MODEM or data set). The SOUT signal is set to
the Marking (logic 1) state upon a Master Reset
operation.

Page 13-3
INPUT/OUTPUT SIGNALS

Data (D;-Do) Bus, Pins 1 - 8: This bus comprises
eight TRI-STATE input/output lines. The bus pro-
vides bidirectional communications between the
INS8250 and the CPU. Data, control words, and status
information are transferred via the D;-D, data bus.

External Clock Input/output (XTAL 1, XTAL 2),
Pins 16 and 17: These two pins connect the main
timing reference (crystal or signal clock) to the
INS8250.

I
Register/Signal Reset Control Reset State
Receiver Buffer Register First Word Received Data
. . . Writing into the
Transmitter Holding Register Transmitter Holding Register Data
All bits Low
Interrupt Enable Register Master Reset (0 - 3 forced and 4 - 7 permanent)
Bit 0 is High and
Interrupt Identification Register Master Reset Bits 1 - 7 Are Permanently Low
Line Control Register Master Reset All Bits Low
MODEM Control Register Master Reset All Bits Low
All Bits Low,
Line Status Register Master Reset Except Bits 5 & 6 Are High
ODEM S . Master Reset Bits 0 - 3 Low
M tatus Register MODEM Signal Inputs Bits 4 - 7 — Input Signal
Divisor Latch (low order bits) Writing into the Latch Data
Divisor Latch (high order bits) Writing into the Latch Data
souT Master Reset High
BAUDOUT Wiriting into Either Divisor Latch Low
CSOUT ADS Strobe Signai and State of Hiah/Low
ov Chip Select Lines 'gh/Lo
DDIS = CSOUT * RCLK « DISTR
DDIS (AT Master Reset, the CPU High
sets RCLK and DISTR low.)
INTRPT Master Reset Low
ouT 2 Master Reset High
RTS Master Reset High
OTR Master Reset High
OUT 1 Master Reset High
In TRI-STATE Mode, TRI-STATE
D, - D, Data Bus Lines Unless CSOUT - DISTR = High DATA (ACE to CPU)
or CSOUT - DOSTR = High DATA (CPU to ACE)

Table 1

Programming

Reset Control of Registers and Pinout Signals.

Page 13-4

Programming

When you use ZDS software, you will not be
concerned with programming the 8250 ACE
(asynchronous communications element) in the
serial I/O circuit board. However, this section will
be indispensable if you intend to assemble your
own program code.

In order to easily program the 8250, you should:
1. Disable all UART interrupts by clearing the
interrupt enable register.
Set the ACE in its loop-back mode.
Program the ACE as you want it.
Read a character.
Wait two character times.
Read a second character.

Take the ACE out of the loop-back mode.

N ok W

INS8250 ACCESSIBLE REGISTERS

You (the system programmer) may access or control
any of the INS8250 registers summarized in Table 1
via the CPU. These registers are used to control
[NS8250 operations and to transmit and receive data.

INS8250 Line Control Register

Specify the format of the asynchronous data com-
munications exchange via the Line Control Register.
In addition to controlling the format, you may retrieve
the contents of the Line Control Register for inspec-
tion. This feature simplifies system programming and
eliminates the need for separate storage in system
memory of the line characteristics. The contents of the
Line Control Register are indicated in Table 2 and are
described below.

Bits 0 and 1: These two bits specify the number of
bits in each transmitted or received serial character.
The encoding of bits 0 and 1 is as follows:

Bit 2: This bit specifies the number of Stop bits in
each transmitted or received serial character. If bit 2 is
a logic 0, 1 Stop bit is generated or checked in the
transmit or receive data, respectively. If bit 2 is a logic
1 when a 5-bit word length is selected via bits 0 and 1,
1-1/2 Stop bits are generated or checked. If bit 2 is
a logic 1 when either a 6-, 7-, or 8-bit word length is
selected, 2 Stop bits are generated or checked.

Bit 3: This is the Parity Enable bit. When Bit 3 is a
logic 1, a Parity bit is generated (transmit data) or
checked (receive data) between the last data word bit
and Stop bit of the serial data. (The Parity bit is used to
produce an even or odd number of 1s when the data
word bits and the Parity bit are summed.)

Bit4: This is the Even Parity Select bit. When bit 3 is a
logic 1 and bit 4 is a logic 0, an odd number of logic
1s is transmitted or checked in the data word bits and
Parity bit. When bit 3 is a logic 1 and bit 4 is a logic
1, an even number of bits is transmitted or checked.

Bit 5: This is the Stick Parity bit. When bit 3 is a logic
1 and bit 5 is a logic 1, the Parity bit is transmitted and
then detected by the receiver in the opposite state
indicated by bit 4.

Bit 6: This is the Set Break Control bit. When bit 6 is
a logic 1, the serial output (SOUT) is forced to the
spacing (logic 0) state and remains there (until reset
by a low-level bit 6) regardless of other transmitter
activity. This feature enables the CPU to alert a termi-
nal in a computer communications system.

Bit 7: This is the Divisor Latch Access bit (DLAB). It
must be set high (logic 1) to access the Divisor Latches
of the baud rate generator during a Read or Write
operation. It must be set low (logic 0) to access the
receiver buffer, the transmitter holding register, or the
interrupt enable register.

Page 13-5

Register Address
ODLAB =0 JODLAB =0 J1DLAB =0 2 3 4 5 6 ODLAB =1 J1DLAB =1
Receiver Tnnuviﬂef Interrupt J Interrupt Line MODEM Line MODEM Divisor Divisor
:“'_': :“',":“ Enable |identfication | Control Control Status Status Latch Latch
egister egister .) .))) MS
R t Register Register Register Register Register LS) (MS)
8it No| (Read Oniy) | (write Onty) | 0™ 9 0 oo
Enable
Received 0t | WordLengn | %@ Deita Clear
) Data) Terminal Data Ready . Bi
0 Data Bit 0* Data Bit 0 Available Interrupt Select Bit 0 Ready (OR) to Send Bit 0 it 8
i DCTS
Interrupt Pending (WLS0) (DTR) 0CTS)
(ERBF!)
Enable
Transmitter
Holding Interrupt Word Length | Request to Overrun Delta Data
1 Data Bit 1 Data Bit 1 Register [0} Select Bit 1 Send Error Set Ready Bit 1 Bit 9
Empty Bit (0) (WLS1) (RTS) (OR) (DDSR)
Interrupt
(ETBEI)
Enable i
Trail
Receiver e
Line Interrupt Number of Parity Edge
2 DataBit2 | Data Bit 2 Status D Stop Bits Out 1 Error Ring Bit 2 Bit 10
Bit (1) (STB) (PE) Indicator
Interrupt (TERI)
(ELSI)
Deita
Enable) Receive
MODEM Parity Framing Line
3 | DaaBita | Datasit3 Status 0 Enable Oout 2 Error Signal Bit 3 Bit 11
Interrupt (PEN) (FE) Detect
(EDSSI) (DRLSD)
;E::n Break Clear to
4 Data Bit 4 Data Bit 4 0 0 Sele::lt Loop Interrupt Send . Bit 4 Bit 12
(EPS) (Bl) (CTS)
Trans@ner Data
Stick Holding Set
5 Data Bit 5 Data Bit 5 0 (1]) 0 Register Bit 5 Bit 13
Parity Ready
Empty (DSR)
(THRE)
Transmitter
Sal Shift Ring
6 Data Bit 6 Data Bit 6 0 0 0 Register Indicator Bit 6 Bit 14
Break
Empty (RI)
(TSRE)
Divisor Received
Latch Line
7 Data Bit 7 Data Bit 7 0 0 Access 0 0 Signal Bit 7 Bit 15
Bit Detect
(DLAB) (RLSD)

* Bit 0 is the least significant bit. It is the first bit serially transmitted or received.

Table 2

Summary of INS8250 Accessible Registers.

Page 13-6

8250 PROGRAMMABLE BAUD
RATE GENERATOR

The 8250 contains a programmable baud rate
generator that takes the 1.8432 MHz clock and divides it by
any divisor from 1 to 2'°-1. The output frequency of the
baud generator is 16 x the baud rate. Two 8-bit latches
store the divisor in a 16-bit binary format. These Divisor
Latches must be loaded during initialization in order to
insure desired operation of the baud rate generator.
Upon loading either of the divisor latches, a 16-bit
baud counter is immediately loaded. This prevents long
counts on initial load.

Table 3 illustrates the standard baud rates and the
contents of the LS (least significant) and MS (most
significant) latches expressed in byte octal.

BAUD RATE DIVISOR LATCH
(LS) (MS)
75 000 006
110 027 004
134.5 131 003
150 000 003
300 200 001
600 300 000
1200 140 000
2400 060 000
4800 030 000
9600 014 000
19200 006 000
38400 003 000
57600 002 000
Table 3
Baud Rates.

LINE STATUS REGISTER

This 8-bit register provides status information to the
CPU concerning the data transfer. The contents of the
line status register are indicated in Table 2 and are
described below.

Bit 0: This bit is the receiver Data Ready (DR) indi-
cator. Bit O is set to a logic 1 whenever a complete
incoming character has been received and transferred
into the receiver buffer register. Bit O may he reset to a
logic O either by the CPU reading the data in the
receiver buffer register or by writing a logic 0 into it
from the CPU.

Bit 1: This bit is the Overrun Error (OE) indicator, Bit
1 indicates that data in the Receiver Buffer Register
was not read by the CPU before the next character was
transferred into the receiver buffer register, thereby
destroying the previous character. The OE indicator is
reset whenever the CPU reads the contents of the line
status register.

Bit 2: This bit is the Parity Error (PE) indicator. Bit 2
indicates that the received data character does not
have the correct even or odd parity, as selected by the
even-parity-select bit. The PE bit is set to a logic 1
upon detection of a parity error and is reset to a logic 0
whenever the CPU reads the contents of the line status
register.

Bit 3: This bit is the Framing Error (FE) indicator. Bit
3 indicates that the received character did not have a
valid Stop bit. Bit 3 is set to a logic 1 whenever the
Stop bit following the last data bit or parity bit is
detected as a zero bit (Spacing level).

Bit 4: This bit is the Break Interrupt (BI) indicator.
Bit 4 is set to a logic 1 whenever the received data
input is held in the Spacing (logic 0) state for longer
than a full word transmission time (that is, the total
time of Start bit + data bits + Parity + Stop bits).

NOTE: Bits 1 through 4 are the error conditions that
produce a Receiver Line Status interrupt whenever
any of the corresponding conditions are detected.

Bit 5: This bit is the Transmitter Holding Register
Empty (THRE) indicator. Bit 5 indicates that the
INS8250 is ready to accept a new character for
transmission. In addition, this bit causes the
INS8250 to issue an interrupt to the CPU when the
Transmit Holding Register Empty Interrupt enable
is set high. The THRE bit is set to a logic 1 when a
character is transferred from the transmitter holding
register into the transmitter shift register. The bit is
reset to logic 0 concurrently with the loading of the
transmitter holding register by the CPU.

Bit 6: This bit is the Transmitter Shift Register
Empty (TSRE) indicator. Bit 6 is set to a logic 1
whenever the transmitter shift register is idle. It is
reset to logic 0 upon a data transfer from the transmitter
holding register to the transmitter shift register. Bit
6 is a read-only bit.

Bit 7: This bit is permanently set to logic 0.

INTERRUPT IDENTIFICATION REGISTER

The INS8250 has an on-chip interrupt capability that
allows for complete flexibility in interfacing to all the
popular microprocessors presently available. In order
to provide minimum software overhead during data
character transfers, the INS8250 prioritizes
interrupts into four levels. The four levels of
interrupt conditions are as follows: Receiver Line
Status (priority 1); Received Data Ready (priority 2);
Transmitter Holding Register Empty (priority
3); and MODEM Status (priority 4).

Information indicating that a prioritized interrupt is
pending and the source of that interrupt are stored in
the interrupt identification register (refer to Table 4).
The interrupt identification register (IIR, when ad-
dressed during chip-select time, freezes the highest
priority interrupt pending and no other interrupts are
acknowledged until the particular interrupt is ser-
viced by the CPU. The contents of the IIR are
indicated in Table 2 and are described below.

Bit 0: This bit can be used in either a hardwired
prioritized or polled environment to indicate whether
an interrupt is pending. When bit 0 is a logic 0, an
interrupt is pending and the IIR contents may be used
as a pointer to the appropriate interrupt service
routine. When bit 0 is a logic 1, no interrupt is
pending and polling (if used) continues.

Bits 1 and 2: These two bits of the IIR are used to
identify the highest priority interrupt pending as in-
dicated in table 3.

Bits 3 through 7: These five bits of the IIR are always
logic 0.

INTERRUPT ENABLE REGISTER

This 8-bit register enables the four interrupt sources
of the INS8250 to separately activate the chip Inter-
rupt (INTRPT) output signal. It is possible to
totally disable the interrupt system by resetting
bits 0 through 3 of the interrupt enable register.
Similarly, by setting the appropriate bits of this register
to a logic 1, selected interrupts can be enabled.
Disabling the interrupt system inhibits the interrupt
identification register and the active (high) INTRPT
output from the chip. All other system functions
operate in their normal manner, including the setting
of the line status and MODEM status registers. The
contents of the interrupt enable register are indicated
in Table 1 and are described below.

Page 13-7

Bit 0: This bit enables the Received Data Available
Interrupt when set to logic 1. Bit O is reset to logic 0
upon completion of the associated interrupt service
routine.

Bit 1: This bit enables the Transmitter Holding Reg-
ister Empty Interrupt when set to logic 1. Bit 1 is reset
to logic 0 immediately upon reading the Interrupt
Identification Register.

Bit 2: This bit enables the Receiver Line Status Inter-
rupt when set to logic 1. Bit 2 is reset to logic 0
upon completion of the associated interrupt service
routine.

Bit 3: This bit enables the MODEM Status Interrupt
when set to logic 1. Bit 3 is reset to logic 0 upon
completion of the associated interrupt service
routine.

Bits 4 through 7: These four bits are always logic
0.
MODEM CONTROL REGISTER

This 8-bit register controls the interface with the
MODEM or data set (or a peripheral device emulating
a MODEM). The contents of a MODEM control
register are indicated in Table 2 and are described
below.

Bit 0: This bit controls the Data Terminal Ready
(DTR) output. When bit 0 is set to a logic 1, the
DTR output is forced to a logic 0. When bit 0 is
reset to a logic 0, the DTR output is forced to a
logic 1.

NOTE: The DTR output of the INS8250 may be
applied to an EIA inverting line driver (such as the
DS1488) to obtain the proper polarity input at the
succeeding MODEM or data set.

Bit 1: This bit controls the Request to Send
(RTS) output. Bit 1 affects the RTS output in a
manner identical to that described above for bit 0.
Bit 2: This bit controls the Output 1 (OUT1)
signal, which is_an auxiliary user-designated output.
Bit 2 affects the OUT1 output in a manner identical to
that described above for bit 0.

Bit 3: This bit controls the Output 2 (OUT2)
signal, which is an auxiliary user-designated
output. Bit 3 affects the OUT2 output in a manner
identical to that described above for bit 0.

Page 13-8

Bit 4: This bit provides a loopback feature for
diagnostic testing of the INS8250. When bit 4 is set to
logic 1, the following occur: the transmitter Serial
Output (SOUT) is set to the Marking (logic 1)
state; the receiver Serial Input (SIN) is
disconnected; the output of the transmitter shift
register is "looped back" into the receiver shift
register_input; the four_ MODEM control inputs
(CTS, DSR, RLSD, and RI) are disconnected; and
the four MODEM control outputs (DTR, RTS,
OUT1, and OUT2) are internally connected to the
four MODEM Control inputs. In the diagnostic
mode, data that is transmitted is immediately re-
ceived. This feature allows the processor to verify
the transmit- and receive-data paths of the INS8250.

In the diagnostic mode, the receiver and transmitter
interrupts are fully operational. The MODEM
control Interrupts are also operational but the
interrupts sources are now the lower four bits of
the MODEM control register instead of the four
MODEM control inputs. The interrupts are still
controlled by the interrupt enable register.

The INS8250 interrupt system can be tested by writ-
ing into the lower six bits of the line status register
and the lower four bits of the MODEM status register.
Setting any of these bits to a logic 1 generates the
appropriate interrupt (if enabled). The resetting of
these interrupts is the same as in normal INS8250
operation. To return to this operation, the registers
must be reprogrammed for normal operation and then
bit 4 must be reset to logic 0.

Bits 5 through 7: These bits are permanently set to
logic 0.

MODEM STATUS REGISTER

This 8-bit register provides the current state of
the control lines from the MODEM (or peripheral
device) to the CPU. In addition to this current-state
information, four bits of the MODEM status register

provide change information. These bits are set to
a logic 1 whenever a control input from the
MODEM changes state. They are reset to logic
0 whenever the CPU reads the MODEM status
register.

The contents of the MODEM status register are
indicated in Table 2 and are described below.

Bit 0: This bit is the Delta Clear to Send
(DCTS) indicator. Bit 0 indicates that the CTS
input to the chip has changed state since the last
time it was read by the CPU.

Bit 1: This bit is the Delta Data Set Ready
(DDSR) indicator. Bit 1 indicates that the DSR
input to the chip has changed state since the last
time it was read by the CPU.

Bit 2: This bit is the Trailing Edge of Ring
(TERI) detector, Bit 2 indicates that the RI input to
the chip has changed from an On (logic 1) to an Off
(logic 0) condition.

Bit 3: This bit is the Delta Received Line
Signal Detector (DRLSD) indicator. Bit 3 indicates
that the RLSD input to the chip has changed
state.

NOTE: Whenever bit 0, 1, 2, or 3 is set to logic 1,
a MODEM Status interrupt is generated.

Bit 4:_This bit is the complement of the Clear to
Send (CTS) input.

Bit 5: This bit is the complement of the Data
Set Ready (DSR) input.

Bit 6: This bit is the complement of the Ring
Indicator (RI) input.

Bit 7: This bit is the complement of the
Received Line Signal Detect (RLSD) input.

Page 13-9

Interrupt Identification

Interrupt Set and Reset Functions

Register
" . . Priority Interrupt Interrupt Interrupt
Bit 2 Bit 1
Bito Level Flag Source Reset Control
0 0 1 — None None -
Overrun Error
or
" Receiver Parity Error Reading the
1 1
° Highest Line Status or Line Status Register
Framing Error
or
Break Interrupt
Received Receiver Reading the
1 0
0 Second Data Available Data Available Receiver Buffer Register
Reading the
IIR Register
Transmitter Transmitter (if source of interrupt)
0 1 0 Third Holding Register Holding Register or
Empty Empty Writing into the
Transmitter Holding
Register
Clear to Send
or
MODEM Deta Set Ready Reading the
0 0 0 Fourth Status A I:’. MODEM Status
ng Indicator Register
or
Received Line
Signal Detect
Table 4

Interrupt Control Functions.

Page 13-10

(This page deliberately blank.)

Page 14-1

INDEX

ANSI Escape Sequences, 11-17

Summary of Sequences, 11-17

ANSI Mode Summary, 11-19

ANSI Escape Sequences Defined, 11-20
Appendix, 11-1
ASCII Characters, 11-1

Baud Rates, 4-2, 4-3 Boot Disk, 6-1

Cabinet Removal, 3-2
Circuit Board X-Ray Views, Illus. Bk. Pg. 8
CPU Circuit Board, Pg. 13
Power Supply, Pg. 10
Serial Interface Circuit Board, Pg. 14
Terminal Logic Circuit Board, Pg. 11
Video Circuit Board, Pg. 11
Video Driver Circuit Board, Pg. 12
Circuit Description, 8-1
CPU Logic Circuit Board, 8-15
Power Supply Circuit Board, 8-2
Terminal Logic Circuit Board, 8-6
Video Circuit Board, 8-3
Video Driver Circuit Board, 8-6
Command Summary, 5-1
Computing Test, 3-4
Configuration, 4-1, 5-10
ZDS System Configuration, 4-1
Non-ZDS System Configuration, 4-7
Cursor Functions, 5-7, 11-10, 11-12, 11-17, 11-21

Demonstration Programs, 11-50
Duplex (Half/Full), 4-2, 4-3, 5-3
Dynamic RAM Test, 3-3

Erasing and Editing, 5-9, 11-10, 11-13, 11-18, 11-22

Escape Sequences, 5-4, 5-14, 5-15, 11-1, 11-10,
11-26

Functions of a Computer, The, 11-27

General Troubleshooting Information, 7-2
Go, 3-3, 5-2,
Graphic Symbols, 11-4, 11-5, 11-6

Initial Tests, 3-3

Instruction Set, 11-31

INS8250 Asynchronous Communications Element,
13-1

Introduction, 1-3

I/O Port Map, 4-6

Keyboard Operation, 5-2
Keypad Functions, 5-14, 11-8, 11-9

List of Features, 1-5

Memory Map, 4-6
Memory Test, 3-3
Modem, 4-5, 4-7

Nonalphabetic Keys, 5-4
Normal Modes and Keys, 5-4
Alphabetic Keys, 5-4

Control Keys, 5-6
Nonalphabetic Keys, 5-4
Miscellaneous Keys, 5-5

Operation, 5-1

Parity, 4-2, 4-3
Power Line Considerations, 3-1
Programming Jumpers, 4-4, 4-5

Readjustment, 6-1

Replacement Parts List, 9-1
Chassis Parts, 9-5
CPU Logic Circuit Board, 9-4
Power Supply Circuit Board, 9-1
Serial Interface Circuit Board, 9-6
Terminal Logic Circuit Board, 9-3
Video Circuit Board, 9-1
Video Driver Circuit Board, 9-3

Page 14-2

Schematic Diagram (3-part), fold-in
Semiconductor Identification, 10-1
Component Number Index, 10-1
Part Number Index, 10-5
Set-up and Testing, 3-1
Special Modes and Keys, 5-7
Specifications, 2-1
Split Octal, 5-1, 5-2
Substitute memory, 5-2
System Configuration, 4-1
Terminal Logic Circuit Board, 4-1
Switch S402, 4-1
Switch 5401, 4-2
CPU Logic Circuit Board, 4-4
Switch SW501, 4-4
Serial Interface, 4-4

Testing, 3-3
Initial Tests, 3-3
Memory Test, 3-3
Transmitted Codes, 11-7

Use as a Terminal, 5-18

ZDS Escape Sequences, 5-5, 5-6, 5-7, 11-10
Summary of Sequences, 11-10

ZDS Escape Sequences Defined, 5-7, 11-12

ZDS System Configuration, 4-1

780 CPU, 8-1

