

MICROSOFT

BASIC-80

Microsoft

BASIC-80

Software Reference
Manual

for HEATH/ZENITH 8-bit digital computer systems

595-2538-02
Printed in the United

 Copyright ©1961 HEATH COMPANY States of America
 Heath Company BENTON HARBOR, MICHIGAN 49022
 All Rights Reserved

Portions of this Manual have been adapted from Microsoft publications or documents.
COPYRIGHT © by Microsoft, 1979, all rights reserved.

III

Table of Contents

Chapter One - System Introduction and General Information

Overview .. 1-1
Installation Guide .. 1-2

Contents of the Diskettes .. 1-3
Sample Output of PI.BAS ... 1-4
Diskette Use ... 1-5
Preparing Working Diskettes ... 1-8

System Introduction ... 1-9
Manual Scope .. 1-9
Hardware Requirements ... 1-10
System Software Requirements ... 1-10
Preparing the Diskette .. 1-11
Initialization of BASIC-80 .. 1-11

General Information ... 1-12
Modes of Operation ... 1-12
Line Format ... 1-12
Line Numbers .. 1-12
Character Set .. 1-13
Control Characters .. 1-14

BASIC-80 Programming ... 1-15
Loading the BASIC-80 Interpreter ... 1-15
Writing a BASIC-80 Program ... 1-17
Running a BASIC-80 Program .. 1-19
Debugging a BASIC-80 Program ... 1-20
Saving a BASIC-80 Program .. 1-22
Loading a BASIC-80 Program .. 1-23
Listing a BASIC-80 Program on a Hard Copy Device ... 1-24

Chapter Two - Expression

Overview .. 2-1
Constants... 2-2

String Constants ... 2-2
Numeric Constants ... 2-2

Integer Constants .. 2-2
Fixed Point Constants .. 2-2
Floating Point Constants .. 2-2
Hex Constants .. 2-2
Octal Constants ... 2-3
Single and Declaration Characters .. 2-3

Variables ... 2-4
Variable Names and Declaration Characters .. 2-4
Examples of BASIC-80 Variable names ... 2-5
Array Variables ... 2-5
Type Conversions ... 2-6

Expressions and Operators ... 2-8
Arithmetic Operators .. 2-8

Integer Division and Modulus Arithmetic .. 2-9
Overflow and Division by Zero .. 2-9

Relational Operators ... 2-10
Logical Operators .. 2-11

Logical Operators in Relational Expressions ... 2-14
Functional Operators ... 2-14

Chapter Three - Command Mode Statements

Overview .. 3-1
Command Mode Statements ... 3-2

AUTO .. 3-2
CLEAR .. 3-3
CONT ... 3-4
DELETE .. 3-4
EDIT ... 3-5
FILES ... 3-6
LIST ... 3-7
LLIST ... 3-7
LOAD ... 3-8
MERGE ... 3-9
NEW ... 3-9
RENUM .. 3-10
RESET .. 3-11
RUN ... 3-12
SAVE ... 3-13
SYSTEM .. 3-13

Chapter Four - Program Statements

Overview .. 4-1
Data Type Definition ... 4-2

DEFINT .. 4-2
DEFSNG ... 4-2
DEFDBL ... 4-3
DEFSTR ... 4-3

Assignment and Allocation Statements .. 4-4
DIM ... 4-4
OPTION BASE .. 4-4
ERASE .. 4-5
LET ... 4-5
REM .. 4-6
SWAP .. 4-6

V

Control Statements ... 4-7
Sequence of Execution ... 4-7

END ... 4-7
FOR/NEXT ... 4-8

Examples .. 4-9
Nested Loops .. 4-10

GOSUB/RETURN .. 4-11
GOTO .. 4-12
ON/GOTO and ON/GOSUB ... 4-13
STOP ... 4-14

Conditional Execution .. 4-14
IF/THEN/ELSE .. 4-15

Additional Considerations ... 4-16
Nesting of IF Statements .. 4-16

WHILE/WEND ... 4-17
I/O Statements (Non-Disk) ... 4-18

DATA ... 4-18
INPUT ... 4-19
LINE INPUT ... 4-20
LPRINT ... 4-21
PRINT .. 4-21

Print Positions .. 4-21
Examples .. 4-22

READ ... 4-23
RESTORE ... 4-24
WRITE ... 4-25

Chapter Five - Strings

Overview ...5-1
String Input/Output ..5-2
String Operations ... 5-3
String Functions .. 5-4

ASC ...5-5
CHR$..5-5
HEX$...5-6
INKEY$..5-6
INPUT$... 5-7
INSTR ... 5-8
LEFT$..5-8
LEN ...5-9
MID$..5-9
MID$... 5-10
OCT$... 5-10
RIGHT$...5-11
SPACE$...5-11
STR$.. 5-12
STRING$... 5-12
VAL .. 5-13

Chapter Six - Arrays

Overview .. 6-1
Arrays..6-2

Array Declarator ...6-2
Array Subscript ...6-3
OPTION BASE Statement ...6-3
Vertical Arrays ...6-4
Multi-Dimensional Arrays ...6-5

Matrix Manipulation ...6-6
Matrix Input Subroutine ..6-6
Scalar Multiplication ...6-7
Tranposition of a Matrix ...6-7
Matrix Addition ..6-8
Matrix Multiplication ..6-8

VII

Chapter Seven - Functions

Overview .. 7-1
Arithmetic Functions .. 7-2

AB S .. 7-3
ATN ... 7-3
CDBL ... 7-4
CINT .. 7-4
COS ... 7-5
CSNG ... 7-5
EXP .. 7-6
FIX ... 7-6
INT .. 7-7
LOG ... 7-7
RND ... 7-8
RANDOMIZE .. 7-8
SGN ... 7-9
SIN .. 7-10
SQR ... 7-10
TAN ... 7-10

Mathematical Functions ... 7-11
Special Functions .. 7-12

FRE .. 7-13
INP .. 7-13
LPOS ... 7-14
OUT ... 7-14
PEEK .. 7-15
POKE ... 7-15
POS ... 7-16
SPC ... 7-16
TAB ... 7-17
VARPTR .. 7-18
WAIT ... 7-21
WIDTH .. 7-22

User-Defined Functions .. 7-23
DEF FN .. 7-23

Assembly Language Programs .. 7-24
DEF USR ... 7-24
USR .. 7-25
CALL ... 7-26

Chapter Eight - Special Features

Overview ... 8-1
Error Trapping ... 8-2

ON ERROR GOTO .. 8-2
RESUME ... 8-3

Error Trap Example ... 8-3
ERROR ... 8-4
ERR and ERL Variables .. 8-5
Error Codes .. 8-6

Formatted Output .. 8-8
PRINT USING ... 8-8

String Fields .. 8-8
Numeric Fields ... 8-9

Trace Flag ... 8-14
TRON/TROFF .. 8-14

Overlay Management .. 8-15
CHAIN ... 8-15
COMMON ... 8-16

Chapter Nine - Editing

Overview ... 9-1
Moving the Cursor ... 9-3
Inserting Text ... 9-4
Deleting Text ... 9-6
Finding Text .. 9-7
Replacing Text .. 9-8
Ending and Restarting Edit Mode .. 9-9
Other Edit Mode Features ... 9-11

Chapter Ten - BASIC-80 Disk File Operations

Overview ... 10-1
File Manipulation Commands .. 10-2

FILES .. 10-2
KILL ... 10-2
LOAD ... 10-2
MERGE ... 10-2
NAME .. 10-2
RESET ... 10-3
RUN .. 10-3
SAVE .. 10-3
Protected Files .. 10-3

IX

File Management Statements ... 10-4
OPEN ... 10-5
CLOSE ... 10-8
EOF .. 10-9
LOF .. 10-9
LOC ... 10-10

BASIC-80 Sequential 1/0 .. 10-11
Sequential Access Statements .. 10-11

INPUT# .. 10-11
Numeric Input ... 10-12
String Input .. 10-14

LINE INPUT# ... 10-16
PRINT# and PRINT# USING ... 10-17
WRITE# .. 10-19

Sequential Access Techniques ... 10-21
Creating and Accessing a Sequential File .. 10-21
Adding Data to a Sequential File .. 10-23

BASIC-80 Random I/O ... 10-25
Random Access Statements .. 10-26

FIELD ... 10-27
LSET/RSET ... 10-29
GET .. 10-30
PUT ... 10-31
MKI$, MKS$, MKD$.. 10-32
CVI, CVS, CVD .. 10-33

Random Access Techniques ... 10-34
Creating a Random Access File ... 10-34
Accessing a Random Access File .. 10-36

Additional Features ... 10-37

Chapter Eleven - Microsoft BASIC-80 Summary

Overview .. 11-1

Abbreviations .. 11-2
Data Type Declaration Characters .. 11-2
Arithmetic Operators ... 11-3
String Operator .. 11-3
Relational Operators .. 11-3
Logical Operators ... 11-4
Commands ... 11-5
Edit Mode Subcommands and Functions ... 11-9
Print Using Format Field Specifiers ... 11-10

Numeric Specifier .. 11-10
String Specifier ... 11-10

Program Statements .. 11-11
Data Type Definition ... 11-11
Assignment and Allocation .. 11-11
Sequence of Execution .. 11-12
Conditional Execution ... 11-13
Non-Disk I/O Statements .. 11-14

String Functions ... 11-16
Arithmetic Functions .. 11-18
Special Functions ... 11-19
Special Features .. 11-20

Error Trapping .. 11-20
Trace Flag .. 11-20
Overlay Management .. 11-21

Disk Input/Output Statements ... 11-22
Disk Input/Output Functions .. 11-24

Appendix A - Error Messages

General Errors .. A-1
Disk Related Errors ... A-6
Reserved Words ... A-8

Appendix B - ASCII Codes

Decimal to Octal to Hex to ASCII Conversion ...B-1
Control Character Definitions ...B-2

Appendix C - New Features in BASIC-80

New Features in BASIC-80 ..C-1

Appendix D - Programming Hints

Conserving Memory Space .. D-1
Saving Execution Time ... D-3

XI

Appendix E - Assembly Language Subroutines

Memory Allocation ..E-2
User Function Calls ...E-3
Numeric Storage Format ...E-5

Integer Storage Format ...E-5
Single-Precision Storage Format ..E-5
Double-Precision Storage Format ...E-5

String Storage Format ..E-6
Data Type Conversions ..E-6

CALL Statement ..E-7
Interrupts ...E-9

Appendix F - Random And Sequential I/O Programming ExamplesF-1

Index

Index ..I-1

Tables

Table

2-1 Arithmetic Operators ... 2-8
2-2 Relational Operators .. 2-10
2-3 Logical Operators .. 2-11
2-4 Truth Table for Logical Operators .. 2-12
5-1 String Functions ... 5-4
6-1 Array Storage Allocation ... 6-4
6-2 Multi-Dimensional Array Storage Allocation .. 6-5
7-1 Arithmetic Functions .. 7-2
7-2 Mathematical Functions .. 7-11
7-3 Special Functions ... 7-12
8-1 Error Codes ... 8-6
10-1 File Management Statements .. 10-4
10-2 Sequential Access Statements ... 10-11
10-3 Random Access Statements ... 10-26
E-1 Register Values Used to Specify Data Types ...E-4

MICROSOFT
BASIC-80

1-1
System Introduction and General Information

Chapter One

System Introduction and General

Information

OVERVIEW

This Chapter contains an "Installation Guide" and general reference information pertaining to the
BASIC-80 Programming Language. BASIC-80 is one of the most extensive implementations of
BASIC available for the 8080 and Z80 microprocessors.

The hardware and systems software requirements for BASIC-80 are presented in this Chapter.

This Chapter also contains a user-oriented explanation of the operating environment
of BASIC-80.

1-2
Chapter One

INSTALLATION GUIDE

for the Microsoft BASIC-80
Interpreter and BASIC Compiler

Technical consultation is available for any problems you encounter in verifying the proper
operation of these products. We are not able to evaluate or assist in the debugging of any
programs you may develop. For technical assistance, call:

(616) 982-3860

Consultation is available between 8:00 AM and 4:30 PM on normal business days.

1-3
System Introduction and General Information

Contents of the Diskettes

The diskettes you have received contain the following files:

Microsoft BASIC-80 Interpreter Diskette

MBASIC.COM
PI.BAS

MBASIC.COM is the BASIC Interpreter. Its commands and functions are discussed in this
Reference Manual. PI.BAS is a sample program written in BASIC which calculates the value of pi.
PI.BAS is provided to help familiarize you with the workings of the interpreter.

Microsoft BASIC Compiler Distribution Disk I

BASCOM.COM
BASLIB.REL

The commands and functions of the BASIC Compiler, which is stored in the file BASCOM.COM,
are documented in the "BASIC Compiler User's Manual." BASLIB.REL is the BASIC
Compiler System Library. You may modify this file by using the Library Manager (LIB.COM,
on Compiler Distribution Disk II).

Microsoft BASIC Compiler Distribution Disk II

L80.COM
M80.COM
DREF.COM
LIB.COM
PI.BAS
PI.REL

Section 2 of the "Microsoft Utility Manual" defines the use and operation of the MACRO-80
Assembler (M80.COM). CREF.COM, the Cross-Reference Facility, is described in Section 3 of
the Utility Manual; L80, the Linking Loader, is discussed in Section 4; and LIB.COM, the Library
Manager, is discussed in Section 5.

PI.BAS is a sample program designed to calculate the value of pi. It is provided to assist you in
learning how to compile, link, and execute a program. PI.REL is the relocatable object file
generated by the Compiler from PI.BAS.

Based on the type of distribution media you received, the files mentioned above may be recorded on
one or more disks.

1-4
Chapter One

Sample Output of PI.BAS

The listings provided below are sample outputs of the PI.BAS program. Note that the results
generated by the Interpreter and Compiler may differ due to the different algorithms used to
manipulate data.

BOUNDS ON PI - DOUBLE PRECISION MONOMIAL THEOREM VERSION

 N SIDES SIDELENGTH PI-LOWER BOUND PI-UPPER BOUND

 3 8 0.76536691188812 3.06146764755249 4.95931573036713

 4 16 0.39018064737320 3.12144517898560 3.87800677621650

 5 32 0.19603428244591 3.13654851913452 3.47739260077205

 6 64 0.09813534468412 3.14033102989197 3.30237067197655

 7 128 0.04908246546984 3.14127779006958 3.22030812114884

 8 256 0.02454307302833 3.14151334762573 3.18054350336212

 9 512 0.01227176748216 3.14157247543335 3.16096780640274

 10 1,024 0.00613591633737 3.14158916473389 3.15125708966375

 11 2,048 0.00306796119548 3.14159226417542 3.14641880958168

 12 4,096 0.00153398059774 3.14159226417542 3.14400368450104

 13 8,192 0.00076699029887 3.14159226417542 3.14279751177684

 14 16,384 0.00038349514944 3.14159226417542 3.14219477240231

 15 32,768 0.00019174757472 3.14159226417542 3.14189348940372

 16 65,536 0.00009587385284 3.14159440994263 3.14174501554227

 17 131,072 0.00004793689368 3.14159226417542 3.14166756506744

 18 262,144 0.00002396846321 3.14159440994263 3.14163205998885

 19 524,288 0.00001198423161 3.14159440994263 3.14161323485294

 20 1,048,576 0.00000599211580 3.14159440994263 3.14160382236958

Interpreter Results

BOUNDS ON P1 - DOUBLE PRECISION BINOMIAL THEOREM VERSION

 N SIDES SIDE LENGTH PI-LOWER BOUND PI-UPPER BOUND

 3 8 0.76536686473018 3.06146745892072 4.95931523537420

 4 16 0.39018064403226 3.12144515225805 3.87800673496263

 5 32 0.19603428065912 3.13654849054594 3.47739256563251

 6 64 0.09813534865484 3.14033115695475 3.30237081249040

 7 128 0.04908245704582 3.14127725093277 3.22030755454287

 8 256 0.02454307657144 3.14151380114430 3.18054396821973

 9 512 0.01227176929831 3.14157294036709 3.16096827709498

 10 1,024 0.00613591352593 3.14158772527716 3.15125564133382

 11 2,048 0.00306796037257 3.14159142151120 3.14641796432625

 12 4,096 0.00153398063749 3.14159234557012 3.14400376602075

 13 8,192 0.00076699037514 3.14159257658487 3.14279782442605

 14 16,384 0.00038349519462 3.14159263433856 3.14219514270746

 15 32,768 0.00019174759819 3.14159264877699 3.14189387407905

 16 65,536 0.00009587379921 3.14159265238659 3.14174325781772

 17 131,072 0.00004793689962 3.14159265328899 3.14166795419967

 18 262,144 0.00002396844981 3.14159265351459 3.14163030351872

 19 524,288 0.00001198422491 3.14159265357099 3.14161147846025

 20 1,048,576 0.00000599211245 3.14159265358509 3.14160206600152

Compiler Results

1-5
System Introduction and General Information

Diskette Use

DISKETTE LOADING

Refer to Figure 1-1A or 1-1B, open the disk drive door, and insert the diskette(s) so the diskette
label faces the open door. Then carefully close the drive door.

1-6
Chapter One

DISKETTE HANDLING

Diskettes are easily damaged. Observe the following precautions when handling diskettes:

1. Keep the diskette in its storage envelope whenever it is not in use.

2. Keep the diskette away from magnetic fields, including magnetic paper clip holders,

magnetized scissors or screwdrivers, and heavy electrical equipment. Magnetic fields
can distort the data recorded on the diskette.

3. Replace damaged or excessively worn storage envelopes.

4. Write only on the diskette label, and then only with a felt-tip pen. Do not use a pencil or

ball-point pen, as these may damage the recording surface.

5. Keep the diskettes away from hot or contaminating material.

6. Do not expose the diskette to sunlight, liquids, or smoke.

7. Do not touch the diskette surface. Abrasions can alter stored data.

WRITE-PROTECTION

The diskette can be write-protected so that data cannot be written to it. (All distribution
diskettes are shipped write-protected). How a disk is write-protected depends on the size
of the diskette.

A 5.25-inch diskette has a write-protect notch on the side. When this notch is covered with a
tab or opaque tape, no data can be written on the diskette. Figure 1-2A illustrates a write-
protected 5.25-inch diskette. Figure 1-2B depicts a write-enabled 5.25-inch diskette.

An 8-inch diskette has a write-enable notch on its side. If this write-enable notch is exposed, no
data can be written to the diskette. To write-enable an 8-inch diskette, cover the write-
enable notch with a tab or opaque tape. Figure 1-3A shows a write-protected 8-inch diskette.
Figure 1-3B shows a write-enabled 8-inch diskette.

1-7
System Introduction and General Information

1-8
Chapter One

Preparing Working Diskettes

Using the procedure outlined in your CP/M manual, power-up your computer and boot-up
CP/M from CP/M Distribution Disk I.

If you have two or more drives of the same size, duplicate your MBASIC distribution diskette(s)
using DUP.COM. If you do not have two or more drives of the same size:

1. Initialize the blank diskette(s) to which you will copy using FORMAT.COM.

2. Duplicate the MBASIC distribution disk(s) using PIP.COM.

NOTE: All distribution diskettes are write-protected to ensure that you always have an
accurate copy of the software. Therefore, duplicate the distribution diskettes and then store
them in a safe place. Use your copies for day-to-day use of the programs.

1-9
System Introduction and General Information

SYSTEM INTRODUCTION

Manual Scope
This BASIC-80 Reference Manual is your reference source for the BASIC-80 language. Its
Chapters are organized in a functional manner. If, for example, you need information about
strings, simply refer to Chapter Five, Strings.

Also included with the BASIC-80 package are an Installation Guide and a Reference Card.
The Guide contains the information you needed to create a working copy of the BASIC-80
Interpreter. Keep the Reference Card handy, as it contains often needed information.

1-10
Chapter One
Hardware Requirements

The hardware required to run the BASIC-80 Interpreter is:

1. 8080 or Z80 microcomputer

2. 48K of RAM.

3. One floppy disk drive.

4. Terminal device.

5. Optionally - a hard copy device

This is the minimum hardware configuration. We recommend that you have more than one
disk drive. If you plan to develop large programs, you will no doubt need a hard copy
device.

System Software Requirements

The BASIC-80 Interpreter is designed to run under CP/M version 2.0 and later.

1-11
System Introduction and General Information

Preparing the Diskette

The BASIC-80 Interpreter is distributed on either a 5.25" mini-floppy or an 8" floppy. The
Installation Guide furnished with this product contains the information you will need when you
create your working diskette.

Never use your distribution copy of BASIC-80 except to make copies for your own use. Keep
your distribution copy in a safe place. The Installation Guide contains more information
about disk handling procedures.

Initialization of BASIC-80

BASIC-80 is distributed in an absolute binary format. BASIC-80 is stored on the disk with the file
name MBASIC.COM. BASIC-80 can be directly loaded into memory and used. To load BASIC-
80, type the following in response to the CP/M prompt:

MBASIC

This command will load MBASIC into memory. After MBASIC has been loaded into memory, a
sign-on message will be displayed. The message should look similar to this:

BASIC-80 Rev. 5.2
[CP/M Version]
Copyright 1977, 78, 79, 80 (C) by Microsoft
Created: 11-Aug-80
15430 Bytes free

Note that the revision number, the creation date, and the number of free bytes might be
different with your system.

A BASIC-80 program can be automatically executed when the file name is appended to the
command string. For example, if you want to load the interpreter and run the program
SAMPLE.BAS, you could use the following command string:

MBASIC∆SAMPLE

The space between MBASIC and SAMPLE is required. (Throughout this manual, we will use the
symbol ∆ to indicate a required space.) The default extension .BAS will be assumed. If the
file name specified can not be found, the message "File not found" will be displayed, and you
will be returned to the CP/M Command Mode.

1-12
Chapter One

GENERAL INFORMATION

Modes of Operation

After you have loaded the interpreter, BASIC-80 will type "Ok". This prompt signifies that
BASIC-80 is in the Command Mode.

In the Command Mode, the BASIC-80 Interpreter will execute your instruction is soon as you
terminate the entry with a RETURN. The commands and statements entered in Command Mode
should not be preceded by line numbers. Results of arithmetic and logical operations may be
displayed immediately and stored for later use, but the instructions themselves are lost after execution.
This mode is useful for debugging and for using BASIC-80 as a "calculator" for quick computations
that do not require a complete program.

If you begin a program line with a line number, BASIC-80 assumes that you wish to store this program
line for execution at a later date. This is called the Intermediate or Program Mode. The program
stored in memory will be executed if you enter the RUN command.

Line Format

Program lines in a BASIC-80 program have the following format (square brackets indicate optional):

nnnnn BASIC-80 statement [:BASIC-80 statement...]

At the programmer's option, more than one BASIC-80 statement may be placed on a line, but each
statement on a line must be separated from the last by a colon.

A BASIC-80 program line always begins with a line number, ends with a carriage return, and may
contain a maximum of 255 characters.

It is possible to extend a logical line over more than one physical line by use of the terminal's LINE
FEED key. LINE FEED lets you continue typing a logical line on the next physical line without
entering a RETURN.

Line Numbers

Every BASIC-80 program line begins with a line number. Line numbers indicate the order in which
the program lines are stored in memory and are also used as references for branching and editing.
Line numbers must be in the range 0 to 65529. A period (.) may be used in EDIT, LIST, AUTO and
DELETE commands to refer to the current line.

1-13
System Introduction and General Information

Character Set

The BASIC-80 character set is comprised of alphabetic characters, numeric characters and special
characters. The alphabetic characters are the upper case and lower case letters of the alphabet. The
numeric characters are the digits 0 through 9.

BASIC-80 also recognizes the following special characters and terminal keys:

Character Name

 Blank
; Semicolon
= Equal sign or assignment symbol
+ Plus sign
- Minus sign
* Asterisk or multiplication symbol
/ Slash or division symbol
↑ Up arrow or exponentiation symbol
(Left parenthesis
) Right parenthesis
% Percent
Number (or pound) sign
$ Dollar sign
! Exclamation point
[Left bracket
] Right bracket
, Comma
. Period or decimal point
' Single quotation mark (apostrophe)
: Colon
& Ampersand
? Question mark
< Less than
> Greater than
\ Backslash or integer division symbol
@ At-sign
_ Underscore
DELETE Deletes last character typed.
ESC Escapes Edit Mode subcommands.
TAB Moves print position to next tab stop.
 Tab stops are every eight columns.
LINE FEED Moves to next physical line.
RETURN Terminates input of a line.

1-14
Chapter One

Control Characters

The following control characters are in BASIC-80:

CTRL-A Enters Edit Mode on the line being typed.

CTRL-C Interrupts program execution and returns to BASIC-80 command level.

CTRL-G Rings the bell at the terminal.

CTRL-H Backspace. Deletes the last character typed.

CTRL-I Tab. Tab stops are every eight columns.

CTRL-O Halts program output while execution continues. A second Control-O

restarts output.

CTRL-R Retypes the line that is currently being typed.

CTRL-S Suspends program execution.

CTRL-Q Resumes program execution after a Control-S.

CTRL-U Deletes the line that is currently being typed.

To execute any of these control characters, hold down the CTRL key while simultaneously typing
the letter. Thus, to execute CTRL-G, hold down the CTRL key while simultaneously typing the
letter G.

1-15
System Introduction and General Information

BASIC-80 PROGRAMMING

This section will tell you how to write a BASIC-80 program and explain the unique features
of the BASIC-80 programming environment. No attempt will be made to teach the subject of
BASIC programming, but enough information will be provided so that you should be able to
successfully use the BASIC-80 Interpreter.

Loading the BASIC-80 Interpreter

The BASIC-80 Interpreter, which must be loaded into your computer’s memory before you can
use it, is an absolute binary file. This means that it is in a form which can be directly executed
by your computer. Before you can perform the procedures listed below, you must "boot-up"
your computer. If you are unsure how to do this, refer to the appropriate operating system
manual.

The CP/M file name used to reference the interpreter is: MBASIC.COM. So, to load the BASIC-
80 Interpreter into memory, type the following response to the prompt from CP/M:

A>MBASIC

(Do not type the A>, as this represents the prompt from CP/M; and remember to terminate the line
by pressing the RETURN key.)

This assumes that the file MBASIC.COM resides on the current default disk. If the file does not
reside on the current default disk, type the drive name and then the file name. For example, if A: is
the current default disk, and the BASIC-80 file resides on drive B:, you would use the following
command to load BASIC-80:

A>B:MBASIC

After BASIC-80 is loaded into memory, a sign-on message will be displayed on your screen. The
amount of free memory, as well as the BASIC-80 version number, will also be displayed. Take
note of the amount of free memory, as this will no doubt be a crucial issue if you wish to write
large, complex programs.

1-16
Chapter One

When BASIC-80 is loaded in the manner described above, it will make certain assumptions
about the operating environment. BASIC-80 assumes that:

No more than 3 disk files will be open.
All available memory will be used.
Random record size is 128 bytes.

You can change these assumptions by using certain switches.

The number of disk files that can be open can range from 0-15. The /F: switch is used to specify
the maximum number of files. BASIC-80 will establish a file buffer in memory for each file
specified with the /F: switch. This will decrease the amount of free memory that you have to
work with. For example, to set up five file buffers, you could use the following command:

A>MBASIC∆/F:5

Note the space that is required between MBASIC and the /F:5. If you do not type this space, CP/M
will assume that the switch is part of the file name.

You can also specify the highest memory location BASIC-80 will use with the /M: switch. In
some cases it is desirable to set the amount of memory well below the CP/M BDOS to reserve space
for assembly language subroutines. In all cases, the highest memory location should be below the
start of BDOS (whose address is contained in locations 6 and 7). If the /M: switch is omitted, all
memory up to the start of BDOS is used.

NOTE: The number of files and the highest memory location numbers can be either
decimal, octal (preceded by a &O), or hexadecimal (preceded by &H).

You can also change the record size of a random file by using the /S: switch. The default record
size is 128 bytes, and the maximum record size is 256 bytes. For example, to set the
maximum record size to 200 bytes, you could use the following command:

A>MBASIC∆/S:200

1-17
System Introduction and General Information

Any combination of these three switches can be used in a command line. For example:

A>MBASIC∆PAYROLL.BAS

Use all memory and 3 files, load and execute PAYROLL.BAS

A>MBASIC∆INVENT∆/F:6

Use all memory and 6 files, load and execute INVENT.BAS

A>MBASIC∆/M:32768

Use first 32K of memory and 3 files.

After the BASIC-80 interpreter has been loaded into memory, a program may be written.

Writing a BASIC-80 Program

A BASIC-80 program is composed of lines of statements containing instructions to BASIC-80. Each
of these program lines begins with a line number, followed by one or more BASIC-80 program
statements. These line numbers indicate the sequence of statement execution, although this
sequence may be changed by certain statements.

The format of a BASIC-80 program line is:

line statement statement line
number keyword text terminator

100 LET X = X+1 <RETURN>

Every program line in a BASIC-80 program must begin with a line number, which must be a
positive integer within the range 0 - 65529. This BASIC-80 line number is a label that
distinguishes one line from another within a program. Thus, each line number in the
program must be unique.

Each program line in a BASIC-80 program is terminated with a carriage return, which you can
generate by pressing the RETURN key on your console device.

1-18
Chapter One

You could use consecutive line numbers like 1,2,3,4. For example:

1 X = 1
2 Y = 2
3 Z=X+Y
4 END

However, a useful practice is to write line numbers in increments of 10. This method will
allow you to insert additional statements later between existing program lines.

10 X=1
20 Y = 2
30 Z = X+Y
40 END

Another useful practice is to let BASIC-80 automatically generate line numbers for you. This is
accomplished with the AUTO statement. The AUTO statement tells BASIC-80 to automatically
generate line numbers. For example, if you type AUTO 100,10, then BASIC-80 will generate line
numbers beginning with line number 100 and incrementing each line by 10. Then all you need to
do is type the BASIC-80 program line after the generated line number.

1-19
System Introduction and General Information

Running a BASIC-80 Program

After a BASIC-80 program has been written, it is usually desirable to execute the program. The
task can be accomplished by the RUN command. The following statement would tell BASIC-
80 to execute the program currently in memory:

RUN

Execution would begin at the lowest number line and continue with the next lowest number
line (unless the sequence of execution was altered with a statement like the GOTO statement).
The RUN command can also specify the first line number to be executed. For example, the
following command would cause execution to begin with line number 100:

RUN∆100

The RUN command can also be used to execute a BASIC-80 program that is currently
residing on a disk file. For example, assume the file ALBUM.BAS resides on the current
default disk. The following statement would be used to execute ALBUM.BAS:

RUN "ALBUM"

Note that no drive specification or file name extension was included in the file name string. In
this case, the current default drive and the extension BAS are assumed.

Also make sure that you always use only upper-case letters in the file name string.
BASIC-80 must rely on CP/M to manipulate files for it, and most CP/M utilities cannot
recognize any file whose name is stored in lower-case letters. Thus, storing a file under a
lower-case file name can be very unpleasant, since CP/M cannot recognize the lower-case file
name, and therefore cannot ERAse or REName the file. Files whose names are stored in
lower-case letters can be deleted only from within BASIC-80. This practice of using only
upper-case letters in a file name applies to all BASIC-80 statements which require a file name to be
specified.

This is not to say that there is anything intrinsically wrong in using lower-case letters in a file
name; it is just that assigning lower-case file names may produce an undesirable result. You may
want to use a lower-case file name to record a file in such a way that it cannot be easily renamed or
erased. Thus, using lower-case file names can provide an extra level of protection for important
programs.

1-20
Chapter One

Debugging a BASIC-80 Program

In some cases, a BASIC-80 program will not execute as you expected. This is usually a result
of either a syntax error or a logic error. A syntax error is much easier to detect, as BASIC-80
will not only detect these syntax errors for you, but also it will point out the offending program
line and invoke the Edit Mode. A logic error is much harder to detect, but several statements have
been provided to make this a much more pleasant task.

When BASIC-80 detects a syntax error, it will automatically enter the Edit Mode at the line that
caused the error. At this point, you may wish to press the L key in order to list this line. (L is a
command to the BASIC-80 Editor, for more information about the Editor, see Chapter Nine,
"Editing".)

Syntax errors are usually a result of a misspelled keyword or an incorrectly structured
program line. Remember that BASIC-80 requires all keywords to be delimited by a space. The
easiest way to correct a syntax error is to rely heavily on the Reference Manual.

Anytime you have a syntax error, you should refer to the appropriate page in the Reference
Manual. Use the Index to find the appropriate page. After you discover and correct your error,
remember what you did wrong so you can avoid making the same mistake again.

Because of the interactive nature of BASIC-80, it is very convenient to debug a BASIC-80
program. Several statements have been provided to help you debug a BASIC-80 program. But
your first step is to find out the nature of the "bug".

A program "bug" may cause the wrong values to be output. Or maybe a program is branching to
the wrong statement. The results of a calculation may be wrong, or the results of a calculation
may be incomprehensible. A program "bug" might cause an error condition to be flagged. So you
must discover what the program is doing before you can discover why the program is doing it.

Also keep in mind that, in most cases (99.99%), it is a bug in your program that is causing a
problem. It is highly unlikely that the BASIC-80 Interpreter is at fault. This Interpreter represents
one of the most comprehensive implementations of BASIC available for the 8080/Z80, and as
such is very stable. So, it is best to always assume that a problem is caused by a user
program bug.

1-21
System Introduction and General Information

Once you have decided what the program is doing, you can take steps to discover why it is not
executing correctly. For example, assume that a program is branching to a line number different
than where you want it to branch. The trace flag has been provided to trace the flow of a
program. To enable the trace, the TRON statement is used, and to disable the trace, the
TROF statement is used.

The trace flag will print each line number as it is being executed. The line number will be
enclosed in square brackets ([]). It is best to generate a hard copy listing of the program first so
you can follow this listing while the trace is running.

Another important technique you can use is to set breakpoints in a program. You can use the
STOP statement to temporarily terminate program execution, and then enter commands to print
the values of various variables. You can also assign new values to these variables. Then you can
continue program execution with a CONT command or a Command Mode GOTO.

Although you can print and change the values assigned to variables, you must not change the
BASIC-80 program after you interrupted execution with a STOP statement. If you do change
the program, all the previously stored variable values will be lost, and all open files will be
closed.

1-22
Chapter One

Saving a BASIC-80 Program

When you have completed a BASIC-80 programming session, you will no doubt want to save a
copy of your most current program on the disk. This is accomplished with the SAVE
command. The general form of the SAVE command is:

SAVE "<filename>"

The <file name> must be a valid CP/M file name. If no device specification is given, the
current default drive will be assumed. If no file name extension is given, the default extension
of BAS will be assumed. For example, if you wish to save a program called GAME.BAS, you
could use the following statement:

SAVE "C:GAME.BAS"

Note that this file will be written on drive C:. The file name extension of BAS could have been
omitted and then it would have been supplied as the default. Make sure you always use
upper case letters when specifying a file name. BASIC-80 will usually save files in a
compressed binary format. A program can optionally be saved in ASCII format, but it will take
more disk space to store it this way. To save a program in ASCII format, append an A to the end
of the file name string. For example:

SAVE "C:GAME",A

This will save the file on drive C: in ASCII format with a file name of GAME.BAS. You can also save a
program in a protected format so it can not be listed or edited. Just append a P to the end of the
file name string. For example:

SAVE "C:GAME",P

This file will be saved in an encoded binary format. When this protected file is later RUN or
(LOADed), any attempt to LIST or EDIT this program will fail.

1-23
System Introduction and General Information

Loading a BASIC-80 Program

When you begin a BASIC-80 programming session, you may want to load a program from
the disk into memory. This is accomplished with the LOAD command. The general form of
the LOAD command is:

LOAD "<filename>"

For example, if you wanted to load the program PAYROL.BAS, you could use the command:

LOAD "PAYROL"

Note that the file name extension was omitted. BASIC-80 will assume a file name extension of
BAS. Also note that the drive specification was omitted. In this case, the current default
drive will be assumed.

You must specify the file name using only upper case letters. This applies to all string constants
or variables that contain file names.

It is also possible to execute a program with the LOAD command. In this case, an R is appended to
the end of the file name string. For example:

LOAD "PAYROL",R

This form of the LOAD command will load a program into memory and execute it as if a RUN
command had been typed. All currently open files will remain open for use by the program.

1-24
Chapter One

Listing a BASIC-80 Program to a Hard Copy Device

At some point during your programming effort, you may want a hard copy listing of a BASIC-80
program. A BASIC-80 program is listed to a hard copy device in much the same manner as it is
listed to a console device. Use the LLIST command.

The general form of the LLIST command is

LLIST

This will list the current program on the hard copy device. It is also possible to specify the range of
line numbers to be listed. For example in order to list a single line, you can use the command:

LLIST 100

This will list only the line number 100. A range of line numbers can also be specified:

LLIST 100-500

This will list line numbers 100 through 500, inclusive.

The LLIST command will direct the output to the CP/M LST: device. This logical device can be
assigned to several different physical devices. Refer to your CP/M manual for information about
this process.

2-1
Expressions

Chapter Two

Expressions

OVERVIEW

An expression is a group of symbols to be evaluated by BASIC-80. Expressions
are composed of numeric or string variables, numeric or string constants, and
functions references. These operands can be alone, or they can be combined by
arithmetic, logical, or relational operators. This Chapter explains the various
rules for constructing and evaluating expressions.

2-2
Chapter Two

CONSTANTS

Constants are the actual values BASIC-80 uses during execution. There are two types of constants:
string and numeric.

String Constants

A string constant is a sequence of up to 255 alphanumeric characters enclosed in double quotation
marks. Examples of string constants:

"HELLO"
"25,000.00"
"Number of Employees"

Numeric Constants

Numeric constants are positive or negative numbers. Numeric constants in BASIC cannot contain
commas. There are five types of numeric constants:

INTEGER CONSTANTS

Integer constants are whole numbers between -32768 and +32767. Integer constants can not have
decimal points.

FIXED POINT CONSTANTS

Fixed point constants are positive or negative real numbers, i.e., numbers that contain decimal
points.

FLOATING POINT CONSTANTS

Floating point constants are positive or negative numbers represented in exponential form (similar to
scientific notation). A floating point constant consists of an optionally signed integer or fixed point
number (the mantissa) followed by the letter E and an optionally signed integer (the exponent). The
allowable range for floating point constants is 10-38 to 10+38.

Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double-precision floating point constants use the letter D instead of E.)

2-3
Expressions

HEX CONSTANTS

Hexadecimal constants are hexadecimal numbers with the prefix &H. Examples:

&H76

&H32F

OCTAL CONSTANTS

Octal constants are octal numbers with the prefix &O or &. Examples:

&0347

&1234

SINGLE AND DOUBLE-PRECISION NUMERIC CONSTANTS

Fixed and floating point numeric constants may be either single-precision or double-precision
numbers. With double-precision, the numbers are stored with 16 digits of precision, and printed
with up to 16 digits.

A single-precision constant is any numeric constant that has:

1. Seven or fewer digits, or,
2. Exponential form using E, or,
3. A trailing exclamation point (!).

A double-precision constant is any numeric constant that has:

1. Eight or more digits, or,
2. Exponential form using D, or,
3. A trailing number sign (#).

Examples:

Single-Precision Constants Double-Precision Constants

 46.8 345692811
 -7.09E-06 -1.09432D-06
 3489.0 3489.0#
 22.5! 7654321.1234

2-4
Chapter Two

VARIABLES

Variables are names which represent values that are used in a BASIC-80 program. The value of
a variable may be assigned explicitly by the programmer, or it may be assigned as the result of
calculations in the program. Before a variable is assigned a value, its value is assumed to be
zero.

Variable Names and Declaration Characters

BASIC-80 variable names may be any length. However, only the first 40 characters are signi-
ficant. The characters allowed in a variable name are letters and numbers, and the decimal
point is also allowed in a variable name. The first character must be a letter.

A variable name may not be a reserved word. BASIC-80 will allow embedded reserved words
to be part of a variable name. If a variable begins with FN, it is assumed to be a call to a
user-defined function. Reserved words include all BASIC-80 commands, statements,
function names, and operator names.

Variables may represent either a numeric value or a string. String variable names are written with a
dollar sign ($) as the last character. For example: A$ = "SALES REPORT". The dollar sign is a
variable type declaration character; that is, it "declares" that the variable will represent a
string.

Numeric variable names may declare integer, single-precision, or double-precision values.
The type declaration characters for these variable names are as follows:

 % Integer variable
 ! Single-precision variable
 # Double-precision variable

The default type for a numeric variable name is single-precision.

2-5
Expressions

Examples of BASIC-80 Variable Names:

PI# Declares a double-precision value.
MINIMUM! Declares a single-precision value.
LIMIT% Declares an integer value.

There is a second method by which variable types may be declared. The BASIC80 statements
DEFINT, DEFSTR, DEFSNG and DEFDBL may be included in a program to declare the types for
certain variable names. These statements are described in detail in Chapter Four, "Program
Statements."

Array Variables

An array is a group or table of values referenced by the same variable name. Each element in an
array is referenced by an array variable that is subscripted with integers or with integer
expressions. An array variable name has as many subscripts as there are dimensions in the
array.

For example, V(10) would reference a value in a one-dimensional array, T(1,4) would reference a
value in a two-dimensional array, and so on. The maximum number of dimensions for an array is
255. The maximum number of elements per dimension is 32767. See Chapter Six, "Arrays," for
more information.

2-6
Chapter Two

TYPE CONVERSIONS

When necessary, BASIC-80 will convert a numeric constant from one type to another. The
following rules and examples illustrate these type conversions.

==

If a numeric constant of one type is set equal to a numeric variable of a different type, the number will
be stored as the type declared in the variable name. (If a string variable is set equal to a numeric
value or vice versa, a "Type mismatch" error occurs.)

Example:

10 A% = 23.42
20 PRINT A%
RUN

23

===

During expression evaluation, all of the operands in an arithmetic or relational operation are
converted to the same degree of precision; i.e., that of the most precise operand. Also, the result
of an arithmetic operation is returned to this degree of precision.

Example:

10 D# = 6#/7
20 PRINT D#
RUN

.8571428571428571

In the above example, the arithmetic was performed in double-precision and the result was returned
in D# as a double-precision value.

==

10 D = 6#/7
20 PRINT D
RUN

.857143

In this example, the arithmetic was performed in double-precision and the result was returned to D (a
single-precision variable); thus rounded and printed as a single-precision value.

2-7
Expressions

When a fixed point value is converted to an integer, the fractional portion is rounded.
Example:

10 C% = 55.88
20 PRINT C%
RUN

56

==

If a double-precision variable is assigned a single-precision value, only the first seven digits,
rounded, of the converted number will be valid. This is because only seven digits of accuracy
were supplied with the single-precison value.

The absolute value of the difference between the printed double-precision number and the
original single-precision value will be less than 6.3E-8 times the original single-precision value.
Example:

10 A = 2.04
20 B# = A
30 PRINT A;B#
RUN

2.04 2.039999961853027

2-8
Chapter Two

EXPRESSIONS AND OPERATORS

An expression may be simply a string or numeric constant, or a variable, or it may combine constants
and variables with operators to produce a single value.

Operators perform mathematical or logical operations on values. The operators provided by
BASIC-80 may be divided into four categories:

1. Arithmetic.
2. Relational.
3. Logical.
4. Functional.

Arithmetic Operators

The arithmetic operators, in order of precedence, are:

 Operator Operation Sample Expression

 A Exponentiation X^Y
 - Negation –X
 *,/ Multiplication, Floating X*Y

Point Division X/Y
 +,- Addition, Subtraction X+Y

Table 2-1
Arithmetic Operators.

To change the order in which the operations are performed, use parentheses. Operations
within parentheses are performed first. Inside parentheses, the usual order of operations is
maintained.

Thus, the expressions:

A*(Z-((Y+R)/T))^J+VAL

is evaluated in the following sequence:

Y+R = e1
(e1/T) = e2
Z-e2 = e3
e3^J = e4
A*e4 = e5
e5+VAL = e6

2-9
Expressions

INTEGER DIVISION AND MODULUS ARITHMETIC

Two additional arithmetic operators are available in BASIC-80, integer division and modulus
arithmetic.

Integer division is denoted by the backslash (\). The operands are rounded to integers (must be
in the range -32768 to 32767) before the division is performed, and the quotient is truncated to
an integer. For example:

10\4 = 2
25.68\6.99 = 3

The precedence of integer division is just after multiplication and floating point division.

Modulus arithmetic is denoted by the operator MOD. It gives the integer value that is the
remainder of an integer division. For example:

10.4 MOD 4 = 2 (10\4=2 with a remainder 2)

25.67 MOD 6.99 = 5 (26\7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer division.

OVERFLOW AND DIVISION BY ZERO

If, during the evaluation of an arithmetic expression, a division by zero is encountered, the
"Division by zero" error message is displayed, machine infinity (i.e., 1.7014 1E +38) with the
sign of the numerator is supplied as the result of the division, and execution continues.

If the evaluation of an exponentiation results in zero being raised to a negative power, the
"Division by zero" error message is displayed, positive machine infinity is supplied as the
result of the exponentiation, and execution continues.

If overflow occurs, the "Overflow" error message is displayed, machine infinity with the
algebraically correct sign is supplied as the result, and execution continues.

2-10
Chapter Two

Relational Operators

Relational operators are used to compare two values. The result of the comparison is either
"true" (-1) or "false" (0). This result may then be used to make a decision regarding program
flow.

Operator Relation Tested Expression

 = Equality X=Y
 <> Inequality X<>Y
 < Less than X<Y
 > Greater than X>Y
 <= Less than or equal to X<=Y
 >= Greater than or equal to X>=Y

Table 2-2
Relational Operators.

(The equal sign is also used to assign a value to a variable.)

When arithmetic and relational operators are combined in one expression, the arithmetic is
always performed first. For example, the expression

X+Y < (T-1)/Z

is true if the value of X plus Y is less than the value of T-1 divided by Z.

Examples:

IF SIN (X)<0 GOTO 1000
IF I MOD J <> 0 THEN K=L+1

2-11
Expressions

Logical Operators

Logical operators perform tests on multiple relations, bit manipulation, or Boolean operations. The
logical operator returns a bitwise result which is either "true" (not zero) or "false" (zero). In
an expression, logical operations are performed after arithmetic and relational operations.
Logical operators convert, their operands to integers and return an integer result. Operands must be in
the range -32768 to 32767* or an "Overflow" error occurs.

The outcome of a logical operation is determined as shown in the following table. The
operators are listed in order of precedence.

OPERATOR EXAMPLE EXPLANATION

 NOT NOT A The logical negative of A. If A is true, NOT A is

false.

 AND A AND B The logical product of A and B. A AND B has the

value true only if A and B are both true. A AND B
has the value false if either A or B is false.

 OR A OR B The logical sum of A and B. A OR B has the value

true if either A or B or both is true. A OR B has the
value false only if both A and B are false.

 XOR A XOR B The logical exclusive OR of A and B. A XOR B is

true if either A or B (but not both) is true. Otherwise,
A XOR B is false.

 IMP A IMP B The logical implication of A and B. A IMP B is false

if and only if A is true and B is false; otherwise the
value is true.

 EQV A EQV B A is logically equivalent to B. A EQV B is true if A

and B are both true or both false. Otherwise, A EQV B
is false.

Table 2-3

Logical Operators

*When you use variables with any of the logical operators, declare the variable as type integer by
using either the "%" type declaration character or the DEFINT statement. (See Page 4-2 for a
discussion of DEFINT).

2-12
Chapter Two

NOT AND

X NOT X X Y X AND Y

1 0 1 1 1
0 1 1 0 0
 0 1 0
 0 0 0

OR XOR

X Y X OR Y X Y X XOR Y

1 1 1 1 1 0
1 0 1 1 0 1
0 1 1 0 1 1
0 0 0 0 0 0

IMP EQV

X Y X IMP Y X Y X EQV Y

1 1 1 1 1 1
1 0 0 1 0 0
0 1 1 0 1 0
0 0 1 0 0 1

Table 2-4
Truth Table for Logical Operators.

Logical operators work by converting their operands to sixteen bit, signed, two's-
complement integers in the range -32768 to +32767. (If the operands are not in this range, an
error results.) If both operands are supplied as 0 or -1, logical operators return 0 or -1. The
given operation is performed on these integers in bitwise fashion; i.e., each bit of the result
is determined by the corresponding bits in the two operands. In binary arguments, bit 15 is the
most significant bit and bit 0 is the least significant bit.

2-13
Expressions

Thus, it is possible to use logical operators to test bytes for a particular bit pattern. For
instance, the AND operator maybe used to "mask" all but one of the bits of a status byte at a
machine I/O port. The OR operator may be used to "merge" two bytes to create a particular
binary value. The following examples will help demonstrate how the logical operators work.
(In all of the examples below, leading zeros on binary numbers are not shown.)

Examples:

63 AND 16=16

63 = binary 111111 and 16 = binary 10000, so 63 and 16 = 16

15 AND 14=14

15 = binary 1111 and 14 = binary 1110, so 15 AND 14 = 14 binary 1110)

-1 AND 8=8

-1 = binary 1111111111111111 and 8 = binary 1000, so -1 AND 8 = 8

4 OR 2=6

4 = binary 100 and 2 = binary 10, so 4 OR 2 = 6 (binary 110)

10 OR 10=10

10 = binary 1010, so 1010 OR 1010 = 1010 (10)

-1 OR -2=-1

-1 = binary 1111111111111111 and -2 = binary 1111111111111110,

so -1 OR -2 = -1. The bit complement of sixteen zeros is sixteen ones, which is the
two's complement representation of -1.

NOT X=-(X+1)

The two's complement of any integer is the bit complement plus one.

6 IMP 2 =-5

6 = binary 110 and 2 = binary 10, so 6 IMP 2 = -5

3 EQV 4 = -8

3 = binary 11 and 4 = binary 100, so 3 EQV 4 = binary -8.

2-14
Chapter Two

LOGICAL OPERATORS IN RELATIONAL EXPRESSIONS

Just as the relational operators can be used to make decisions regarding program flow, logical operators
can connect two or more relations and return a true or false value to be used in a decision.

Examples:

IF D<200 AND F<4 THEN 80
IF I>10 OR K>0 THEN 50
IF NOT P THEN 100

The result of evaluating the relational expression will be either true (-1) or false (0). This result will
then be used as the operand for the logical operator.

Functional Operators

A function is used in an expression to call a predetermined operation that is to be performed on an
operand. BASIC-80 has "intrinsic" functions that reside in the system, such as SQR (square root) or
SIN (sine). All of BASIC-80's intrinsic functions are described in Chapter Three, "Functions."

BASIC-80 also allows "user-defined" functions that are written by the programmer. The proper
format for constructing and referencing user-defined functions is described in Chapter Seven,
"Functions."

3-1
Command Mode Statements

Chapter Three

Command Mode Statements

OVERVIEW

Whenever the "Ok" prompt is displayed on the console, BASIC-80 is in the Command
Mode. In this Mode, BASIC-80 will respond to a command as soon as it is entered.

Several commands are useful in Command Mode. These are:

AUTO EDIT LOAD RESET
CLEAR FILES MERGE RUN
CONT LIST NEW SAVE
DELETE LLIST RENUM SYSTEM

All of the commands (except CONT) may also be used within a program.

3-2
Chapter Three

COMMAND MODE STATEMENTS

AUTO (enable automatic line numbering)

Form: AUTO∆<line number>,<increment>

The AUTO command will turn on the automatic line numbering function. The AUTO
command allows you to enter only the actual program text, as the line numbers will
automatically be generated.

AUTO begins numbering at <line number> and increments each subsequent line number by
<increment>. If no line number or increment is specified, the default value of 10 is supplied.
If <line number> is followed by a comma but <increment> is not specified, the last
increment specified in an AUTO command is assumed.

If AUTO generates a line number that is already being used, an asterisk is printed after the number
to warn the user that any input will replace the existing line. However, typing a carriage return
immediately after the asterisk will save the line and generate the next line number.

AUTO is terminated by typing CTRL-C. The line in which CTRL-C is typed is not saved. After
CTRL-C is typed, BASIC-80 returns to the Command Mode.

Examples:

AUTO 100, 50 Generates line numbers 100,150,200 ...

AUTO Generates line numbers 10,20,30,40 ...

AUTO 500 Generates line numbers 500,510,520 ...

3-3
Command Mode Statements

CLEAR (initialize variables)

Form: CLEAR,<expression1>,<expression2>

The CLEAR command will set all numeric variables to zero and all string variables to null. The
CLEAR command can optionally be used to set the high memory limit and the amount of stack
space that is available to BASIC-80.

<expression1> is a memory location (expressed in decimal) which, if specified, sets the highest
memory location available for use by BASIC-80.

<expression2> sets aside stack space for use by BASIC-80. The default is 256 bytes or one-
eighth of the available memory, whichever is smaller.

NOTE: In previous versions of Microsoft BASIC, <expression1> specified the amount of
memory to be used for string storage and <expression2 > set the end of memory. BASIC-80 release 5.0
allocates string space dynamically, so there is no need to specify the amount of memory for string
storage. An "Out of string space" error occurs only if there is no free memory left for use by
BASIC-80.

Examples:

CLEAR

Sets all numeric variables to zero and all strings to null.

CLEAR ,32768

Sets 32768 as the highest memory location for use by BASIC-80.

CLEAR ,,2000

Allocates 2000 bytes for stack space.

CLEAR,32768,2000

Sets 32768 as the highest memory location for use by BASIC-80 and allocates 2000 bytes for
stack space.

3-4
Chapter Three

CONT (continue program execution)

Form: CONT

The CONTinue statement is used to resume execution of a program after a CTRL-C has
been typed, or a STOP or END statement has been executed. The CONTinue statement
can also be used to resume execution after an error.

Execution will resume at the line after the break. If the break occurred after a prompt from an
INPUT statement, execution continues with the reprinting of the prompt (? or prompt string).

CONT is usually used in conjunction with STOP for debugging. When execution is stopped,
variable values may be examined and changed using Command Mode statements. Execution
may be resumed with CONT or a Command Mode GOTO, which resumes execution at a
specified line number.

CONT is invalid if the program has been edited during the break. CONT is also invalid if any
changes were made to the program during the break. If any changes are made to the program
during the break, the error message "Can't continue" will appear on your screen.

DELETE (delete program lines)

Form: DELETE∆<line number>-<line number>

The DELETE statement is used to delete program lines from memory.

BASIC-80 will always return to Command Mode after a DELETE is executed. If <line number>
does not exist, an "Illegal function call" error occurs.

Examples:

DELETE 40 deletes line 40

DELETE 40-100 deletes lines 40-100, inclusive

DELETE -40 deletes all lines up to and including line 40

3-5
Command Mode Statements

EDIT (enter Edit Mode)

Form: EDIT∆<line number>

The EDIT statement will enter the Edit Mode at the specified line number.

In Edit Mode, it is possible to edit portions of a line without retyping the entire line. Upon
entering Edit Mode, BASIC-80 types the line number of the line to be edited. Then it types a
space and waits for an Edit Mode subcommand.

The Edit Mode subcommands may be categorized according to the following functions:

1. Moving the cursor.

2. Inserting text.

3. Deleting text.

4. Finding text.

5. Replacing text.

6. Ending and restarting Edit Mode.

The Edit Mode subcommands are not displayed on the terminal device. Some of the Edit Mode
subcommands may be preceded by an integer which causes the command to be executed that
number of times. When a preceding integer is not specified, it is assumed to be one.

The Edit Mode subcommands are explained in Chapter Nine, "Editing."

3-6
Chapter Three

FILES (list names of files)

Form: FILES "<filename>"

The FILES command is used to list the names of files residing on the disk.

"<filename>" must follow the normal CP/M naming conventions. If <filename> is
omitted, all the files on the current default drive will be listed. "<filename>" is a string which
may contain question marks (?) to match any character in the file name or extension. An
asterisk (*) can be used to match any file name or extension.

Examples:

FILES list all file names on current default disk

FILES "*.BAS" list all file names with extension BAS

FILES "B: *. *” list all file names on drive B:

Note that, in the last example, the drive specification is given in upper case. All references to
disk drives from within MBASIC must be given in upper case. Specifying a drive name in
lower case will generate a "Bad File Name" error.

3-7
Command Mode Statements

LIST (list program on terminal)

Form: LIST∆<line number>-<line number>

The LIST command is used to list all or part of the program currently in memory. The listing will
be displayed on the terminal device.

BASIC-80 will always return to Command Mode after a LIST is executed.

If the line numbers are omitted, the entire program is listed beginning at the lowest line
number. The listing is terminated by either typing CTRL-C or by reaching the end of the
program.

If one line number is specified, then only this line will be displayed on the terminal
device.

Examples:

LIST List the entire program.

LIST 500 List line number 500.

LIST 150- List all lines from 150 to the end of the program.

LIST -100 List all lines from the lowest number through 100.

LIST 150-400 List lines 150 through 400, inclusive.

LLIST (list program on line printer)

Form: LLIST∆<line number>-<line number>

The LLIST command will list all or part of the program currently in memory. The listing will be
printed on the line printer. The options for LLIST are the same as LIST. BASIC-80 will always
return to the Command Mode after an LLIST is executed.

LLIST will assume a 132-character wide printer.

Examples:

 (See the examples for LIST.)

3-8
Chapter Three

LOAD (load program file from disk)

Form: LOAD "<filename>",R

The LOAD command is used to load a file from the disk into memory.

"<filename>" is the CP/M file name associated with the program file. The default
extension .BAS will be supplied.

LOAD closes all open files and deletes all variables and program lines currently residing in
memory before it loads the designated program.

The R option can be used to RUN the program after it has been LOADed. If the R option is used,
all open files will be left open.

The R option may be used to chain several programs (or segments of the same program).
Information may be passed between the programs using temporary disk data files.

Example:

LOAD "STARTRK",R

LOAD "B:GAME1.BAS"

NOTE: BASIC-80 will not map a file name to upper case. Thus, all of the statements which
specify a CP/M file name should have the file name expressed in upper case letters. If a
lower case file name is created in the directory, it can then only be accessed with
BASIC-80.

3-9
Command Mode Statements

MERGE (merge program)

Form: MERGE "<filename>"

The MERGE command will merge a disk program file into the program currently in memory.

"<filename>" is the CP/M file name associated with the disk program file. The default file name
extension .BAS will be supplied. The file must have been saved in ASCII format. If the file is not in
ASCII format, a "Bad file mode" error occurs.

If any lines in the disk file have the same line numbers as lines in the program in memory, the lines
from the file on the disk will replace the corresponding lines in memory. Merging may be
thought of as "inserting" the program lines on the disk into the program in memory.

BASIC-80 will always return to the Command Mode after executing a MERGE command.

Examples:

MERGE "PROG1" Insert PROG1.BAS

MERGE "B:TEST.BAS" Insert B:TEST.BAS

NEW (delete current program)

Form: NEW

The NEW command is used to delete the program currently in memory and clear all variables.
After a NEW command has been executed, all numeric variables are set to zero and all string
variables to null.

BASIC-80 will always return to Command Mode after a NEW is executed.

3-10
Chapter Three

RENUM (renumber program lines)

Form: RENUM∆<new number>,<old number>,<increment>

The RENUM command will renumber program lines.

<new number> is the first line number to be used in the new sequence. The default is 10.
<old number> is the line in the current program where renumbering is to begin. The default is
the first line of the program. <increment> is the increment to be used in the new sequence.
The default increment is 10.

The RENUM command will also change all line number references following GOTO, THEN,
ON/GOTO, ON/GOSUB and ERL statements to reflect the new line numbers. If a nonexistent line
number appears after one of these statements, the error message "Undefined line xxxxx in yyyyy"
is printed. The incorrect line number reference (xxxxx) is not changed by RENUM, but line
number yyyyy may be changed.

RENUM can not be used to change the order of program lines or to create line numbers greater
than 65529. In these cases, an "Illegal function call" error will result.

Examples:

RENUM

Renumber the entire program. The first new line number will be 10. The line
numbers will be incremented by 10.

RENUM 300, 50

Renumber the entire program. The first new line number will be 300. Lines will
increment by 50.

RENUM 1000,900,20

Renumber the lines from 900 up so they start with line number 1000 and
increment by 20.

3-11
Command Mode Statements

RESET (change diskette)

Form: RESET

The RESET command enables you to exchange a new disk for the disk in the current default
drive. RESET cannot be used with a drive name argument. Any attempt to supply a drive name
argument will generate a "Syntax error".

The RESET command should be issued only after you replace the old default disk with the
new default disk. If you issue a RESET command before switching disks, BASIC-80 will read the
directory information off of the old disk.

The only effect of the RESET command is to read the directory information off of the new disk and
into memory. RESET does not close open files.

Example:

RESET

3-12
Chapter Three

RUN (execute program)

Form 1: RUN∆<line number>

Form 1 of the RUN command is used to execute a program currently in memory.

If <line number> is specified, execution begins on that line. A RUN command without
the <line number> will start execution at the lowest line number. BASIC-80 will
always return to Command Mode after a RUN is executed.

Example:

RUN 10 Executes the program currently in memory. Execution starts at line

number 10.

RUN Executes the program currently in memory. Execution starts at the
lowest numbered line.

Form 2: RUN "<filename>",R

Form 2 of the RUN command is used to load a BASIC-80 program from disk into memory and
run it. The R is optional and if used will leave all data files open.

"<filename>" is the name of the file on the disk. The default extension is .BAS.
"<filename>" must be a valid CP/M file name enclosed in quotation marks.

RUN closes all open files and deletes the current contents of memory before loading the
designated program. However, with the R option, all data files will remain open.

Example:

RUN "PROG1" Loads and executes PROG1.BAS

RUN “B:GAME”,R Loads and executes B:GAME.BAS leaving all data files

open.

3-13
Command Mode Statements

SAVE (write program to disk)

Form: SAVE "<filename>",A

SAVE "<filename>",P

SAVE "<filename>"

The SAVE command will write to a disk file the program that is currently in memory.

"<filename>" is a string enclosed in quotes that conforms to the CP/M requirements for file
name construction. The default extension BAS is supplied. If <filename> already exists,
the file will be written over.

The A option will save the file in ASCII format. Otherwise, BASIC-80 will assume the
compressed binary format. ASCII format takes more space on the disk, but some disk
commands require that the files be in ASCII format. For example, the MERGE command
requires an ASCII format file.

The P option will protect the file by saving it in an encoded binary format. When a protected file is
later RUN or (LOADed), any attempt to list or edit it will fail.

Examples:

SAVE "COW",A

SAVE "PROG",P

SYSTEM (perform CP/M warm start)

Form: SYSTEM

The SYSTEM command will close all files and then perform a CP/M warm start. Because CTRL-C
will always return to BASIC-80 Command Mode, the SYSTEM command must be used to return to
CP/M.

Example:

SYSTEM
A> [prompt from CP/M)

(assuming A: is the current default disk)

3-14
Chapter Three

4-1
Program Statements

Chapter Four

Program Statements

OVERVIEW

The program statements available to the BASIC-80 programmer can be divided into four
functional groups: Data type definition, Assignment and allocation, Control, and I/O (Non-
disk). This Chapter will explain the various program statements in these four groups.

Note: These program statements can also be used as Command Mode statements.

4-2
Chapter Four

DATA TYPE DEFINITION

A DEF statement declares that the variable name beginning with a certain range of letters is of the
specified data type. However, a type declaration character always takes precedence over a DEF
statement.

If no data type declaration statements are encountered, BASIC-80 assumes all variables
without declaration characters are single precision variables.

DEFINT (declare variable as integer)

Form: DEFINT∆<letter range>

The DEFINT statement is used to declare a range of variable names as integer data types.

An integer data type will take up less memory than a single-precision or double-precision
data type. However, a variable declared as an integer data type can only be assigned values in
the range -32768 and +32767 inclusive.

Example:

DEFINT I-N All variables beginning with the letters I,J,K,L,M,N will be integer
variables.

DEFSNG (declare variable as single-precision)

Form: DEFSNG∆<letter range>

The DEFSNG statement is used to declare a range of variable names as single-precision
data types.

Single-precision variables are stored with seven digits of precision and they are printed with six
digits of precision.

Example:

DEFSNG A-D All variables beginning with the letters A,B,C, and D will be single-
precision variables.

4-3
Program Statements

DEFSTR (declare variable as string)

Form: DEFSTR∆<letter range>

The DEFSTR statement is used to declare a range of variable names as string data types.

Double-precision variables are stored with 17 digits of precision and they are printed with 16
digits of precision.

Examples:

DEFDBL X-Z, A All variables beginning with the letters X, Y, Z and A will be double
precision variables.

DEFSTR (declare variable as string)

Form: DEFSTR∆<letter range>

The DEFSTR statement is used to declare a range of variable names as string data types.

A string is a sequence of characters - letters, blanks, numbers, and special characters - up to
255 characters long.

Example:

DEFSTR S All variables beginning with the letter S will be string variables.

4-4
Chapter Four

ASSIGNMENT AND ALLOCATION STATEMENTS

DIM (set-up array)

Form: DIM <list of subscripted variables>

The DIMension statement is used to set up the maximum values for array variable subscripts and
allocate storage accordingly.

If an array variable name is used without a DIM statement, the maximum value of its subscript(s) is
assumed to be 10. If a subscript is used that is greater than the maximum specified, a "Subscript out
of range" error occurs. The minimum value for a subscript is always 0, unless otherwise
specified with the OPTION BASE statement.

The DIM statement sets all the elements of the specified arrays to an initial value of zero.

Example:

10 DIM A(20)
20 FOR I = 0 TO 20
30 A(I) = I+1
40 NEXT I

OPTION BASE (set minimum value for array subscript)

Form: OPTION∆BASE∆n

The OPTION BASE statement is used to declare the minimum value for array subscripts. The
default base is 0. This may be changed to 1. The OPTION BASE statement must be executed before
the DIM statement is executed. If an OPTION BASE statement appears after an array has been
DIMensioned, a "Duplicate definition" error will result.

Example:

OPTION BASE 1

For more information on array storage allocation, see Chapter Six, "Arrays."

4-5
Program Statements

ERASE (remove array from program)

Form: ERASE∆<list of array names>

The ERASE statement is used to remove an array from a program. Arrays may be redimensioned
after they are ERASEd, or the previously allocated array space in memory may be used for other
purposes.

If an attempt is made to re-dimension an array without first ERASEing it, a "Duplicate
Definition" error occurs. If an attempt is made to ERASE an array that has not been defined in a
DIM statement, an "Illegal function call" error will result.

Example:

10 DIM A(40)
20 ERASE A
30 DIM A(50)

LET (assign value to a variable)
Form: LET∆<variable> = <expression>

The LET statement is used to assign the value of an expression to a variable.

Note that the word LET is optional, as the equal sign is sufficient when assigning an expression to a
variable name.

Example:

10 LET D = 12
20 LET SUM = X + Y + Z

or

10 D = 12
20 SUM =X+Y+Z

4-6
Chapter Four

REM (insert remark)

Form: REM <remark>

The REM statement allows explanatory remarks to be inserted in a program.

REM statements are not executed but are output exactly as entered when the program is
listed.

REM statements may be branched into (from a GOTO or GOSUB statement), and execution will
continue with the first executable statement after the REM statement.

Remarks may also be added to a line by preceding the remark with a single quotation mark.
Example:

10 REM THIS IS A REMARK
20 ' THIS IS ALSO A REMARK

SWAP (exchange variable values)

Form: SWAP∆<variable>,<variable>

The SWAP statement is used to exchange the values of two variables.

Any type variable may be swapped (integer,single-precision, double-precision, string), but the
two variables must be of the same type or a "Type mismatch" error results.

Example:

10 A$=" ONE ":B$="FOR":C$="ALL"
20 PRINT A$;B$;C$
30 SWAP A$,C$
40 PRINT A$;B$;C$
RUN
ONE FOR ALL
ALL FOR ONE
Ok

4-7
Program Statements

CONTROL STATEMENTS

Two types of control statements are available to the BASIC-80 programmer. One type affects the
sequence of execution, and the other type is used for conditional execution.

Sequence of Execution

The sequence of execution statements are used to alter the sequence in which the lines of a program are
executed. Normally, execution begins with the lowest numbered line and continues,
sequentially, until the highest numbered line is reached.

The sequence of execution statements allow the BASIC-80 programmer to execute the lines in any
sequence the program logic dictates.

END (terminate program execution)

Form: END

The END statement will terminate program execution, close all files, and return to Command Mode.

END statements may be placed anywhere in the program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK message to be displayed. An END statement at the end
of a program is optional. BASIC-80 will always return to Command Mode after an END is
executed.

Example:

520 IF K>1000 THEN END

4-8
Chapter Four

FOR/NEXT (repetitive execution loop)

Form: FOR <variable> = X TO Y [STEP Z].

 .
 .
 .
NEXT [<variable>]

where X,Y and Z are constants, variables, or numeric expressions.

The FOR/NEXT statement will allow a series of instructions to be performed in a loop a given
number of times.

<variable> is used as the loop counter. The first numeric expression (X) is the initial value of
the counter. The second numeric expression (Y) is the terminal value of the counter. The third
numeric expression (Z) is the incremental value for the loop counter.

Before the FOR/NEXT loop is executed, these three numeric values are evaluated. First,
the terminal value is evaluated. Then the initial value is evaluated. The loop counter is
then set equal to the initial value.

Any attempt to change these three values during the execution of the loop will have no effect.
However, the loop counter must not be changed or the loop will not operate as expected.

After the numeric values are evaluated, a check is performed to see if the initial value of the loop
exceeds the terminal value. If the initial value of the loop exceeds the terminal value, the loop
will not be executed. (If the STEP value is negative, the initial value must be greater than the
terminal value or the loop will not be executed.)

The program lines following the FOR are executed until the NEXT statement is encountered.
Then the loop counter is incremented by the amount specified by STEP. A check is performed to
see if the value of the loop counter is now greater than the terminal value.

If it is not greater, BASIC-80 branches back to the statement after the FOR statement and the
process is repeated. If the value of the loop counter is greater than the terminal value, execution
continues with the statement following the NEXT statement. The statements between the FOR
and the NEXT statements constitute the range of the FOR/NEXT loop.

If STEP is not specified, the incremental value is assumed to be one. If STEP is a negative value,
the loop counter is decremented each time through the loop. The loop is executed until the loop
counter is less than the final value.

4-9
Program Statements

Examples:

===

10 FOR J = 5 TO 1 STEP -1
20 PRINT J;
30 NEXT J
RUN
 5 4 3 2 1
Ok

The statement in the range of this loop will be executed five times. In this example, 5 is
the initial value, 1 is the terminal value, and -1 is the incremental value. Note that the initial
value is greater than the terminal value. This is valid because the incremental value is
negative. Also note that the variable J could have been omitted from the NEXT statement in
line 30.

==

10 FOR J = 5 TO 1
20 PRINT J;
30 NEXT J
RUN
Ok

In this example, the statement in the range of the loop will not be executed because the
initial value is greater than the terminal value. The STEP value has been omitted, so it is
assumed to be 1.

===

10 I = 5
20 FOR I = I TO 1+5
30 PRINT I;
40 NEXT
RUN
 1 2 3 4 5 6 7 8 9 10
Ok

In this example, the loop executes 10 times. The terminal value for the loop is evaluated first.
The terminal value (I+5) is 10. Next, the initial value is evaluated. The initial value is 1.
The loop counter is then set equal to the initial value. Because the STEP value has been
omitted, the incremental value is assumed to be 1.

4-10
Chapter Four

Nested Loops

FOR/NEXT loops may be nested. That is, a FOR/NEXT loop may be placed within the range of
another FOR/NEXT loop.

When loops are nested, each loop must have a unique variable name as its counter. The NEXT
statement for the inside loop must appear before the NEXT for the outside loop. If nested loops
have the same end point, a single NEXT statement may be used for all of them.

The variable in a NEXT statement may be omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT statement is encountered before its
corresponding FOR statement, a "NEXT without FOR" error message is issued and execution is
terminated.

 Valid Nesting Invalid Nesting

 FOR J=1TO 10 FOR D =1 TO 10

 FOR I= 1 TO 5 FOR I= 1 TO 5

 NEXT I NEXT J

 NEXT J NEXT I

Note that with the valid nesting, the range of the inner loop is completely contained within
the range of the outer loop.

4-11
Program Statements

GOSUB/RETURN (branch to subroutine)

Form: GOSUB <line number>
 .
 .
 .
RETURN

The GOSUB/RETURN statement is used to branch to and return from a subroutine.

<line number> is the first line of the subroutine.

A subroutine may be called any number of times in a program, and a subroutine may be called from
within another subroutine. Such nesting of subroutines is limited only by available memory.

The RETURN statement in a subroutine causes BASIC-80 to branch back to the statement following
the most recent GOSUB statement. A subroutine may contain more than one RETURN statement.

Subroutines may appear anywhere in the program, but it is good programming practice to separate
the subroutine from the main program. To prevent inadvertant entry into the subroutine, it may be
preceded by a STOP, END, or GOTO statement that directs program control around the subroutine.

Example:

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END
35 REM
40 REM THIS IS THE SUBROUTINE
45 REM
50 PRINT "SUBROUTINE";
60 PRINT " IN ";
70 PRINT "PROGRESS"
80 RETURN
RUN
SUBROUTINE IN PROGRESS.
BACK FROM SUBROUTINE
Ok

4-12
Chapter Four

GOTO (unconditional branch)

Form: GOTO <line number>

The GOTO statement will branch unconditionally out of the normal program sequence and
continue execution at the specified line number.

If <line number> is an executable statement, that statement and those following are executed. If
it is a nonexecutable statement, execution proceeds at the first executable statement
encountered after <line number>.

If <line number> has not been previously defined, an "Undefined line number" error will be
displayed.

Example:

10 GOTO 30
20 PRINT "LINE 20"
30 PRINT "LINE 30"
40 END
RUN
LINE 30
Ok

4-13
Program Statements

ON/GOTO and ON/GOSUB (evaluate and branch)

Forms: ON <expression> GOTO <list of line numbers>

ON <expression> GOSUB <list of line numbers>

The ON/GOTO and the ON/GOSUB statements are used to branch to one of several
specified line numbers, depending on the value returned when an expression is evaluated.
The result of evaluating <expression> must be positive and less than 255. If the value of
<expression> is non-integer, the fractional portion is rounded.

The value of <expression> determines which line number in the list will be used for
branching. For example, if the value of the expression is three, the third line number in the list
will be the destination of the branch.

If the value of <expression> is zero or greater than the number of line numbers in the list,
BASIC-80 will continue with the next executable statement. If the value is negative or
greater than 255, an "Illegal function call" error occurs.

In the ON/GOSUB statement, each line number in the list must be the first line number of a
subroutine.

Example:

10 L=4
20 ON L GOTO 50,60,70,80
30 END
50 PRINT "LINE 50":GOTO 90
60 PRINT "LINE 60":GOTO 90
70 PRINT "LINE 70":GOTO 90
80 PRINT "LINE 80":GOTO 90
90 STOP
RUN
LINE 80
Ok

In this example, L=4, thus causing a branch to the fourth line number in the list. The fourth line
number in the list is 80. If L >4 or if L=0, then the program would have branched to line number 30.

4-14
Chapter Four

STOP (suspend execution)

Form: STOP

The STOP statement is used to terminate program execution and return BASIC80 Command
Mode.

STOP statements may be used anywhere in a program to terminate execution. When a STOP
is encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement does not close any files.

BASIC-80 will always return to the Command Mode after a STOP is executed. Execution can
be resumed by issuing a CONT command.

Example:

10 PRINT "LINE 10"
20 STOP
30 PRINT "LINE 30"
40 END
RUN
LINE 10
BREAK IN 20
Ok
CONT
LINE 30
Ok

Conditional Execution

The conditional execution statements are used to optionally execute a statement or series of
statements. The statement or series of statements will be executed if a certain condition is met.

4-15
Program Statements

IF/THEN/ELSE (conditional execution)

Form:

IF <expression> THEN <statement(s)> ELSE <statement(s)>

IF <expression> GOTO <line number> ELSE <statement(s)>

The IF/THEN/ELSE statement is used to make a decision regarding program flow based on the
result returned by an expression.

If the result of <expression> is true (i.e. not zero), the THEN clause is executed. THEN may be
followed by either a line number for branching or one or more statements to be executed. If
multiple statements are to be executed, they must be separated by colons (:).

If the result of <expression> is false (i.e. zero), the THEN clause is ignored and the ELSE clause,
if present, is executed. ELSE may be followed by either a line number for branching or one or
more statements to be executed. If multiple statements are to be executed, they must be
separated by colons (:).

The keyword THEN can optionally be replaced with a GOTO statement. In this case, if the
result of the expression is true, the program will branch to the statement number specified
in the GOTO statement.

Examples:

IF I THEN PRINT "I IS NOT ZERO" ELSE PRINT "I IS ZERO"

This statement will print "I IS NOT ZERO" if the value of I is not zero. If the value of I
is zero, the message "I IS ZERO" will be printed.

IF X=A GOTO 100 ELSE PRINT "NOT EQUAL"

This statement will branch to line number 100 if X = A. If X is not equal to A, the message
"NOT EQUAL" will be printed.

IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go either to the terminal or the line printer
depending upon the value of a variable (IOFLAG). If IOFLAG is zero, output goes to the
line printer. If IOFLAG is not zero, output goes to the terminal.

4-16
Chapter Four

Additional Considerations

When an IF/THEN statement is followed by a line number in the Command Mode, an
"Undefined line number" error results unless a statement with the specified line number had
previously been entered in the Indirect Mode.

When using IF to test equality for a value that is the result of a floating point computation,
remember that the internal representation of the value may not be exactly the same as the printed
value. Therefore, the test should be against the range over which the accuracy of the value may
vary. For example, to test the single-precision variable A against the value 1.0, use:

IF ABS (A-1. 0) <1. 0E-06 THEN . . .

This test returns TRUE if the value of A is 1.0 with a relative error of less than 1.0E-6.

Nesting of IF Statements

IF/THEN/ELSE statements may be nested, but make sure that the same number of IF's and ELSE's are
used. Each ELSE will be matched with the closest unmatched THEN. In the following example,
the operator was able to include the ELSE statements in line 20 by using line feeds.

Example:

10 INPUT A

20 IF A=C THEN IF A=B THEN PRINT "A=B A=C"

<operator-typed LINE FEED>

ELSE PRINT "A NOT = B"

<operator-typed LINE FEED >

ELSE PRINT "A NOT = C"

30 PRINT A

This nested IF will first test to see if A=C. If A does not equal C, the second ELSE will be executed. If
A does not equal C, the message "A NOT C" will be printed and execution will be continued at
line 30.

If A=C, the first THEN will be executed. This will result in another test. This time, A will be
compared to B. If A does not equal B, the first ELSE will be executed. So, if A does not equal B, the
message "A NOT = B" will be printed and execution will continue with line 30.

If A=B, the second THEN will be executed, resulting in the message "A=B A=C" being
printed on the terminal. After printing this message, execution will be continued at line 30.

4-17
Program Statements

WHILE/WEND (conditional execution)

Form: WHILE <expression>
 .
<loop statements>
 .
WEND

The WHILE ... WEND statement is used to execute a series of statements in a loop as long as a given
condition is true.

If <expression> is not zero (i.e.,true), <loop statements> are executed until the WEND statement is
encountered. BASIC-80 then returns to the WHILE statement and checks <expression>. If it is still
not zero (true), the process is repeated. If the value of the expression is zero (false), execution
resumes with the statement following the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND will match the most recent
WHILE. An unmatched WHILE statement causes a "WHILE without WEND" error, and an
unmatched WEND statement causes a "WEND without WHILE" error.

Example:

10 I = 1
20 WHILE I
30 PRINT "WHILE/WEND LOOP"
40 I=0
50 WEND
60 END
RUN
WHILE/WEND LOOP
Ok

4-18
Chapter Four

I/O Statements (Non-Disk)

DATA (store constants)

Form: DATA <list of constants>

The DATA statement is used to store numeric and string constants. These constants are
assigned to variables by using the READ statement.

DATA statements are non-executable and they may be placed anywhere in the program. A
DATA statement may contain as many constants as will fit on a logical line. Any number of
DATA statements may be used in a program.

The READ statement will access the DATA statement in line number sequence and the data
contained therein may be thought of as one continuous list of items, regardless of how many
items are on a line or where the lines are placed in the program.

<list of constants> may contain numeric constants in any format, .i.e., fixed point, floating
point or integer. (No numeric expressions are allowed in the list.)

String constants in DATA statements must be surrounded by double quotation marks only if they
contain commas, colons or significant leading or trailing spaces. Otherwise, quotation marks
are not needed.

The variable type (numeric or string) given in the READ statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by use of the RESTORE statement.

Example:

10 DATA 12.3, HELLO, "GOOD,BYE", 34
20 DATA 1,2,3,4,5

4-19
Program Statements

INPUT (input from terminal)

Form: INPUT [<"prompt string">;] <list of variables>

The INPUT statement is used to input data from the terminal during program execution.

When an INPUT statement is encountered, program execution pauses and a question mark
is printed to indicate the program is waiting for data.

If <"prompt string"> is included, the string is printed before the question mark. The required
data is then entered at the terminal. (The question mark can be suppressed by putting a
comma instead of a semicolon between the prompt string and the list of variables.)

If the keyword INPUT is immediately followed by a semicolon, then the carriage return typed by
the user does not echo a carriage return/line feed sequence.

The data that is entered is assigned to the variable(s) given in the variable list. The number of
data items supplied must be the same as the number of variables in the list. The data items input
must be separated by commas.

The variable names in the list may be numeric or string variable names (including subscripted
variables). The type of each data item that is input must agree with the type specified by the
variable name. Strings input to an INPUT statement need not be surrounded by quotation
marks.

Responding to INPUT with too many or too few items, or with the wrong type of data (numeric
instead of string, etc.) causes the message "?Redo from start" to be printed. No assignment of
input values is made until an acceptable response is given.

NOTE: Previous versions of Microsoft BASIC handled illegal INPUT in a somewhat different
manner.

Example:

10 INPUT"ENTER VALUE";X
20 PRINT X
30 END
RUN
ENTER VALUE? [you type] 5
 5
Ok

4-20
Chapter Four

LINE INPUT (input entire line)

Form: LINE INPUT [< ; > <"prompt string">;] <string variable>

The LINE INPUT statement is used to input an entire line (up to 255 characters) to a string variable,
without the use of delimiters.

The <"prompt string"> is a string literal that is printed at the terminal before input is accepted. A
question mark is not printed unless it is part of the prompt string. All input from the end of the
prompt string to the carriage return is assigned to <string variable>.

If the key words LINE INPUT are immediately followed by a semicolon, then the RETURN typed
by the user to end the input line does not echo a carriage return/line feed sequence at the terminal.

A LINE INPUT may be escaped by typing CTRL-C. BASIC-80 will return to the Command
Mode and type "Ok". A CONT command will resume execution at the LINE INPUT.

Example:

10 LINE INPUT"NAME?--";J$
20 PRINT J$
30 STOP
RUN
NAME?--[you type] JONES, JACK L.
JONES, JACK L.
Ok

4-21
Program Statements

LPRINT (output data to line printer)

Form: LPRINT <list of expressions>

The LPRINT statement is used to print data on the line printer.

The LPRINT statement is the same as the PRINT statement, except output goes to the line printer.

LPRINT defaults to a 132-character wide printer.

PRINT (output data at terminal)

Form: PRINT <list of expressions>

The PRINT statement is used to output data to the terminal. (A question mark may be used in
place of the keyword PRINT in a PRINT statement.)

If <list of expressions> is omitted, a blank line is printed. If <list of expressions> is included, the
values of the expressions are printed at the terminal. The expressions in the list may be numeric
and/or string expressions. String constants must be enclosed in quotation marks.

Print Positions

The position of each printed item is determined by the punctuation used to separate the
items in the list. BASIC-80 divides the line into print zones of 14 spaces each.

In the list of expressions, a comma (,) causes the next value to be printed at the beginning of the
next zone. A semicolon (;) causes the next value to be printed immediately after the last value.
Typing one or more spaces between expressions has the same effect as typing a semicolon.

If a comma or a semicolon terminates the list of expressions, the next PRINT statement begins
printing on the same line, spacing accordingly. If the list of expressions terminates without a
comma or a semicolon, a carriage return is inserted at the end of the line. If the printed line
is longer than the terminal width, BASIC-80 goes to the next physical line and continues
printing.

4-22
Chapter Four

Printed numeric values are always followed by a space. Positive numbers are preceded by a
space. Negative numbers are preceded by a minus sign.

Single-precision numbers that can be accurately represented with 6 or fewer digits in the un-
scaled format are output using the un-scaled format. For example, 10^(-6) is output as .000001
and 10A(-7) is output as 1E-7.

Double-precision numbers that can be accurately represented with 16 or fewer digits in the un-
scaled format are output using the un-scaled format. For example, 1D-16 is output as
.0000000000000001 and 1D-17 is output as 1D-17.

Examples:

===

10 X=5
20 PRINT X+5,X-5,X*(-5),X^5
30
END
RUN
10 0 -25 3125
Ok

In this example, the commas in the PRINT statement cause each value to be printed at the
beginning of the next print zone.

===

10 FOR X = 1 TO 5
20 J = J +5
30 K=K+10
40 ?J;K;
50 NEXT X
RUN
 5 10 10 20 15 30 20 40 25 50 Ok

In this example, the semicolons in the PRINT statement cause each value to be printed
immediately after the preceding value. (Don't forget, a number is always followed by a space and
positive numbers are preceded by a space.) In line 40, a question mark is used instead of the word
PRINT.

4-23
Program Statements

READ (read values from DATA statement)

Form: READ <list of variables>

The READ statement is used to read values from a DATA statement and assign them to variables.

A READ statement must always be used in conjunction with a DATA statement. READ
statements assign the constant values contained in a DATA statement to the variables contained
in the READ statement.

The assignment of values is on a one-to-one basis. READ statement variables may be numeric or
string, and the values read must agree with the variable types specified. If data types do not
agree, a "Syntax error" will result.

A single READ statement may access one or more DATA statements (they will be accessed in order),
or several READ statements may access the same DATA statement.

If the number of variables in <list of variables> exceeds the number of data constants in the
DATA statement, an "Out of data" error will result.

If the number of variables specified is fewer than the number of elements in the DATA statement,
subsequent READ statements will begin reading data at the first unread element. If there are no
subsequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE statement.

Example:

10 FOR I = 1 TO 10 20 READ A(I)
30 NEXT I
40 DATA 3,4,5,6,7,8,9,10,11,12

This program segment READs the values from the DATA statement into the array A. After
execution, the value of A(1) will be 3, and so on.

4-24
Chapter Four

RESTORE (reset data pointer)

Form: RESTORE <line number>

The RESTORE statement is used to reset the data pointer in a DATA statement so that the data may be
reread.

After a RESTORE statement is executed, the next READ statement accesses the first item in the
first DATA statement in the program. If <line number> is specified, the next READ
statement will access the first item in the specified DATA statement.

Example:

10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57,68,79

This program segment will assign the constants 57,68,79 to the variables A,B,C. The RESTORE
statement in line 200 will reset the DATA pointer so that the READ statement in line 30 will
assign the constants 57,68,79 to the variables D,E,F.

4-25
Program Statements

WRITE (output data to terminal)

Form: WRITE <list of expressions>

The WRITE statement is used to output data to the terminal.

If <list of expressions> is omitted, a blank line will be output. If <list of expressions> is
included, the values of the expressions are output to the terminal. The expressions in the list
may be numeric and/or string expressions, and they must be separated by commas.

When the printed items are output, each item will be separated from the last by a comma.
Printed strings will be delimited by quotation marks. After the last item in the list is printed,
BASIC-80 will insert a carriage return/line feed.

The WRITE statement outputs numeric values using the same format as the PRINT
statement.

Example:

10 A=80:B=90:C$="BASIC-80"
20 WRITE A,B,C$
RUN
 80, 90,"BASIC-80"
Ok

4-26
Chapter Four

5-1
Strings

Chapter Five

Strings

OVERVIEW

A string is a sequence of characters - letters, blanks, numbers, and special characters - up to 255
characters long. A string constant is constructed by enclosing these characters in a set of
double quotation marks. A string variable can be declared by simply adding the string
declaration character, $, to the variable name. A variable can also declare a variable a string
variable by using the DEFSTR statement.

Microsoft BASIC-80 provides complete facilities for manipulating strings. A string can be
compared, PRINTed, concatenated with other strings, etc. Several functions for manipulating
strings are also available to the BASIC-80 programmer.

This Chapter will cover the following subjects:

"String Input/Output"

"String Operations"

"String Functions"

5-2
Chapter Five

STRING INPUT/OUTPUT

String constants can be input to a program in the same manner as numeric constants. The
INPUT statement can be used. The string can be usually typed without quotes.

10 INPUT "YOUR NAME";J$
20 PRINT "HELLO ";J$
RUN
YOUR NAME? [you type] JOHN
HELLO JOHN
Ok

However, if you wish to input a string constant which contains commas, colons, or leading or
trailing blanks, the string must be enclosed in quotes. (When the INPUT statement is used.)

10 INPUT "YOUR NAME";J$
20 PRINT J$ RUN
YOUR NAME? [you type] "JONES, JOHN"
JONES, JOHN
Ok

The LINE INPUT statement can be used to input strings containing commas, colons, and
leading or trailing blanks. The string does not have to be enclosed in quotes with the LINE
INPUT statement.

10 LINE INPUT "YOUR NAME";J$
20 PRINT J$ RUN
YOUR NAME [you type] JONES, JOHN
JONES, JOHN
Ok

5-3
Strings

STRING OPERATIONS

Strings may be concatenated using the +. For example:

10 X$="FIRST"
20 Y$=" AND "
30 Z$="LAST"
40 PRINT X$+Y$+Z$
RUN
FIRST AND LAST
Ok

Strings may be compared using the same relational operators that are used with numbers:

 = <> < > <= >=

The strings are compared character-for-character from left to right. The ASCII codes for the
character are compared, and the character with the lower ASCII value is considered to precede
the other character.

For example, the string "Z$" precedes the string "Z*" because "$" (ASCII code - decimal 36) has a
lower value than does "*" (ASCII code - decimal 42).

When strings of different lengths are compared, the shorter string is considered to precede the
longer string. Every character, including blanks and any non-printing character is significant
in a string comparison. For example, the string "AB" will precede the string "AB " because of
the trailing blank in the string ."AB".

A string constant must also be enclosed in double quotes whenever it is used in an assignment
statement or in a comparison expression.

Example:

Z$="STRING CONSTANT"
IF Z$="NUMERIC CONSTANT" THEN <??> Z$

5-4
Chapter Five

STRING FUNCTIONS

The string functions available to the BASIC-80 programmer are: Function Definition

ASC(X$) string to ASCII value conversion

CHR$(I) ASCII value to string conversion

HEX$(X) decimal to hexadecimal conversion

INKEY$ read one character from terminal

INPUT$(X,Y) read characters

INSTR(I,X$,Y$) search for substring

LEFT$(X$,I) return leftmost characters

LEN(X$) length of string

MID$(X$,I,J) return substring
MID$(X$,I,J)=Y$ replace portion of string

OCT$(X) convert decimal to octal

RIGHT$(X$,I) return rightmost characters

SPACE$(X) return string of spaces

STR$(X) return string representation

STRING$(I,)) build string
STRING$(I,X$)

VAL(X$) return numerical representation of the string

Table 5-1

String Functions

5-5
Strings

ASC (convert string to ASCII value) Form: ASC(X$)

The ASC function will return a numerical value that is the ASCII decimal code of the first character of
the string X$. If X$ is a null string, an "Illegal function call" error is returned.

Example:

10 X$="TEST"
20 PRINT ASC(X$)
RUN
 84
Ok

In the above example, the first letter of the string X$ is a T. The ASCII code for T is 84.

CHR$ (convert ASCII value to string)

Form: CHR$(I)

The CHR$ function will return a string whose one element has ASCII decimal code I. (ASCII
codes are listed in "Appendix B.") CHR$ is commonly used to send a special character to the
terminal. For instance, the BEL character could be sent; PRINT CHR$(7).

Example:

PRINT CHR$(66)
B
Ok

5-6
Chapter Five

HEX$ (convert decimal to hexadecimal)

Form: HEX$(X)

The HEX$ function will return a string which represents the hexadecimal value of the decimal
argument. X is rounded to an integer before HEX$(X) is evaluated.

Example:

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X;" DECIMAL IS ";A$;" HEXADECIMAL"
RUN
? 32
32 DECIMAL IS 20 HEXADECIMAL

INKEY$ (read one character from keyboard)

Form: INKEY$

The INKEY$ function will return either a one-character string containing a character read
from the terminal or a null string if no character is pending at the terminal. No character is
echoed and all characters are passed through the program except for CTRL-C which
terminates the program and returns BASIC-80 to the Command Mode.

Example:

10 X$ = INKEY$
20 IF X$=CHR$(32) THEN STOP
30 GO TO 10

This example would read from the keyboard until a space (ASCII decimal-32) was typed.

5-7
Strings

INPUT$ (read characters)

Form: INPUT$(X,Y)

The INPUT$ function will return a string of X characters, read from the terminal or from file
number Y. If the terminal is used for input, no characters will be echoed and all control
characters are passed through except CTRL-C, which is used to interrupt the execution of
the INPUT$ function.

Example:

10 OPEN "I",1,"DATA.DAT"
20 IF EOF(1) THEN 50
30 PRINT INPUT$(1, 1)
40 GOTO 20
50 END

The above example will print all the characters in the file DATA.DAT

10 X$=INPUT$(1)
20 IF X$="P" THEN 500
30 IF X$="S" THEN 700 ELSE 10

This example would read one character from the keyboard. If the character is a P, program control
would be transferred to line number 500. If the character is an S, control would be transferred to line
number 700. If the character is not an S or P, control would be transferred back to line number
10.

5-8
Chapter Five

INSTR (search for substring)

Form: INSTR(I,X$,Y$)

The INSTR function will search for the first occurrence of string Y$ in X$ and return the
position at which the match is found. Optionally, the offset I sets the position for starting the
search. I must be in the range 1-255. If I>LEN(X$) or if X$ is null or if Y$ can not be found,
INSTR will return 0. If Y$ is null, INSTR returns I or 1.

X$ and Y$ may be string variables, string expressions or string literals.

Example:

10 X$ = "ABCDEB"
20 Y$ = "B"
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN

2 6
Ok

LEFT$ (return leftmost characters)

Form: LEFT$(X$,I)

The LEFT$ function will return a string comprised of the leftmost characters of X$. I must be
in the range 0 to 255. If I is greater than the length of X$, the entire string (X$) will be
returned. If I equals 0, the null string (length zero) is returned.

Example:

10 A$ = "BASIC-80"
20 B$ = LEFT$(A$,5)
30 PRINT B$
RUN
BASIC
Ok

5-9
Strings

LEN (return length of a string)

Form: LEN(X$)

The LEN function will return the number of characters in X$. Non-printing characters and blanks
are counted.

Example:

10 X$ = "ABC DEF"
20 PRINT LEN(X$)
RUN
 7
Ok

MID$ (return substring)

Form: MID$(X$,I,J)

The MID$ function will return a string of length j characters from X$ beginning with the Ith
character. I and J must be in the range 0 to 255. If J is omitted or if there are fewer than J
characters to the right of the Ith character, all right-most characters beginning with the Ith character
are returned. If I is greater than the length of string X$, MID$ will return a null string.

Example:

10 A$="GOOD"
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,8,8)
RUN
GOOD EVENING
Ok

5-10
Chapter Five

MID$ (replace portion of string)

Form: MID$(X$,I,J)=Y$

This form of the MID$ function will replace a portion of one string with another string.

The characters in string X$, beginning at position I, are replaced by the characters in string Y$.
The value, which is optional, refers to the number of characters from string Y$ that will be used
in the replacement.

However, regardless of whether J is omitted or included, the replacement of characters never
goes beyond the original length of X$.

Examples:

A$="1234567" at the beginning of each example

Statement Resultant A$

MID$(A$,3,4)="ABCDE" 12ABCD7

MID$(A$,5)="ABCDE" 1234ABC

MID$(A$,1,2)="A" A234567

OCT$ (convert decimal to octal)

Form: OCT$(X)

The OCT$ function will return a string which represents the octal value of the decimal
argument. X is rounded to an integer before OCT$(X) is evaluated.

Example:

PRINT OCT$(24)
 30
Ok

5-11
Strings

RIGHT$ (return rightmost characters)

Form: RIGHT$(X$,I)

The RIGHT$ function will return the right-most I characters of string X$. If I equals the length
of the string X$, the function will return the entire string. If I equals 0, the null string (length zero)
will be returned.

Example:

10 A$="DISK BASIC-80"
20 PRINT RIGHT$(A$,8)
RUN
BASIC-80
Ok

SPACE$ (return string of spaces)

Form: SPACE$(X)

The SPACE$ function will return a string of spaces of length X. The expression X is rounded to an
integer and must be in the range 0-255.

Example:

10 FOR I = I TO 5
20 X$ = SPACES(I)
30 PRINT X$;I
40 NEXT I
RUN

1
2

3
4

5
Ok

5-12
Chapter Five

STR$ (return string representation)

Form: STR$(X)

The STR$ function will return the string representation of X. For example, if X = 45.3, then
STR$(X) equals the string " 45.3". A leading blank will be inserted before "45.3" to allow
for the sign of X. Arithmetic operations may be performed on X, but not on the string
STR$(X).

Examples:

PRINT STR$(100)
100

PRINT STR$(-100)
-100

STRING$ (build string)

Form: STRING$(I,J)
STRING$(I,X$)

The STRING$ function will return a string of length I composed of the ASCII code j or the
first character of X$. I and j must be expressed in decimal and their values must be in the
range 0-255.

Examples:

PRINT STRING$(10,"*")

PRINT STRING$(15,65)
AAAAAAAAAAAAAAA

5-13
Strings

VAL (return numerical representation)

Form: VAL(X$)

The VAL function will return the numerical representation of the string X$. The VAL function
will strip all leading blanks, tabs, and line feeds from the argument string.

If the first valid character of X$ is not +, - ,&, or a digit, then VAL(X$) = 0. The & is used to specify
an octal value. The VAL function will convert this octal value to decimal when VAL(X$) is
evaluated. If the string X$ contains both numeric and alphanumeric characters, only the
leading numeric characters will be used in evaluating X$.

Examples:

PRINT VAL("100 FEET")
 100

PRINT VAL("FEET 100")
 0

PRINT VAL("&100")
 64

PRINT VAL(" -3")
 -3

5-14
Chapter Five

6-1
Arrays

Chapter Six

Arrays

OVERVIEW

This Chapter explains the methods used to create and reference an array, which is simply an ordered
list of data items. This list of data items can be a one-dimensional vertical array, or it can be a table
of data items consisting of rows and columns.

These data items may be either string or numeric. Each one is referred to as an "element". To help
illustrate the concept of arrays, an example is included in this Chapter.

This Chapter also contains several sample routines which can be used to manipulate arrays. These
sample routines can be used to add, multiply, transpose and perform other useful operations on
numeric arrays.

6-2
Chapter Six

ARRAYS
Array Declarator

Before an array is referenced, it should be "declared" by use of an array declarator. The
DIM statement is used to establish the maximum number of elements in an array. The general
form of the DIM statement is:

DIM <name>(<integer expression>)

where:

<name> is a valid BASIC-80 symbolic name

<integer expression> is any valid integer expression which when evaluated, will be rounded
to a positive integer value. This positive integer value will then become the maximum number
of elements associated with that specific array name. The maximum number of dimensions is
255. The maximum number of elements per dimension is 32767.

Examples:

DIM A(3) ,D$(2,2,2)
DIM Q1(R+T)
DIM Z#(100)

An array can also be declared without the use of the array declarator. When BASIC-80
encounters a subscripted variable that has not been defined with a DIM statement, it will assume
a maximum subscript of 10. Thus, an array can be established without the use of the DIM
statement.

6-3
Arrays

Array Subscript

Each element of an array can be uniquely referenced by having an array subscript appended to end
of the array name. This array subscript is an integer expression which references a unique
element of the array.

Examples:

A(1),D$(I,J,K)
Q1(2)
Z#(55)

Any attempt to reference an array element with a subscript that is negative will result in an
"Illegal Function Call" error. References to subscripts which are larger than the maximum
value established by a DIM statement and references which contain too many or too few
subscripts will generate a "Subscript Out of Range" error.

OPTION Base Statement

The minimum subscript for an array element is assumed to be 0. The array declarator
A(10) actually establishes an 11-element array, A(0) - A(10). The OPTION BASE statement
can be used to change this default minimum array subscript to 1. The following example
illustrates the use of the OPTION BASE statement.

Example:

OPTION BASE 1 DIM A(10)

This program segment will establish a 10 element array, A(1) - A(10). The OPTION BASE
statement must appear before any DIM statement or before any subscripted variable is referenced.
An attempt to use the OPTION BASE statement after an array has already been established
will result in a "Duplicate Definition" error.

6-4
Chapter Six

Vertical Arrays

A vertical array is a 1-dimensional array. This type of array is established if the DIM statement is
used, or by letting BASIC-80 establish the default array size. Assuming that the default array size of
11 elements has been established for the array A, BASIC-80 would allocate storage as follows:

Array element Subscripted variable

Element #1 A(0)
Element #2 A(1)
Element #3 A(2)
Element #4 A(3)
Element #5 A(4)
Element #6 A(5)
Element #7 A(6)
Element #8 A(7)
Element #9 A(8)
Element #10 A(9)
Element #11 A(10)

Table 6-1
Array Storage Allocation.

The variable A(9) would reference the tenth element of this vertical array. (Although, the
OPTION BASE statement could be used to set the minimum subscript to 1, then A(9) would
reference the ninth element of the array.)

6-5
Arrays

Multi-Dimensional Arrays

A multi-dimension array is declared in the same manner as a vertical array, except that both
row and column size are declared. For example, to declare a 3 X 3 array, the following sequence
of statements could be used:

OPTION BASE 1
DIM A(3,3)

After this program segment is executed, BASIC-80 would reserve nine storage locations for the
array. (Note that the minimum subscript value was set to 1 with the OPTION BASE statement.)

Storage for the array would be allocated as follows:

 Column 1 2 3

Row 1 A(1,1) A(1,2) A(1,3)

 2 A(2,1) A(2,2) A(2,3)

 3 A(3,1) A(3,2) A(3,3)

Table 6-2

Multi-Dimensional Array

Storage Allocation.

When reading from left to right, note that the second array subscript varied most rapidly. This is
because BASIC-80 allocates array storage such that the right-most subscript varies the fastest.

String arrays can also be established in the same manner as numeric arrays. A string array is
declared when the DIM statement is used.

DIM A$(100)

This statement will establish a 101 element string array. To access an element of the array,
append an array subscript to the end of the variable name.

A$(20)="A STRING ARRAY"

6-6
Chapter Six

MATRIX MANIPULATION

The following is a collection of subroutines which are very useful for manipulating a matrix. The
subroutine line numbers may have to be changed to be compatible with your main
program.

Matrix Input Subroutines

5000 'SUBROUTINE NAME -- MATIN2
5010 'ENTRY I% = # OF ROWS, J% = # OF COLUMNS
5020 DIM MAT(I%,J%)
5030 FOR K% = I TO I%
5040 PRINT "INPUT ROW #";K%
5050 FOR L% = 1 TO J%
5060 INPUT MAT(K%,L%)
5070 NEXT L%,K%
5080 RETURN

The above subroutine will accept data from the terminal and assign this data to the 2-
dimensional array named MAT. Upon entry into this subroutine, the integer variable I%
must contain the number of rows in the matrix and J% must contain the number of columns.

5000 'SUBROUTINE NAME -- MATINS
5010 'ENTRY I% = SIZE OF DIMENSION #1
5020 ' J% = SIZE OF DIMENSION #2
5030 ' K% = SIZE OF DIMENSION #3
5040 DIM MAT(I%,J%,K%)
5050 FOR L% = I TO I%
5060 FOR M% = I TO J%
5070 FOR N% = I TO K%
5080 READ MAT(L%,M%,N%)
5090 NEXT N%,M%,L%
6000 RETURN

This subroutine is used to read data from a DATA statement and assign this data to the 3-
dimensional array named MAT. Upon entry into this subroutine, the integer variable I% must
contain the number of elements for dimension 1, J% must contain the number of elements for
dimension 2, and K% must contain the number of elements for dimension 3. The data must also be
contained in a valid DATA statement.

6-7
Arrays

Scalar Multiplication (multiplication by a single variable)

5000 'SUBROUTINE NAME -- MATSCALE
5010 'ENTRY -- I% = SIZE OF DIMENSION #1
5020 ' J% = SIZE OF DIMENSION #2
5030 ' K% = SIZE OF DIMENSION #3
5040 ' A--ORIGINAL ARRAY
5050 ' X--SCALAR FACTOR
5060 ' B--NEW ARRAY
5070 FOR L% = 1 TO K%
5080 FOR M% = 1 TO J%
5090 FOR N% = 1 TO I%
6000 B(N%,M%,L%) = A(N%,M%,L%)*X
6010 NEXT N%
6020 NEXT M%
6030 NEXT L%
6040 RETURN

This subroutine will multiply each element in the 3-dimensional array A by the value assigned
to X and produce a new 3-dimensional array B. Upon entry into this subroutine, I% must contain
the size of dimension #1, J% must contain the size of dimension #2, K% must contain the size
of dimension #3, X must be assigned the value to multiply by (scalar factor). Both arrays A
and B must also have previously been defined by a DIM statement.

Transposition of a Matrix

5000 'SUBROUTINE NAME -- MATTRANS
5010 'ENTRY I% = # OF ROWS, J% = # OF COLUMNS
5020 'TRANSPOSE A INTO B
5030 FOR K% = 1 TO I%
5040 FOR L% = 1 TO J%
5050 B(L%,K%) = A(K%,L%)
5060 NEXT L%
5070 NEXT K%
5080 RETURN

This subroutine will transpose the 2-dimensional matrix A into the 2-dimensional
matrix B. Upon entry into the subroutine, I% must contain the number of rows and J% must contain
the number of columns. The arrays A and B both must have previously been defined by a DIM
statement.

6-8
Chapter Six

Matrix Addition

5000 'SUBROUTINE NAME -- MATADD
5010 'ENTRY -- I% = SIZE OF DIMENSION #1
5020 ' J% = SIZE OF DIMENSION #2
5030 ' K% = SIZE OF DIMENSION #3
5040 'ARRAY A+B = C
5050 FOR L% = 1 TO K%
5060 FOR M% = 1 TO J%
5070 FOR N% = 1 TO I%
5080 C(N%,M%,L%) = B(N%,M%,L%) + A(N%,M%,L%)
5090 NEXT N%
6000 NEXT M%
6010 NEXT L%
6020 RETURN

This subroutine will add the elements of arrays A and B to produce a new array C. A,B, and C must
have previously been defined by a DIM statement.

Matrix Multiplication

5000 'SUBROUTINE NAME -- MATMULT
5010 'ENTRY - ARRAY A MUST BE D1% BY D3% ARRAY
5020 ' ARRAY B MUST BE D3% BY D2% ARRAY
5030 ' ARRAY C MUST BE D1% BY D2% ARRAY
5040 FOR I% = I TO D1%
5050 FOR J% = 1 TO D2%
5060 C(I%,J%) = 0
5070 FOR K%= I TO D3%
5080 C(I%,J%)=C(I%,J%)+A(I%,K%)*B(K%,J%)
5090 NEXT K%
6000 NEXT J%
6010 NEXT I%

This subroutine will multiply the 2-dimensional array A by the 2-dimensional array B and
produce C.

7-1
Functions

Chapter Seven

Functions

OVERVIEW

BASIC-80 provides a full set of intrinsic functions for use by the BASIC-80 programmer. One
group of intrinsic functions is the arithmetic functions. These functions are referenced by a symbolic
name; when invoked, they return a single value. This single value will be either an integer or single-
precision data type. The arguments to the arithmetic functions are enclosed in parentheses.

The BASIC-80 programmer also has a group of special functions that he may use. These special
functions each have their own unique requirements for referencing.

Complete facilities for constructing and referencing user-written functions have also been included
in BASIC-80.

7-2
Chapter Seven

ARITHMETIC FUNCTIONS

Several arithmetic functions are available for use by the BASIC-80 programmer.

These arithmetic functions are:

FUNCTION DEFINITION

ABS(X) absolute value

ATN(X) arctangent

CDBL(X) convert to double-precision

CINT(X) round to integer

COS(X) cosine

CSNG(X) convert to single-precision

EXP(X) e to the power of X

FIX(X) truncate supplied argument

INT(X) largest integer <= X

LOG(X) natural log of X

RND(X) random number between 0 and 1

SGN(X) sign (+,- or 0) of X

SIN(X) sine of X

SQR(X) square root of X

TAN(X) tangent of X

Table 7-1
Arithmetic Functions.

7-3
Functions

ABS (absolute value)

Form: ABS(X)

The ABS function returns the absolute value of the expression X. Example:

PRINT ABS(7*(-5))
 35
Ok

ATN (arctangent) Form: ATN(X)

The ATN function will return the arctangent of X. X must be expressed in radians. The
result will be in the range -pi/2 to pi/2. The expression X may be any numeric type, but the
evaluation of ATN is always performed in single-precision.

Example:

10 X = 3
20 PRINT ATN(X)
RUN
 1.24905
Ok

7-4
Chapter Seven

CBL (convert to double-precision)

Form: CDBL(X)

The CDBL function will convert X to a double-precision number.

Example:

10 X = 454.67
20 PRINT X;CDBL(X)
RUN
 454.67 454.6700134277344

Ok

CINT (convert to integer)

Form: CINT(X)

The CINT function will convert X to an integer. The fractional portion of X will be rounded to the
nearest integer. If this function returns a result that is not in the range -32768 to 32767, an
"Overflow" error will occur.

Example:

PRINT CINT(45.67)
 46
Ok

7-5
Functions

COS (cosine)

Form: COS(X)

The COS function will return the cosine of X. X must be expressed in radians. The calculation
of COS is performed in single-precision.

Example:

10 X = 2 * COS(.4)
20 PRINT X
RUN
 1.84212
Ok

CSNG (convert to single-precision)

Form: CSNG(X)

The CSNG function will convert X to a single-precision number.

Example:

10 A# = 975.3421#
20 PRINT A#;CSNG(A#)
RUN
 975.3421 975.342
Ok

NOTE: The # is used to declare the values as double-precision data types.

7-6
Chapter Seven

EXP (e raised to a power)

Form: EXP(X)

The EXP function will return e raised to the power of X. e is the natural logarithm's
base value (2.71828...). X must be <= 87.3365. If EXP overflows, the "Overflow" error
message is displayed.

Example:

10 X = 5
20 PRINT EXP(X-1)
RUN
 54.5982
Ok

FIX (truncate supplied argument)

Form: FIX(X)

The FIX function will return the truncated integer part of X. The major difference between
FIX and INT is that FIX simply removes any decimal portion of a number. INT will
round a negative number to the next lowest number.

Examples:

PRINT FIX(58.75)
 58
Ok

PRINT FIX(-58.75)
 -58
Ok

7-7
Functions

INT (round to integer)

Form: INT(X)

The INT function will return the largest integer <=X. When a negative value is rounded, it will
be rounded to the next smallest value.

Examples:

PRINT INT(99.89)
 99

PRINT INT(-12.11)
 -13

LOG (natural logarithm)

Form: LOG(X)

The LOG function will return the natural logarithm of the supplied argument. X must be greater
than zero. IF X is less than or equal to zero, an "Illegal function call" error message will be
displayed.

Example:

PRINT LOG(45/7)
 1.86075

7-8
Chapter Seven

RND (random number generator)

Form: RND(X)

The RND function will return a random number between 0 and 1. The same sequence of
random numbers is generated each time the program is executed unless the random number
generator is reseeded. The RANDOMIZE statement is used to reseed the random number
generator.

If X<0, the sequence of numbers will be restarted. X>0 or X omitted will generate the next
random number in the sequence. X=0 will repeat the last number generated.

Example:

10 RANDOMIZE PEEK(11)
20 FOR I = 1 TO 5
30 PRINT INT(RND*100);
40 NEXT
RUN

24 30 31 51 5
OK

NOTE: The sequence of numbers generated will be different every time this example program is
executed.

RANDOMIZE (reseed random number generator)

Form RANDOMIZE <expression>

The RANDOMIZE statement is used to reseed the random number generator. <expression> is
used as the random number seed value. If <expression> is omitted, BASIC-80 suspends
program execution and asks for a value by printing:

Random Number Seed (-32768 to 32767)?

The value input is used as the random number seed.

If the random number generator is not reseeded, the RND function returns the same sequence
of random numbers each time the program is executed.

To change the sequence of random numbers every time the program is executed, place a
RANDOMIZE statement at the beginning of the program and change the argument with each run.

7-9
Functions

SGN (sign of expression)

Form: SGN(X)

The SGN function returns a result based on the numeric value of X.

If X<0, SGN(X) will return -1. If X=0, SGN(X) will return 0. If X>0, SGN(X) will return 1.

You can create an arithmetic IF statement using this function:

ON SGN(X)+2 GOTO 100,200,300

If X is negative, the program will branch to 100. If X is zero, the program will branch to
200. If X is positive, the program will branch to 300.

Example:

10 INPUT X
20 ON SGN(X)+2 GOTO 50,60,70
50 PRINT"NEGATIVE":GOTO 10
60 PRINT"ZERO":GOTO 10
70 PRINT"POSITIVE":GOTO 10
RUN
? -10
NEGATIVE
? 0
ZERO
? 10
POSITIVE
<^C typed by operator>
Ok

7-10
Chapter Seven

SIN (sine)

Form: SIN(X)

The SIN function will return the sine of X. X must be expressed in radians. SIN(X) is
calculated in single-precision.

Example:

PRINT SIN(1.5)
 .997495 Ok

SQR (square root)

Form: SQR(X)

The SQR function will return the square root of X. X must be >=0. If X is less than zero, an
"Illegal function call" error will be displayed.

Example:

10 X = 25
20 PRINT X,SQR(X)
RUN
 25 5
Ok

TAN (tangent)

FORM: TAN(X)

The TAN function will return the tangent of X. X must be in expressed in radians. TAN(X) will
be calculated in single-precision. If TAN overflows, the "Overflow" error message will be
displayed.

Example:

PRINT TAN(10)
 .64836
Ok

7-11
Functions

MATHEMATICAL FUNCTIONS

Some functions that are not intrinsic to BASIC-80 may be calculated as follows:

Function BASIC-80 Equivalent

SECANT SEC(X) = 1/COC(X)

COSECANT CSC(X) = 1/SIN(X)

COTANGENT COT(X) = 1/TAN(X)

INVERSE SINE ARCSIN(X) = ATN(X/SQR(-X*X+1))

INVERSE COSINE ARCCOS(X) = -ATN(X/SQR(-X*X+1))+1.570796

HYPERBOLIC SINE SINH(X) = (EXP(X)-EXP(-X))/2

HYPERBOLIC COSINE COSH(X) = (EXP(X)+EXP(-X))/2

HYPERBOLIC TANGENT TANH(X) = (EXP(X)-EXP(-X))/EXP(X)+EXP(-X)

HYPERBOLIC SECANT SECH(X) = 2/(EXP(X)+EXP(-X))

HYPERBOLIC COSECANT CSCH(X) = 2/(EXP(X)-EXP(-X))

HYPERBOLIC COTANGENT COTH(X) = (EXP(X)+EXP(-X))/(EXP(X)-EXP(-X))

Table 7-2
Mathematical Functions

7-12
Chapter Seven

SPECIAL FUNCTIONS
Several special functions are available for use by the BASIC-80 programmer. These special

functions are:

Function Definition

FRE(X) free memory space

INP(I) input from port

LPOS(X) position of print head

NULL(X) set number of nulls

OUT I,J output to port

PEEK(I) read byte from memory

POKE I,J write byte to memory

POS(X) current cursor position

SPC(X) print spaces

TAB(I) tab carriage

VARPTR(X) variable pointer

WAIT I,J,K status of port

WIDTH I set terminal line width

WIDTH LPRINT I set printer line width

Table 7-3
Special Functions.

7-13
Functions

FRE (return amount of free memory)

Form: FRE(O) FRE(X$)

The FRE function will return the number of bytes in memory that are not being used by
BASIC-80. The arguments to FRE are dummy arguments.

FRE(" ") forces some system housekeeping before returning the number of free bytes. The
housekeeping will take 1 to 2 minutes. BASIC-80 will not initiate housekeeping until all
free memory has been used.

Example:

PRINT FRE(0)

INP (input byte from I/O port)

Form: INP(I)

The INP function will return the byte read from port I. I must be in the range 0 to 255. INP is
the complementary function to OUT.

Example:

10 A = INP (255)

7-14
Chapter Seven

LPOS (return position of print head)

Form: LPOS(X)

The LPOS function will return the current position of the line printer print head within the line
printer buffer. This does not necessarily correspond to the actual physical position of the print
head. X is a dummy argument.

Example:

100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

OUT (output byte to I/O port)

Form: OUT I,J

The OUT statement will send a byte to an output port. I and J must be integer expressions in
the range 0 to 255. The integer expression I is the port number, and the integer expression J is
the data to be transmitted.

Example:

100 OUT 32, 100

7-15
Functions

PEEK (examine contents of memory location)

Form: PEEK(I)

The PEEK function will return the byte read from memory location I. The value returned will be a
decimal integer in the range 0 to 255. I must be in the range 0 to 65536. PEEK is the complimentary
function to the POKE function.

Example:

PRINT PEEK(34000)
 234
Ok

Note: You may not get the same result if you PEEK memory location 34000.

POKE (change contents of memory location)

Form: POKE I,J

The POKE function will change the contents of a memory location. I and J must be integer
expressions.

The integer expression I is the address of the memory location to be changed. I must be in the
range 0 to 65535.

The integer expression J is the value to be placed into memory location I. J must be in the range 0 to
255.

POKE and PEEK are useful for efficient data storage, loading assembly language subroutines, and
passing arguments and results to and from assembly language subroutines.

Example:

POKE 34000,1
Ok

7-16
Chapter Seven

POS (return current cursor position)

Form: POS(I)

The POS function will return the current cursor position. The left-most position is 1. I is a
dummy argument.

Example:

IF POS (I) > 60 THEN PRINT CHR$ (13)

SPC (print blanks)

Form: SPC(I)

The SPC function is used to print blanks on the terminal or the line printer. The integer argument
I specifies how many blanks are to be printed. I must be in the range 0 to 255. The SPC function
may only be used with PRINT and LPRINT statements.

Example:

PRINT "OVER";SPC(15);"THERE"
OVER THERE
Ok

7-17
Functions

TAB (tab carriage)

Form: TAB(I)

The TAB statement is used to space to position I on the terminal or line printer. If the current print
position is already beyond space I, TAB goes to position I on the next line.

Position 1 is the left-most position, and the right-most position is the width minus one. I
must be an unsigned integer expression in the range 1 to 255. TAB may only be used with
PRINT and LPRINT statements.

Example:

10 PRINT "NAME";TAB(10);"AMOUNT"
20 READ A$,B$
30 PRINT A$;TAB(10);B$
40 DATA "WILLIAMS","$20.00"
RUN
NAME AMOUNT
WILLIAMS $20.00

7-18
Chapter Seven

VARPTR (variable pointer)

Form#1: VARPTR (<variable name>)
Form#2: VARPTR (#<file number>)

Form #1 of the VARPTR function is used to return an address-value which can be used to locate
where the variable <variable name> is stored in memory. A value must have been previously
assigned to <variable name> or an "Illegal function call" error will result.

Any type variable name may be used (numeric, string, array). The result returned will be an integer
in the range -32768 to 32767. If a negative address is returned, add it to 65536 to obtain the actual
address. This returned address (which we will refer to as A) has a different meaning depending
upon on the data type of <variable name>.

NOTE: The results from these examples may vary depending on how much memory your
system has, how much memory is being used for BASIC-80, etc.

If <variable name> is a string value:

A -- Contains the length of the string.
A+1 -- Contains the LSB (least significant byte) of the actual string starting address.
A+2 -- Contains the MSB (most significant byte) of the actual string starting address.

The actual address where the string value is stored can be calculated by: actual address =

(A+2)*256 + (A+1)

This address will most likely be in high RAM where the string values are stored. If the string
value is a constant (a string literal), this address will represent the area of memory where the
program line containing the string is stored.

(Remember, A is only the address of this information, you must PEEK(A) to obtain the actual
value.)

Example:

X$="ABC" [you type]
Ok
PRINT VARPTR(X$) [you type]
 -23927
Ok

7-19
Functions

If <variable name> is an integer value:

A - Contains the LSB of the 2-byte integer
A+1 - Contains the MSB of the 2-byte integer

To display this information (in two's complement decimal representation), execute a PRINT
PEEK(A) and a PRINT PEEK(A+1).

Example:

I% = 1000 [you type]
Ok
PRINT VARPTR(I%) [you type]
 -29121
Ok

If <variable name> is a single-precision value:

A -- Contains the LSB of value.
A+1 -- Contains next MSB of value.
A+2 -- MSB (most significant byte) with implied leading one.

Most significant bit is the sign of the number.
A+3 -- Exponent of value in excess 128 notation

(128 is added to the exponent).

If <variable name> is a double-precision value:

A -- Contains the LSB of value.
A+1 -- Next MSB.
A+2 -- Next MSB.
A+3 -- Next MSB.
A+4 -- Next MSB.
A+5 -- Next MSB.
A+6 -- MSB (most significant byte) with implied leading one.

Most significant bit is the sign of the number.
A+7 -- Exponent of value in excess 128 notation.

7-20
Chapter Seven

The double and single-precision numbers are stored in a normalized exponent form, so that a
decimal is assumed before the MSB. The exponent is stored in excess 128 notation (128 is added to
the exponent). The high order bit of the MSB is used as a sign bit. It is 0 if the number is positive or 1 if the
number is negative.

Example:

10 A = 23.4
20 B#=23.12345678
30 PRINT VARPTR(A),VARPTR(B)
RUN
 -23888 -23880

Form#2 of the VARPTR function is used to return the address of the FIELD buffer for the specified
random file.

Example:

10 OPEN "R",1,"OUT.DAT"
20 FIELD//1, 128 AS JUNK$
30 PRINT VARPTR(#1)
RUN
 -2345
Ok

7-21
Functions

WAIT (monitor port)

Form: WAIT I,J,K

where I is the integer decimal number of the port being monitored and K and J are integer expressions.
The WAIT function is used to suspend program execution while monitoring the status of a machine
input port.

The WAIT function causes execution to be suspended until a specified machine input port develops a
certain bit pattern. The data read at the port is XOR'ed with the integer expression K, and then
AND'ed with the integer expression J.

If the result is zero, BASIC-80 loops back and reads the data at the port again. If the result is non-zero,
execution resumes with the next executable statement. If K is omitted, it is assumed to be zero. I,J, and
K must be in the range 0-255. (Remember, all numbers are decimal unless preceded by &H, &O,
or&.)

Example:

WAIT 20,6

Execution stops until either bit 1 or bit 2 of port 20 are equal to 1. (Bit 0 is least significant, bit 7 is
most.) Execution resumes at the next statement.

WAIT 10,255,7

Execution stops until any of the most significant five bits of port 10 are equal to 1, or any of the least
significant three bits are 0. Execution resumes at the next statement.

7-22
Chapter Seven

WIDTH (set line width)

Form: WIDTH [LPRINT] <integer expression>

The WIDTH function is used to set the printed line width for the terminal or line printer. The
LPRINT option is used for the line printer width.

<integer expression> is the number of characters in the printed line. The default line width for the
terminal is 72 and the default line width for the line printer is 132.

IF <integer expression> is 255 the line width is "infinite", that is, BASIC never inserts a
carriage return. However, the position of the cursor or print head, as given by the POS or
LPOS function, returns to zero after position 255.

Example

WIDTH 80 set terminal width at 80 characters.

WIDTH LPRINT 96 set printer width at 96 characters.

7-23
Functions

USER-DEFINED FUNCTIONS

Sometimes it is necessary to execute the same sequence of program statements or mathematical
formulas in several different places. BASIC-80 allows the programmer to define his own
functions and then reference these functions in the same manner as the standard system
functions, such as ABS, SIN, or SQR.

At times it may also be necessary to code a specific portion of a program in assembly language.
Facilities have been provided for the BASIC-80 programmer to reference assembly language
programs from a BASIC-80 program.

DEF FN (define function)

Form: DEF FN<name>(<variable list>) = expression

The DEF FN statement is used to define an implicit function.

<name> must be a legal variable name. This name, preceded by the FN becomes the function
name. The entries in the variable list are "dummy" variable names. The dummy variables
represent the argument variables or values in the function call.

Any number of arguments are allowed, and any valid expression may appear on the right side of
the. equal sign. The length of the function definition is limited to one logical line (255 characters).

User-defined functions may be of any type. The type of a function is specified by inserting one of
the type declaration characters (%,!,#,or $) after the function name. If a type declaration
character is not used, the definition (DEFSTR, DEFSNG, etc.) for that letter applies. If you have
made no unique DEF's, then a numeric variable is assumed to be a single-precision data type.

If a type is specified for the function, the value of the expression is forced to that type before it is
returned to the calling statement. If a type is specified in the function name and the argument
type does not match, a "Type mismatch" error occurs. DEF FN is illegal in the Command Mode.

Example:

10 DEF FNAB(X,Y)=X+Y
20 SUM = FNAB(10,20)
30 PRINT SUM
RUN
 30
Ok

7-24
Chapter Seven

ASSEMBLY LANGUAGE PROGRAMS

It is possible to invoke an assembly language program in either of two methods. The first method
is to use the USR function, and the other method is with the CALL statement.

For more information, see Appendix E, "Assembly Language Subroutines."

DEF USR (define entry address for USR subroutine)

Form: DEF USR<digit>=<expression>

The DEF USR statement is used to define the entry points for up to 10 assembly language
subroutines.

The <digit> is the number of the assembly language subroutine. <digit> may be any number
from 0-9. If <digit> is omitted, it is assumed to be 0.

The value of expression is the starting address of the assembly language subroutine in decimal,
unless the number is preceded by a special base specification character. A hexadecimal number is
specified with the prefix &H and an octal number is specified with the prefix &O or &.

Examples:

DEFUSRI=&H22
DEFUSR2=45000
DEFUSR5=ADDRESS

7-25
Functions

USR (invoke assembly language subroutine)

Form: USR<digit>(X)

The USR function is used to invoke an assembly language subroutine. <digit> must be in the
range 0-9 and corresponds to the digit supplied with the DEF USR statement. If <digit> is omitted,
it is assumed to be zero. X is the argument to be passed to the assembly language subroutine.

Example:

Z =USRI(B/2)

A=USR2(1.23)

C = USR5 (ARG1)

NOTE: A detailed description of how to define and reference USR functions is contained in
Appendix E.

CALL (call assembly language subroutine)

Form: CALL<variable name>[(argument list)]

The CALL statement is used to call an assembly language subroutine.

<variable name> is assigned an address that is the starting point, in memory, of the assembly
language subroutine. The address should be assigned before a CALL statement is executed.
<variable name> may not be an array variable name. <argument list> contains the arguments
that are passed to the assembly language subroutine.

The CALL statement generates the same calling sequence used by Microsoft's FORTRAN,
COBOL and BASIC Compilers. This calling sequence is explained in Appendix E, "Assembly
Language Subroutines."

Example:

110 MYROUT = &HD000
120 CALL MYROUT(I,J,K)

7-26
Chapter Seven

8-1
Special Functions

Chapter Eight

Special Features

OVERVIEW

BASIC-80 provides the programmer with several special features. One of these features, Error
Trapping, is useful for detecting errors during program execution. Another feature is the PRINT
USING statement. This statement allows the programmer to specify the format of both
numeric and string output.

Another important feature is the Trace flag, which allows the programmer to follow, line-by-
line, the execution of a program.

BASIC-80 also provides the facilities for overlay management. The CHAIN and COMMON
statement are used for this function.

8-2
Chapter Eight

ERROR TRAPPING

BASIC-80 allows the programmer to write error detection and error handling routines
which can attempt to recover from errors, or provide more complete explanations of the causes of
errors. This facility has been added through the use of the ON ERROR GOTO, RESUME, and
ERROR statements, and with the ERR and ERL variables.

ON ERROR GOTO (enable error trapping)

Form: ON ERROR GOTO <line number>

The ON ERROR GOTO statement is used to enable error trapping and specify the first line of the error
handling subroutine.

Once error trapping has been enabled, all errors detected, including Command Mode errors (e.g.,
Syntax errors), will cause a jump to the specified error handling subroutine. If <line number> does
not exist, an "Undefined line number" error results.

To disable error trapping, execute an ON ERROR GOTO 0. Subsequent errors will print an error
message and halt execution. An ON ERROR GOTO 0 statement that appears in an error trapping
subroutine causes BASIC-80 to stop and print the error message for the error that caused the trap. We
recommend that all error trapping subroutines execute an ON ERROR GOTO 0 if an error is
encountered for which there is no recovery action.

If an error occurs during execution of an error handling subroutine, the BASIC error message is
printed and execution terminates. Error trapping does not trap errors within the error handling
subroutine.

Example:

10 ON ERROR GOTO 1000

8-3
Special Functions

RESUME (continue execution)

Forms: RESUME

RESUME 0
RESUME NEXT
RESUME <line number>

The RESUME statement is used to continue program execution after an error recovery procedure
has been performed.

Any one of the four formats shown above may be used, depending upon where execution is to
resume:

RESUME
or

RESUME 0 Execution resumes at the statement which caused the error.

RESUME NEXT Execution resumes at the statement immediately following the
one which caused the error.

RESUME<line number> Execution resumes at <line number>.

A RESUME statement that is not in an error trap routine causes a "RESUME without error"
message to be printed.

Error Trap Example:

100 ON ERROR GOTO 500
200 INPUT"WHAT ARE THE NUMBERS TO DIVIDE";X,Y
210 Z=X/Y
220 PRINT "QUOTIENT IS";Z
230 GOTO 200
500 IF ERR=11 AND ERL=210 THEN 520
510 STOP
520 PRINT"YOU CAN'T HAVE A DIVISOR OF ZERO!"
530 RESUME 200

8-4
Chapter Eight

ERROR (generate error)

Form: ERROR <integer expression>

The ERROR statement can be used either to simulate the occurrence of a BASIC-80 error, or to allow
error codes to be defined by the user.

The value of <integer expression> must be greater than 0 and less than 255. If the value of <integer
expression> equals an error code already in use by BASIC-80, the ERROR statement will simulate
the occurrence of that error, and the corresponding error message will be printed.

To define your own error code, use a value that is greater than any used by BASIC-80's error
codes. (It is preferable to use the highest available values, so compatibility may be maintained
when more error codes are added to BASIC-80.) This user-defined error code may then be
conveniently handled in an error trap routine.

If an ERROR statement specifies a code for which no error message has been defined, BASIC-80
responds with the message "Unprintable error". Execution of an ERROR statement for which there
is no error trap routine causes an error message to be printed and execution to halt.

Example:

LIST
10 S = 10
20 T=5
30 ERROR S + T
40 END
Ok
RUN
String too long in line 30

Or, in Command Mode:

Ok
ERROR 15 (you type this line)
String too long (BASIC-80 types this line)
Ok

8-5
Special Functions

ERR and ERL Variables

When an error handling subroutine is entered, the variable ERR contains the error code for the error,
and the variable ERL contains the line number of the line in which the error was detected. The ERR
and ERL variables are usually used in IF/THEN statements to direct program flow in the error trap
routine.

If the statement that caused the error was a Command Mode statement, ERL will contain 65535. To
test if an error occurred in a Command Mode statement, use IF 65535 = ERL THEN ... Otherwise,
use

IF ERR = error code THEN... IF ERL = line number THEN...

If the line number is not on the right side of the relational operator, it cannot be renumbered by
RENUM. Because ERL and ERR are reserved variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.

When the error handling subroutine is entered, the variable ERR contains the error code for the error.
The error codes and their meanings are listed on the next page. See Appendix A, "Error Messages,"
for a more detailed discussion of the error messages.

8-6
Chapter Eight

ERROR CODES

General Errors

CODE ERROR

1 NEXT WITHOUT FOR
2 SYNTAX ERROR
3 RETURN WITHOUT GOSUB
4 OUT OF DATA
5 ILLEGAL FUNCTION CALL
6 OVERFLOW
7 OUT OF MEMORY
8 UNDEFINED LINE
9 SUBSCRIPT OUT OF RANGE

10 DUPLICATE DEFINITION
11 DIVISION BY ZERO
12 ILLEGAL DIRECT
13 TYPE MISMATCH
14 OUT OF STRING SPACE
15 STRING TOO LONG
16 STRING FORMULA TOO COMPLEX
17 CAN'T CONTINUE
18 UNDEFINED USER FUNCTION
19 NO RESUME
20 RESUME WITHOUT ERROR
21 UNPRINTABLE ERROR
22 MISSING OPERAND
23 LINE BUFFER OVERFLOW
26 FOR WITHOUT NEXT
29 WHILE WITHOUT WEND
30 WEND WITHOUT WHILE

Table 8-1
Error Codes.

8-7
Special Functions

Disk Errors

CODE ERROR

50 FIELD OVERFLOW
51 INTERNAL ERROR
52 BAD FILE NUMBER
53 FILE NOT FOUND
54 BAD FILE MODE
55 FILE ALREADY OPEN
57 DISK I/O ERROR
58 FILE ALREADY EXISTS
61 DISK FULL
62 INPUT PAST END
63 BAD RECORD NUMBER
64 BAD FILE NAME
66 DIRECT STATEMENT IN FILE
67 TOO MANY FILES

Table 8-1 (Cont'd.)
Error Codes.

8-8
Chapter Eight

FORMATTED OUTPUT

The PRINT USING statement can be used to output information in a specific format. This
feature is useful in such applications as printing payroll checks or accounting reports.

PRINT USING (format output)

Form: PRINT USING<string exp>;<list of expressions>

The PRINT USING statement is used to print strings or numbers using a specified format.

<list of expressions> is comprised of the string expressions or numeric expressions that are to be
printed, separated by semicolons. <string exp> is a string literal (or variable) that is
comprised of special formatting characters. These formatting characters (see below)
determine the field, and the format, of the printed strings or numbers.

String Fields

When PRINT USING is used to print strings, one of three formatting characters may be used to
format the string field:

"!"

This specifies that only the first character in the given string is to be printed.

8-9
Special Functions

"\n spaces\"

This specifies that 2+n characters from the string are to be printed. If the backslashes are
typed with no spaces, two characters will be printed; with one space, three characters will be
printed, and so on. If the string is longer than the field, the extra characters are ignored. If the
field is longer than the string, the string will be left-justified in the field and padded with
spaces on the right.

Example:

10 A$="LOOK" :B$="OUT"
20 PRINT USING "!";A$;B$
30 PRINT USING "\ \";A$;B$
40 PRINT USING "\ \;A$;B$;"!!"
RUN
LO
LOOKOUT
LOOK OUT !!

"&n

The ampersand specifies a variable length string field. When the field is specified with
"&", the string is output exactly as input.
Example:

10 A$="LOOK" :B$="OUT"
20 PRINT USING "!";A$
30 PRINT USING "&";B$
RUN
L
OUT

Numeric Fields

When PRINT USING is used to print numbers, the following special characters may be used to
format the numeric field:

"#"
A number sign is used to represent each digit position. Digit positions are always filled. If the
number to be printed has fewer digits than positions specified, the number will be right-
justified (preceded by spaces) in the field.

8-10
Chapter Eight

“.”

A decimal point may be inserted at any position in the field. If the format string specifies that a
digit is to precede the decimal point, the digit will always be printed (as 0 if necessary).
Numbers are rounded as necessary.

Examples:

PRINT USING "##.##";.78
0.78

PRINT USING "###.##";987.654
987.65

PRINT USING "##.## ";10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted at the end of the format string to separate the
printed values on the line.

“+”

A plus sign at the beginning or end of the format string will cause the sign of the number (plus or
minus) to be printed before or after the number.

“-“

A minus sign at the end of the format field will cause negative numbers to be printed with a
trailing minus sign. If the number is positive, a space will be printed.

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "##.##- “;-68.95,22.449,-7.01
68.95- 22.45 7.01-

8-11
Special Functions

“**”

A double asterisk at the beginning of the format string causes leading spaces in the numeric field
to be filled with asterisks. The ** also specifies positions for two more digits.
Example:

PRINT USING “**#.#";12.39,-0.9,765.1 .
*12.4 *-0.9 765.1

“$$”

A double dollar sign causes a dollar sign to be printed to the immediate left of the formatted number.
The $$ specifies two more digit positions, one of which is the dollar sign. The exponential format
cannot be used with $$. Negative numbers cannot be used unless the minus sign trails to the
right.
Example:

PRINT USING "$$###.##";456.78
$456.78

“**$”

The **$ at the beginning of a format string combines the effects of the above two symbols. Leading
spaces will be asterisk-filled and a dollar sign will be printed before the number. **$ specifies
three more digit positions, one of which is the dollar sign.

Example:

PRINT USING "**$##.##";2.34
***$2.34

8-12
Chapter Eight

“,”

A comma that is to the left of the decimal point in a formatting string causes a comma to be
printed to the left of every third digit on the left side of the decimal point. A comma that is at the
end of the format string is printed as part of the string. A comma specifies another digit
position. The comma has no effect if used with the exponential (^^^^) format.
Example:

PRINT USING "####,.##";1234.5
1,234.50

PRINT USING "####.##,";1234.5
1234.50,

“^^^^”

Four carats (or up-arrows) may be placed after the digit position characters to specify
exponential format. The four carats allow space for E+xx to be printed. Any decimal point
position may be specified. The significant digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or - is specified, one digit position will be used to the
left of the decimal point to print a space or a minus sign.

Example:

PRINT USING "##.##^^^^”;234.56
2.35E+02

PRINT USING ”.####^^^^-“;888888
.8889E+06

PRINT USING ""+.##^^^^";123
+.12E+03

8-13
Special Functions

“_”

An underscore in the format string causes the next character to be output as a literal character.
Example:

PRINT USING "_!##.##_!";12.34
!12.34!

The literal character itself may be an underscore by placing "_" in the format string.

Errors

If the number to be printed is larger than the specified numeric field, a percent sign (%) is
printed in front of the number. If rounding causes the number to exceed the field, a percent
sign will be printed in front of the rounded number.

Example:

PRINT USING "##.##";111.22
%111.22

PRINT USING ".##";.999
%1.00

If the number of digits specified exceeds 24, an "Illegal function call" error will result.

8-14
Chapter Eight

TRACE FLAG

As a debugging aid, two statements are provided to trace the execution of program
instructions.

TRON/TROFF (enable/disable trace flag)

Forms: TRON TROFF

The TRON/TROFF statements are used to trace the execution of program statements.

As an aid in debugging, the TRON statement (executed in either the Command or Indirect Mode)
enables a trace flag that prints each line number of the program as it is executed. The numbers
appear enclosed in square brackets. The trace flag is disabled with the TROFF statement (or when
a NEW command is executed).

Example:

TRON
Ok
LIST
10 K=10
20 FOR J=1 TO 2
30 L=K + 10
40 PRINTJ;K;L
50 K=K+10
60 NEXT
70 END
Ok
RUN
[10] [20] [30] [40] 1 10 20
[501 [60] [30] [40] 2 20 30
[50] [60] [70]
Ok
TROFF
Ok

8-15
Special Functions

OVERLAY MANAGEMENT

BASIC-80 provides two statements, CHAIN and COMMON, which are useful for manipulating
overlays. With these two statements, it is possible to merge several programs during the
execution of a program, as well as pass several or all the variables to another program.

CHAIN (call overlay)

Form: CHAIN [MERGE] <filename>[,[<line number exp>]
[,ALL][,DELETE<range>]]

The CHAIN statement is used to call a program and pass variables to it from the current
program.

<filename> is the name of the program that is called.

Example:

CHAIN"PROG1"

<line number exp> is a line number or an expression that evaluates to a line number in the
called program. It is the starting point for execution of the called program. If it is omitted,
execution begins at the first line.

Example:

CHAIN"PROG1",1000

<line number exp> is not affected by a RENUM command.

With the ALL option, every variable in the current program is passed to the called
program. If the ALL option is omitted, the current program must contain a COMMON
statement to specify the variables that are passed.

Example:

CHAIN"PROGI",1000,ALL

If the MERGE option is included, it allows a subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is performed with the current program and the called
program. The called program must be an ASCII file if it is to be MERGEd.

8-16
Chapter Eight

Example:

CHAIN MERGE" OVRLAY", 1000

After an overlay is brought in, it is usually desirable to delete it so that a new overlay may be
brought in. To do this, use the DELETE option. The line numbers in the <range> of the delete are
affected by the RENUM command.

Example:

CHAIN MERGE" OVRLAY@", 1000, DELETE 1000-5000

If the MERGE option is omitted, CHAIN does not preserve variable types or user-defined
functions for use by the chained program. That is, any DEFINT, DEFSNG, DEFDBL,
DEFSTR, or DEFFN statement containing shared variables must be restated in the chained
program.

COMMON (pass variables)

Form: COMMON<list of variables>

The COMMON statement is used to pass variables to a chained program.

The COMMON statement is used in conjunction with the CHAIN statement. COMMON
statements may appear anywhere in a program, though we recommend that they appear at the
beginning. The same variable cannot appear in more than one COMMON statement. Array
variables are specified by appending "()" to the variable name. If all variables are to be passed, use
CHAIN with the ALL option and omit the COMMON statement.

Example:
100 COMMON A,B,C,D(),G$
110 CHAIN "PROG3",10

9-1
Editing

Chapter Nine

Editing

OVERVIEW

In Edit Mode, it is possible to edit portions of a line without retyping the entire line. Upon
entering Edit Mode, BASIC-80 types the line number of the line to be edited. Then it types a
space and waits for the Edit Mode subcommand.

Edit Mode subcommands are used to insert, delete, replace, or search for text within a line. The
subcommands are not echoed to the terminal. Some of the Edit Mode subcommands may be
preceded by an integer which causes the command to be executed that number of times. When
an integer is not specified, it is assumed to be one.

9-2
Chapter Nine

Edit Mode subcommands may be categorized according to the following functions:

1. Moving the cursor.

2. Inserting text.

3. Deleting text.

4. Finding text.

5. Replacing text.

6. Ending and restarting Edit Mode.

If BASIC-80 receives an unrecognizable command or illegal character while in Edit Mode, it
sounds the bell (CTRL-G) and the command or character is ignored. You can invoke the Edit Mode
by typing:

EDIT <line number>

Where <line number> is the number of the line to be edited. If no <line number> exists,
an "Undefined line number" error will result.

The requested line number will be printed, followed by a space. The cursor will now be
positioned to the left of the first character in the line.

Type in the following line:

100 FOR J = I TO 10: PRINT J: NEXT

This program line will be used to demonstrate the various Edit Mode commands.

9-3
Editing

MOVING THE CURSOR

n Space Bar

In Edit Mode, the Space Bar is used to move the cursor to the right. For example, using line 100
entered above, invoke the Edit Mode. The line number 100 should be displayed on your screen
as such:

100 _

Now press the Space Bar. The cursor will move over one space. The first character of
the program line will now be displayed. If this character was a blank, then a blank will be
displayed on your screen. Keep pressing the Space Bar until the first non-blank character is
displayed. At this point, the screen should look like this:

100 F_

It is also possible to move over more than one space at a time. Just type the number of
spaces first, and then the Space Bar. For example, to move over five spaces, type 5 and then
press the Space Bar once. The characters will be printed as you move over them.

100 FOR J=_

(Your display may not look exactly like this, as it depends on how may blanks you inserted in
the program line.)

BACK SPACE

In Edit Mode, the BACK SPACE key moves the cursor one space to the left. The characters are
not deleted as you move over them. To return to our example,

100 FOR J=_

if the cursor were positioned after the = sign, pressing BACKSPACE once should move the
cursor under the = sign. Thus:

100 FOR J=

9-4
Chapter Nine

INSERTING TEXT

I (Insert)

The I command will insert text beginning at the current cursor position. The inserted
characters are printed on the terminal. To terminate insertion, press the ESC key. If you press the
RETURN during the insert command, the effect is the same as typing ESC and then
RETURN.

Use the Space Bar to move over to the 0 in the 10.

100 FOR J=1 TO 10_

Now, suppose you want to change the 10 to 100. Press the I key (you don't have to terminate the
entry with a RETURN). You are now in Insert Mode. To make the necessary change, type a 0.
The display should now look like this:

100 FOR J=1 TO 100_

Now that you have made the change, press the ESC key and you will exit Insert Mode. Now
press the RETURN to save all your changes and return to BASIC-80 Command Mode. If you
list line 100, it should look similar to this:

100 FOR J=1 TO 100: PRINT J : NEXT

During an insert command, you can use the BACK SPACE key on the terminal to delete characters
on the left of the cursor.

If you try to insert a character that will make the line longer than 255 characters, a bell (CTRL-G) will
be typed and the character will not be printed.

9-5
Editing

X (Extend Line)

The X command is used to extend the line. X moves the cursor to the end of a line. BASIC-80 then
goes into the Insert Mode and allows text to be inserted as if an insert command had been given.
When you are finished extending the line, type ESC or press RETURN and you will be returned to
BASIC-80 Command Mode.

For example, to extend line number 100 you previously typed in, invoke Edit Mode with line
number 100. The screen will show:

100

Now press the X key. The entire line will be displayed and the cursor will be at the end of the
line:

100 FOR J=1 TO 100: PRINT J : NEXT_

Now you have been put into Insert Mode. You can now add another program statement to the
end of this line. For example, type :PRINT"ALL DONE" and a RETURN. The line has now been
extended to include this statement. If you were to LIST 100, it should look like this:

100 FOR J=1 TO 100: PRINT J : NEXT: PRINT" ALL DONE"

9-6
Chapter Nine

DELETING TEXT

nD (Delete)

nD deletes n characters to the right of the cursor. The deleted characters are echoed between
backslashes, and the cursor is positioned to the right of the last character deleted. If there are
fewer than n characters to the right of the cursor, the remainder of the line will be deleted.

For example, enter Edit Mode with line number 100 you previously typed in. Now, using the
Space Bar, move the cursor over to the end of the FOR statement. The screen should look
something like this:

100 FOR J=1 TO 100: _

Now type 8D. This will delete eight characters to the right of the cursor. The screen should
look something like this:

100 FOR J=1 TO 100: \PRINT J : \

(Note that the characters deleted are enclosed in backslashes.)

Now press RETURN and you will be back to the BASIC-80 Command Mode. If you LIST 100, you
should notice that the PRINT J statement has been deleted from the program line.

H (Hack and Insert)

H deletes all characters to the right of the cursor and then automatically enters Insert Mode. H is
useful for replacing statements at the end of a line. For example, assume you wish to change the
last statement of program line 100. First, you must enter Edit Mode with line number 100.
Now move over to the NEXT statement with the Space Bar. The screen should look similar to
this:

100 FOR J=1 TO 100: NEXT: _

Press the H key and then type STOP. Type a RETURN to save this change and exit to BASIC-80
Command Mode.

Now list line number 100. If you've been following the editing changes in this Chapter, the line
should look like this:

100 FOR J=1 TO 100: NEXT : STOP

9-7
Editing

FINDING TEXT

nS<ch>(Search)

The search subcommand searches for the nth occurrence of <ch> and positions the cursor before
it. The character at the current cursor position is not included in the search. If <ch> is not found,
the cursor will stop at the end of the line. All characters passed over during the search are
printed. NOTE: only characters to the right of the cursor are included in this search.

For example, using the current form of the sample line 100, enter Edit Mode with line 100. Next,
type 2S: . This command will be used to search for the second occurrence of the colon
character in program line 100. The display should look something like this:

100 FOR J=1 TO 100: NEXT_

At this point you can execute any command you wish. You could enter a counter variable after the
NEXT statement by first entering Insert Mode and then typing a space and the variable J. Now hit
ESC to exit Insert Mode. Finally, press RETURN in order to exit back to the BASIC-80 Command
Mode. Now, if you were to list line number 100, it would look similar to this (assuming you
followed the editing changes in this chapter):

100 FOR J=1 TO 100: NEXT J : STOP

nK<ch>(Search and "Kill")

The search and kill subcommand is similar to the search subcommand except that all the
characters passed over in the search are deleted. The cursor is positioned before <ch>
and all the deleted characters are enclosed in backslashes.

For example, invoke the Edit Mode with the current version of line 100. Now type 2K:. This
command will delete all of the characters in the line up to the second occurrence of the
colon. The screen should look similar to this:

100 \FOR J=1 TO 100: NEXT J_

The second colon still needs to be deleted, so type D. The screen should then look similar to this:

100 \FOR J=1 TO 100: NEXT J\: \

Now press RETURN and LIST line 100. It should look like this:

100 STOP

9-8
Chapter Nine

REPLACING TEXT

nC(Change)

The change subcommand changes the specified number of characters beginning at the current
cursor position. If you type only a C without a preceding number, the computer assumes that you
wish to change only one character. If you enter a number n before you type C, then it assumes that
you wish to change the next n characters.

After you have entered n characters, the Change Mode will be exited. If you attempt to enter any
more characters, the bell is sounded (CTRL-G) and the extra characters are ignored.

For example, first retype the original line 100 as:

100 FOR J=1 TO 100: PRINT J : NEXT

Next, enter Edit Mode with line 100. Your screen should look something like this:

100

Now let's assume that you want to change the terminal value in the FOR/NEXT loop from 100 to
150. You would have to move the cursor over to the first zero in 100. Use the Space Bar to move the
cursor over. If you go too far, simply press the BACKSPACE key to move the cursor back.

100 FOR J=1 TO 1_

Now type C. BASIC-80 will assume that you wish to change only one character. Type 5 and then
press RETURN. If you LIST 100, the new line should look like this:

100 FOR J=1 TO 150: PRINT J : NEXT

9-9
Editing

ENDING AND RESTARTING EDIT MODE

RETURN(Save changes and Exit)

If you press a RETURN, remainder of the line is printed, the changes you made are saved, and the
computer returns to the BASIC-80 Command Mode.

E(Save Changes and Exit)

The E subcommand has the same effect as RETURN, except the remainder of the line is not printed.

Q(Cancel and Exit)

The Q subcommand returns to the BASIC-80 Command Mode without saving any of the changes
that were made to the line during Edit Mode.

L(List Line)

The L subcommand lists the remainder of the line (saving any changes made so far) and repositions
the cursor at the beginning of the line, still in the Edit Mode. L is usually used to list the line when
you first enter Edit Mode. For example:

EDIT 100
100 _
<you type L> <BASIC-80 responds:>
100 FOR J=1 TO 100:NEXT:STOP
100 _

9-10
Chapter Nine

A(Cancel and Restart)

The A subcommand lets you begin editing a line over again. It discards any changes made
so far and restores the original line, repositioning the cursor at the beginning. In order to use the A
subcommand, you must not be currently executing any other subcommand. If you are
executing another command (such as Insert), press the ESC, and then press the A. In the
following example, the operator first lists the original line, then makes changes in Insert
Mode, then decides to start over, using the A subcommand to restore the original line:

EDIT 100
100 _
<operator types L>
100 FOR J=1 TO 100:NEXT:STOP 100
100 for J=1 TO 10_ <operator types I and adds a zero> <operator types ESC>
<operator types L>
100 FOR J=1 TO 1000:NEXT:STOP
100 _
<operator types A>
100 _
<operator types L; note how original line has been restored>
100 FOR J=1 TO 100:NEXT:STOP
100 _

9-11
Editing

OTHER EDIT MODE FEATURES

SYNTAX ERRORS

When it finds a syntax error during the execution of a program, BASIC-80 will automatically
enter Edit Mode at the line that caused the error. For example:

10 K = 2(4)
RUN
Syntax Error in 10
Ok
10 _

When you finish editing the line and press RETURN (or the E subcommand), BASIC-80
reinserts the line. This causes all variable values to be lost and all open files to be closed. To
preserve the variable values for examination, first exit Edit Mode with the Q subcommand. BASIC-
80 will return to the Command Mode and all variable values will be preserved.

CTRL-A

To enter the Edit Mode on the line you are currently typing, type CTRL-A. BASIC-80 will
respond with a carriage return, an exclamation point, (!) and a space. The cursor will then be
positioned at the first character in the line. At this point you may proceed by typing any Edit
Mode subcommand.

CURRENT LINE EDITING

You may use the period (.) to denote the current line when you invoke the Edit Mode. So, the
command:

EDIT .

will invoke the Edit Mode at the current line. The line number symbol (.) always refers to the
current line.

9-12
Chapter Nine

10-1
BASIC-80 Disk File Operations

Chapter Ten

BASIC-80 Disk File Operations

OVERVIEW

BASIC-80 provides several sets of statements for creating and manipulating program and data files.

The file manipulation commands are very useful for manipulating program files. Some of these
commands can also be used with data files.

The file management statements are used to open and close data files, check for end-of-file, and to
obtain information about the size of a file.

The sequential access statements are used to access sequential files. The sequential access file is easy
to use, but the data must be accessed sequentially.

The random access statements are used to access and manipulate random access files. The random
access file requires more program steps than the sequential access, but the records in the file can be
read in any order.

10-2
Chapter Ten

FILE MANIPULATION COMMANDS

This is a review of the commands and statements that are useful for manipulating program and data
files. These statements and commands are also discussed in Chapter Three, "Command Mode
Statements".

FILES ["<filename>"]

The FILES command lists the names of the files that are residing on the current disk. If the
optional <filename> string is included, the names of the files on any specified disk can be listed.

KILL "filename"

The KILL command deletes the file from the disk. "filename" may be a program file, or a
sequential or random access data file. If "filename" is a data file, it must be closed before it is
killed.

LOAD "filename"[,R]

The LOAD command loads the program from disk into memory. The option R runs the
program immediately. LOAD always deletes the current contents of memory and closes all
files before LOADing. If R is included, however, open data files are kept open. Thus programs can
be chained or loaded in sections and can access the same data files.

MERGE "filename"

The MERGE command loads the program from disk into memory but does not delete the current
contents of memory. The program line numbers on disk are merged with the line numbers in
memory. If two lines have the same number, only the line from the disk program is saved.
After a MERGE command, the "merged" program resides in memory and BASIC-80 returns to
Command Mode.

NAME "oldfile" AS "newfile"

To change the name of a disk file, execute the NAME statement, NAME "oldfile" AS "newfile".
NAME may be used with program files, random files, or sequential files.

10-3
BASIC-80 Disk File Operations

FILE MANAGEMENT STATEMENTS

BASIC-80 provides a full set of I/O statements to be used for disk file management. These
statements are listed below:

Statement Function

OPEN Opens a disk file and assigns a file number to the disk file.

CLOSE Closes a disk file and de-assigns the file number from the disk file.

EOF Returns -1 (true) if the end of a file has been reached.

LOF Returns the number of records present in the last extent accessed.

LOC Returns the next record to be accessed for a random file and the total
number of sectors accessed for a sequential file.

Table 10-1

File Management Statements.

The OPEN statement is used to assign a file number to a disk file name. Also, the OPEN statement
is used to define the mode in which the file is to be used (sequential or random access).

The CLOSE statement performs the opposite function of the OPEN statement. It will de-assign
the file number from a disk file name.

The EOF function will return -1 (true) if the end of a sequential file has been reached. The
EOF function can also be used with random files to determine the last record number.

The LOF function will return the number of records present in the last extent accessed.

The LOC function, when used with a random file, will return the next record to be accessed.
When used with a sequential file, it returns the number of records accessed since the file was
opened.

These statements are discussed on the following pages. For a detailed programming example
that utilizes these statements, see "Appendix F."

10-4
Chapter Ten

RESET

RESET reads the directory information off of a newly inserted disk which you have exchanged
for the disk in the current default drive. RESET does not close files that were opened on the
former default disk. Therefore, use RESET only after you have closed any open files and
replaced the current default disk.

RUN "filename"[,R]

RUN "filename" loads the program from disk into memory and runs it. RUN deletes the
current contents of memory and closes all files before loading the program. If the R option is
included, however, all open data files are kept open.

SAVE "filename"[,A]

The SAVE command writes to disk the program that is currently residing in memory. The A
option writes the program in ASCII format. (Otherwise, BASIC uses a compressed binary format.)

Protected Files

If you wish to save a program in an encoded binary format, use the "Protect" option with the
SAVE command. For example:

SAVE "MYPROG",P

A program saved this way cannot be listed or edited.

10-5
BASIC-80 Disk File Operations

OPEN (open disk data file)

Form: OPEN "mode",[#]<filenumber>,"<filename>",[,<,reclen>]

where:

"mode" is a string expression whose first character is one of the following mode specification
strings:

O Specifies sequential output mode.
I Specifies sequential input mode.
R Specifies random input/output mode.

This string expression will be referred to as the "mode string".

<filenumber> is an integer expression which represents the file number associated with the
file. This number will be used in subsequent I/O operations.

<filenumber> must not exceed the number of files that were set during the BASIC-80
initialization process. If no files were set during the initialization process, BASIC-80 will assume
a maximum of 3. (See Chapter One, "System Introduction & General Information", for more
information about this initialization process.)

"<filename>" is the fully qualified CP/M file name. No extensions are assumed, so the file
name must include this information. If no drive is specified, the current default drive is
assumed.

<reclen> is an integer expression which, if included, sets the record length for random files.
The maximum record length is 256 bytes. The default record length is 128 bytes. If a record
length greater than 128 bytes is desired, this length must also be specified when BASIC-80 is
initialized. This record length option can only be used with random files. Any attempt to declare
the size of a sequential record will result in a "Syntax error".

The OPEN statement is used to associate a file number with a file name. The OPEN
statement also defines the mode in which the file will be used (sequential or random access).
Subsequent I/O operations will reference the file number assigned to a file name. For
example, assume that a file was opened using the following statement:

OPEN "I",2,"SAMPLE. DAT"

10-6
Chapter Ten

This statement will assign file number 2 to the file SAMPLE.DAT. Because no drive name was
specified, BASIC-80 will assume that SAMPLE.DAT resides on the current default drive. The
mode string for this file specifies "I" -- sequential input.

If SAMPLE.DAT does not exist on the current default disk, an error will be generated, since
input can not be performed on a non-existent file. Now, to input data from this file, the following
statement would be used:

INPUT#2,<variable list>

Note that this INPUT# statement references file number 2, and file number 2 was the number
assigned to the file SAMPLE.DAT. (This is only a general form of the INPUT# statement. A
detailed discussion of the INPUT# statement appears later in this Chapter.)

Now assume that the following OPEN statement is used:

OPEN "0",3,"B:OUTPUT. DAT"

This will assign file number 3 to the file OUTPUT.DAT. Since the file name does contain the drive
specification B:, BASIC-80 will create this output file on drive B:. If this file already exists on
drive B:, it will be destroyed, and all previous contents of the file will be lost. Now, to output
data to this file, the following statement would be used:

WRITE#3,<variable list>

The WRITE# statement references file number 3, and file number 3 had been previously
assigned to the file B:OUTPUT.DAT. So, the data specified in the <variable list> would be
written to the file B:OUTPUT.DAT. (The WRITE# statement is discussed in more detail
later in this Chapter.) A file can also be opened for random I/O. One OPEN statement can be
used to open the file for both random input and random output. For example, the following
statement will open a file for random I/O.

OPEN “R”, 1,"RANDOM.DAT"

The file, RANDOM.DAT, is opened for random I/O. If RANDOM.DAT does not exist, it will be
created on the current default disk. Now, either random input or random output can be
performed with this file. Note that no record size was specified with this OPEN statement.
Therefore, BASIC-80 will assume the default record size of 128 bytes. A different record
size can be specified with the OPEN statement. (But only for a random access file.)

10-7
BASIC-80 Disk File Operations

For example, to open the file RANDOM.DAT for random access, and declare a record size of 32
bytes, the following statement would be used:

OPEN "R",1,"RANDOM.DAT" ,32

Now the record size would be 32 bytes. The CP/M sector size is 128 bytes. Therefore, four
records would be stored in each CP/M sector. The record size can also be set during the
initialization procedure with the /S switch. (See Chapter 1, "System Introduction & General
Information," for the initialization procedure.)

It is important to note that the mode a file was opened under must be with the mode in which
the file is accessed. For example, consider the following statement:

OPEN "I",1,"TEST.DAT"

The file TEST.DAT has been opened for sequential input and assigned to file number 1. Now
an attempt to perform output on this file would be invalid and would generate an error
message. For example:

WRITE#1,"HELLO THERE"

This WRITE# statement references file number 1. The previously executed OPEN statement
has set the mode for file number 1 as sequential input. So this WRITE# would be invalid and
would generate an error message.

However, there is an exception to this rule. Under certain circumstances several sequential I/O
statements may be used with a random file. The conditions for using these sequential I/O
statements with random files are explained in the last part of this chapter.

10-8
Chapter Ten

CLOSE (close disk data file)

Form: CLOSE [#] [<filenumber>]

The CLOSE statement is used to conclude I/O activity to a disk data file.

<filenumber> is the number under which the file was opened. A CLOSE with no arguments will
close all open files.

Assume the following OPEN statement appears in a program:

OPEN "O",1,"ARTIST.DAT"

Now a sequential output statement may reference this file. When output to this file has
concluded, it should be closed with the CLOSE statement.

CLOSE #1

This statement will disassociate file number 1 from the file ARTIST.DAT. Any reference to file
number 1 would now be invalid. The file may then be reopened using the same or a different file
number. For example:

OPEN "I",3,"ARTIST.DAT"

The file ARTIST.DAT is now associated with file number 3, and is opened for sequential input.
Now, a sequential input operation with this file would be valid. When the input operation has
concluded, this file should be closed with the CLOSE statement.

CLOSE #3

The file could again be reopened:

OPEN "R",3,"ARTIST.DAT"

The file number 3 has again been associated with the file ARTIST.DAT, but, this time the file has
been opened for random I/O.

A CLOSE for a sequential output file writes the final buffer of output to the disk file. (This subject
is covered in more detail later in this chapter.)

The END statement and the NEW command will close all disk files automatically. Any attempt
to edit or modify a program will also automatically close all open disk files. (The STOP
statement does not close disk files.)

10-9
BASIC-80 Disk File Operations

EOF (check for end-of-file)

Form: EOF(<filenumber>)

<filenumber> is the file number assigned to a disk data file in a previously executed OPEN
statement.

The EOF function will return -1 (true) if the end of a sequential file has been reached.

The EOF is useful for detecting when the end of a sequential file has been reached. The
EOF function should be used in conjunction with the INPUT# statement and the LINE
INPUT# statement to avoid "Input past end" errors.

The EOF function may also be used with random files. If a GET is done past the end of the
random file, the EOF function will return -1 (true). This may be used to find the size of a random
file.

Example:

10 OPEN "I",1,"DATA"
20 IF EOF(1) THEN 100
30 INPUT#1,A$
40 GOTO 20
 .
 .
 .
100 PRINT "END-OF-FILE REACHED"

LOF (return number of records)

Form: LOF(<filenumber>)

<filenumber> is the file number assigned to a disk data file in a previously executed OPEN
statement.

The LOF function returns the number of records present in the last extent that was accessed. If
the file does not exceed one extent, then LOF returns the true length of the file. (Refer to the
"CP/M Application Programmer's Manual" for more information on extents.)

Example:

110 IF NUM% > LOF (1) THEN PRINT "INVALID ENTRY"

10-10
Chapter Ten

LOC (return record number) Form: LOC(<filenumber>)

<filenumber> is the file number assigned to a disk data file in a previously executed OPEN
statement.

When used with a random file, the LOC function returns the current record number. The
current record is the record number one greater than that of the last record accessed. The first time
a particular file is accessed, the current record is 1. The largest possible record number is 32767.

When used with a sequential file, the LOC function returns the number of sectors (128 byte blocks)
accessed since the file was opened.

Examples:

10 OPEN "I",1,"TEST.DAT"
20 OPEN "R",2,"RANDOM.DAT"
 .
 .
 .
200 PRINT"SECTORS READ--";LOC(1)
210 PRINT"NEXT REC#--";LOC(2)

10-11
BASIC-80 Disk File Operations

BASIC-80 SEQUENTIAL I/O

Sequential files are easier to create than random files but are limited in flexibility and speed when
it comes to accessing the data. The data that is written to a sequential file is stored, one
item after another (sequentially), in the order it is sent and it must be read back in the same
order. The data is stored as a stream of ASCII characters.

Sequential Access Statements

INPUT# Input data from sequential file.

LINE INPUT# Input entire line from sequential file.

PRINT# Write data to sequential file. PRINT# USING

WRITE# Write data to sequential file (with delimiters automatically inserted).

Table 10-2
Sequential Access Statement.

INPUT# (input data from sequential file)

Form: INPUT#<filenumber>,<variable list>

The INPUT# statement is used to read data items from a sequential disk file and assign them to
program variables. The data will be read sequentially. When the file is opened, a pointer will be
set to the beginning of the file. Each time data is read from the file, the pointer will advance.
To start reading over from the beginning of a file, the sequential file must be closed and re-
opened.

<filenumber> is the number used when the file was opened for input. <variable list> contains
the variable names that the input data will be assigned to. (The variable data type must
match the type specified by the variable name. It is invalid to read a string data value into a
numeric variable.)

10-12
Chapter Ten

Numeric Input

The data items in the file should appear just as they would if data were being typed in
response to an INPUT statement. With numeric values, leading spaces are ignored.

The first character encountered that is not a space, carriage return, or line feed is assumed to be the
start of a number. The number terminates on a space, carriage return, line feed or comma.

For example, assume the following data image exists on a disk file: (note: the b represents a
blank or space - ASCII 32)

bb2.1234b-123.234bb456<carriage return>

Then the INPUT statement:

INPUT#1,X,Y,Z

or the sequence of INPUT statements:

INPUT#1, X: INPUT#1, Y: INPUT#1,Z

will assign the data values as follows:

X=2.1234
Y=-123.234
Z=456

10-13
BASIC-80 Disk File Operations

The following discussion assumes the image on the disk is (note: the b represents a blank or space
- ASCII 32):

bbl.1234b-123.234bb,456<carriage return>

And the INPUT statement used to access the data is:

INPUT#1,X,Y,Z

The two blanks before the value 2.1234 are leading spaces; therefore, they are ignored. The
next character encountered is a 2, and this is considered the start of the first numeric field.

The BASIC-80 I/O processor now scans for the terminator of the first numeric field. The blank
between 2.1234 and -123.234 is this terminator. So when BASIC-80 encounters this blank,
it assumes that the first numeric field has ended. This first numeric field is assigned to the first
item in the variable list, the variable X.

The BASIC-80 I/O processor now scans for the beginning of the second numeric field. The minus
sign (-) is considered the start of the second numeric field. The BASIC-80 I/O processor will scan
for the terminator of the second numeric field. The comma between -123.234 and 456 is this
terminator. So, when BASIC-80 encounters this comma, it assumes that the second numeric field
has ended. This second numeric field is assigned to the second item in the variable list, the
variable Y.

The BASIC-80 I/O processor now scans for the beginning of the third numeric field. The
number 4 is considered the start of the third numeric field. The BASIC-80 I/O processor
will then scan for the terminator of the third numeric field. The carriage return after 456 is this
terminator. So when BASIC-80 encounters this carriage return, it assumes that the third numeric
field has ended. This third numeric field is assigned to the third item in the variable list, the
variable Z.

At this point, all three variables in the variable list have values assigned to them, so execution of
the INPUT statement has been completed. Execution continues with the next statement.

10-14
Chapter Ten

String Input

When BASIC-80 scans the sequential data file for a string item, leading spaces, carriage returns, and
line feeds are ignored. The first character encountered that is not a space, carriage return, or line feed is
assumed to be the start of a string item.

This string is considered an unquoted string, and will terminate on a comma, carriage return or line
feed (or after 255 characters have been read).

If this first character is a quotation mark, the string is considered a quoted string. The string item will
consist of all characters read between the first quotation mark and the next quotation mark.
Commas, blanks, and carriage return characters can be included in this string. A quoted string may not
contain a quotation mark within the quoted string.

For example, assume the following data image exists on a disk file: (b represents a blank or space

-- ASCII 32)

BENTON,HARBOR,MI"49022"<carriage return>

Then the statement:

INPUT#I,A$,B$,C$

would assign the data values as follows:

A$=BENTON
B$=HARBOR
C$=MI"49022"

Note that the comma is used as the terminator in the above example. All three strings are
considered to be unquoted strings.

In the last string field, the quotation mark is considered as part of the string. This is because the string
starts with the letter M and is terminated by a carriage return.

10-15
BASIC-80 Disk File Operations

Assume a comma is inserted between MI and "49022". The disk image would then look like
this:

BENTON,HARBOR,MI,"49022"

Now there are a total of four string fields. The first three are unquoted strings fields, and the last
is a quoted string field. These four fields could be input with the following statement:

INPUT #1,A$,B$,C$,D$

the variable values would be assigned as follows:

A$=BENTON
B$=HARBOR
C$=MI
D$=49022

The variable D$ would not contain the quotation marks because the quotation marks were
used to terminate the field, and as such they do not represent data values.

10-16
Chapter Ten

LINE INPUT# (input entire line from sequential file)

Form: LINE INPUT# <filenumber>, <string variable>

The LINE INPUT# statement is used to read an entire line (up to 255 characters), without
delimiters, from a sequential disk data file to a string variable.

<filenumber> is the file number assigned to the file with the OPEN statement. The file must be
opened for sequential input (I mode). <string variable> is the variable name to which the input
will be assigned.

LINE INPUT# reads all characters in the sequential file up to a carriage return. It then skips over
the carriage return/line feed sequence, and the next LINE INPUT# reads all characters up to
the next carriage return. (If a line feed/carriage return sequence is encountered, it is preserved.)

If no carriage return is found, LINE INPUT# will read until 255 characters have been read. These
255 characters will then be assigned to the string variable.

LINE INPUT# is especially useful if each field of a data file has been terminated with a carriage
return, or if a BASIC-80 program saved in ASCII mode is being read as data by another program.

For example, assume the following program exists in a disk file:

10 OPEN "O",1,"LIST" <carriage return>
20 INPUT C$ <carriage return>
30 PRINT #1, C$ <carriage return>
40 CLOSE #1 <carriage return>

then the statement:

LINE INPUT#1,Z$

could be repetitively used to read each program line, one line at a time.

10-17
BASIC-80 Disk File Operations

PRINT# AND PRINT# USING (write to sequential disk file)

Forms:

PRINT# <filenumber>, <list of expressions>

PRINT#<filenumber>,USING<string exp>;<list of expressions> The PRINT#
statement is used to write data to a sequential disk file.

<filenumber> is the number used when the file was opened for output. The expressions in
<list of expression> are the numeric and/or string expressions that will be written to the file.

PRINT# does not compress data on the disk. An image of the data is written to the disk, just as
it would be displayed on the terminal with a PRINT statement. (The PRINT statement is
discussed in Chapter Four, "Program Statements.") For this reason, take care to delimit the data on
the disk so it will be input correctly from the disk.

In the list of expressions, numeric expressions should be delimited by semicolons.

For example:

PRINT#1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra blanks that are inserted between print fields will
also be written to disk.)

String expressions must be separated by semicolons in the list. To format the string
expressions correctly on the disk, use explicit delimiters in the list of expressions.

For example, let A$=" CAMERA" and B$="93604-l".

The statement:

PRINT#1,A$;B$

would write CAMERA93604-1 to the disk. Because there are no delimiters, this could not
be input as two separate strings. To correct the problem, insert explicit delimiters into the
PRINT# statement as follows:

PRINT#1,A$;" ";B$

10-18
Chapter Ten

The image written to disk is:

CAMERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas, semicolons, significant leading blanks, carriage
returns, or line feeds, write them to disk surrounded by explicit quotation marks, CHR$(34).

For example, let A$="CAMERA, AUTOMATIC" and B$=" 93604-1". The statement:

PRINT#1, A$; B$

would write the following image to disk:

CAMERA, AUTOMATIC 93604-1

and the statement:

INPUT#1, A$,B$

would input "CAMERA" to A$ and "AUTOMATIC 93604-1" to B$. To separate these
strings properly on the disk, write double quotes to the disk image using
CHR$(34).

The statement:

PRINT#1,CHR$(34);A$;CHR$(34);CHR$(34);B$;CHR$(34)

writes the following image to disk:

"CAMERA, AUTOMATIC" "93604-1"

and the statement:

INPUT#1, A$, B$

would input "CAMERA, AUTOMATIC" to A$ and " 93604-1" to B$.

The PRINT# statement may also be used with the USING option to control the format of the
disk file. For example:

PRINT#1,USING"$$###.##,";J;K;L

10-19
BASIC-80 Disk File Operations

The comma at the end of the format string serves to separate the items in the disk file. (For a
complete discussion of the PRINT USING statement, refer to Chapter Eight, "Special Features.")

NOTE: The WRITE# statement will automatically insert the proper delimiters between data

items in a sequential file.

WRITE#(write to sequential disk file)

Form: WRITE# <fil enumber>, < list of expressions>

The WRITE# statement is used to write data to a sequential file.

<filenumber> is the number which was assigned to the file with an OPEN statement. The
file must be open for sequential output (0 mode). The expressions in the list are string or
numeric expressions, and they must be separated by commas.

The difference between WRITE# and PRINT# is that WRITE# inserts commas between the items
as they are written to disk and delimits strings with quotation marks. Therefore, it is not
necessary for the user to put explicit delimiters in the list. A carriage return/line feed sequence
is inserted after the last item in the variable list is written to the disk file.

Example: Let A$="CAMERA" and B$="93604-1". The statement:

WRITE#1,A$,B$

writes the following image to disk:

"CAMERA", "93604-1”

A subsequent INPUT# statement, such as:

INPUT#1, A$, B$

would input "CAMERA" to A$ and "93604-1" to B$.

10-20
Chapter Ten

Note: The WRITE# statement is recommended for most applications using sequential output.
Most problems arising from using sequential files are a result of not inserting the proper
delimiters between data items. The WRITE# statement eliminates the need to be concerned
with delimiting data items, thus eliminating most problems associated with sequential I/O.

In those cases where the WRITE# statement will not provide the flexibility needed for some
unique sequential output application, use of the PRINT# or PRINT# USING statement should
be considered. Care should be taken to insure that all the data items are separated by the proper
delimiters.

10-21
BASIC-80 Disk File Operations

Sequential Access Techniques

CREATING AND ACCESSING A SEQUENTIAL FILE

The following program steps are required to create a sequential file and access the data in the
file:

Open the file for sequential output.

OPEN "O",#1,"DATA.DAT"

This step will associate the file number 1 with the file DATA.DAT. Because the O mode string was
specified, the file will be opened for sequential output. Since no drive specification was included
with the file name, the current default drive will be assumed.

If a file DATA.DAT already exists on the current default drive, contents of this file will be lost.
This is due to the fact that, when a file is opened for sequential output, the BASIC-80 I/O
processor will move the EOF marker to the beginning of the file. Thus, the previous contents of
the file can no longer be accessed.

Write data to the file

WRITE#1,A$,B$,C$

This step assumes that some string value has been assigned to the string variables A$,B$ and
C$. The WRITE# statement will write data to the file with delimiters, so it is not necessary to
insert any delimiters.

The PRINT# statement could have been used to write the data to this sequential file, but then it
would have been necessary to insert delimiters between the data items. So for most applications
using sequential output, it is more efficient to use the WRITE# statement.

10-22
Chapter Ten

Close the file

CLOSE#1

This statement will write any remaining data from the buffer to the disk file. Output to this
file will then be terminated. The file must be closed before it can be reopened for sequential input.

===

Reopen the file for input

OPEN "I",#1," DATA. DAT"

The file number 1 is again associated with the file DATA.DAT. This time, the file is opened for
sequential input.

===

Read the data

INPUT#1,X$,Y$,Z$

The data will be read from the file DATA.DAT and assigned to the string variables X$,Y$
and Z$

===

NOTE: The above example ignores the role of the I/O buffer in the sequential I/O process.
Actually, BASIC-80.reads and writes in 128-byte blocks. So each INPUT# or WRITE#
statement may not necessarily require a disk access.

With sequential output, each WRITE# or PRINT# will place the data in the buffer area.
When the buffer is filled with data, the data will actually be written to the disk file.

With sequential input, 128 bytes will be read and placed in the buffer area. Then the BASIC-80
I/O processor will sort through the data in the buffer to satisfy the INPUT# statement variable list.

10-23
BASIC-80 Disk File Operations

ADDING DATA TO A SEQUENTIAL FILE

As soon as an existing sequential file is opened for output ("O" mode) the current
contents of the file are destroyed. Thus, several program steps are required to add data
to an existing sequential file. The following procedure can be used to add data to an existing
file called "DATA.DAT"

===

Open "DATA.DAT" for sequential input

OPEN "I",1,"DATA.DAT"

This step will associate file number 1 with the data file DATA.DAT. This file will be opened
for sequential input. Since no drive specification was included with the file name, BASIC-80
will assume the current drive. If the file DATA.DAT can not be found on the current default
drive, a "File not found" error will be generated.

===

Open a second file called "TEMP.TMP" for sequential output

OPEN "O",2,"TEMP.TMP"

The file, TEMP.TMP will be used as a temporary work file. After this process is completed,
this file will be renamed and it will contain the original data as well as the newly created data.

===

Read in the data in "DATA.DAT" and write it to "TEMP.TMP"

INPUT#1,A$,B$,C$ WRITE#2,A$,B$,C$

This step must be repeatedly executed until all the data in file #1 is read.

10-24
Chapter Ten

Close "DATA.DAT" and kill it.

CLOSE#1 KILL"DATA.DAT"

This file is no longer needed, as the information from this file has been copied into the file
TEMP.TMP

===

Write the new information to "TEMP.TMP"

WRITE#2,A$,B$,C$

The data assigned to the string variables A$,B$ and C$ will be written to the disk file.

===

Close the file

CLOSE#2

This step will terminate the output operation performed with this file.

===

Rename "TEMP.TMP" as "DATA.DAT"

NAME "TEMP. TMP" AS "DATA. DAT"

Now there is a file on disk called "DATA.DAT" that includes all the previous data plus
the new data that was added to the file.

10-25
BASIC-80 Disk File Operations

BASIC-80 RANDOM I/O

Creating and accessing random files requires more program steps than sequential files, but there
are advantages to using random files. One advantage is that random files require less room on
the disk because BASIC-80 stores them in a packed binary format. (A sequential file is stored as a
series of ASCII characters.)

The biggest advantage to random files is that data can be accessed randomly, i.e., anywhere on the
disk - it is not necessary to read through all the information, as with sequential files. This is
possible because the information is stored and accessed in distinct units called records and
each record is numbered.

All data stored in a random file must be a string data type.

To store numeric values in a random file, the numeric values must be converted to strings.
Several functions have been provided to convert numeric values to strings. These functions,
(MKI$,MKS$,MKD$), are explained later in this Chapter.

10-26
Chapter Ten

Random Access Statements

Statement Function

FIELD Set up random file buffer.

LSET Move data to random buffer. (left-justified)

RSET Move data to random buffer. (right-justified)

GET Read random record.

PUT Write random record.

MKI$ Make integer into 2-byte string.

MKS$ Make single-precision number into 4-byte string.

MKD$ Make double-precision number into 8-byte string.

CVI Convert 2-byte string to integer.

CVS Convert 4-byte string to single-precision number.

CVD Convert 8-byte string to double-precision number.

Table 10-3

Random Access Statements.

10-27
BASIC-80 Disk File Operations

FIELD (set up random file buffer)

Form:

FIELD#<filenumber>,<field width> AS <string variable>

The FIELD statement is used to allocate space for variables in a random file buffer.

<filenumber> is the number assigned to the random file in the OPEN statement. <field width> is
the number of characters (bytes) to be allocated to <string variable>.

For example:

FIELD#I, 20 AS N$, 10 AS ID$, 40 AS ADD$

allocates the first 20 positions (bytes) in the random file buffer to the string variable N$, the
next 10 positions to ID$, and the next 40 positions to ADD$. FIELD does not place any data in
the random file buffer, but instead defines the fields in the random file buffer.

A FIELD statement can only reference a file which has been opened for random I/O (R mode).
The FIELD statement must also be executed prior to performing any I/O operation with the
random file.

The total number of bytes allocated in a FIELD statement must not exceed the record length that
was specified when the file was opened. Otherwise, a "Field overflow" error occurs. (The
default record length is 128.)

If a number smaller than 128 is specified for the record length, the BASIC-80 I/O processor will take
care of blocking and deblocking the record. For example, if a record length of 32 bytes is specified
in the OPEN statement, the BASIC-80 I/O processor will block 4 of these logical records per
physical record (sector). The user program is not responsible for blocking and deblocking
these logical records.

If a number greater than 128 is specified for the record length, the BASIC-80 will also take care of
blocking and deblocking the record. This number must be specified by using the /S switch
when initializing BASIC-80. The largest record size allowed is 256 bytes.

10-28
Chapter Ten

With previous versions of Microsoft BASIC, the user program did have to assume responsibility for
blocking and deblocking records.

Any number of FIELD statements may be executed for the same file, and all FIELD statements
that have been executed are in effect at the same time. For example, the following FIELD
statement could be used to define a 32-byte random buffer:

FIELD#1, 16 AS F1$, 16 AS F2$

This FIELD statement would allocate the first 16 characters (bytes) of the random buffer to the
variable F1$ and the next 16 characters (bytes) to the variable F2$. Then, another FIELD
statement could be used to redefine the buffer:

FIELD#1,32 as BUFF$

So the variable BUFF$ would refer to all 32 characters in the buffer. F1$ would still refer to the
first 16 characters and F2$ would still refer to the second 16 characters.

Do not use a fielded variable name in an INPUT or LET statement. Once a variable name is fielded,
it points to a specific address in the random file buffer. If a subsequent INPUT or LET
statement with that variable name is executed, the variable's pointer is moved to string space.

Examples:

FIELD#1,128 AS IBUFF$

FIELD#4,10 AS A$(1),10 AS A$(2),10 AS A$(3)

FIELD#2,I AS STUFF$

(Note: the variable I must be assigned an integer value prior to the execution of this statement.)

10-29
BASIC-80 Disk File Operations

LSET/RSET (move data to random buffer)

Forms: LSET <fielded variable> = <string expression>

RSET <fielded variable> = <string expression>

The LSET/RSET statements are special assignment statements used to assign a string expression
to a variable that has appeared in a FIELD statement (fielded variable).

The LSET/RSET statements are used to move data from memory to a random file buffer. This step
is performed in preparation for a PUT statement. The only way to move data to a random buffer
is by using the LSET/RSET statement.

If the <string expression> requires fewer bytes than were fielded to the <fielded variable>, LSET
left-justifies the string in the field by adding spaces on the right. RSET is used to right-justify the
string in the field by adding spaces on the left.

The only difference between LSET and RSET is the fact that LSET left-justifies the field and
RSET right-justifies the field. If the string is too long for the field, characters are dropped from
the right.

Numeric values must be converted to strings before they are LSET or RSET. Several special
random I/O functions have been provided to perform this conversion. (Refer to the, discussion of
the MKI$, MKS$, and the MKD$ functions later in this Chapter.)

Examples:

150 LSET A$=MKS$(AMT)
160 LSET D$=DESC$
170 LSET V$="LEFT-JUSTIFY AND PLACE IN BUFFER"
180 RSET G$="RIGHT-JUSTIFY AND PLACE IN BUFFER"

String variables A$,D$,V$ and G$ must have appeared in a previously executed FIELD statement.

10-30
Chapter Ten

GET (read random record)

Form: GET [#]<filenumber>[,<record number>]

The GET statement is used to read a record from a random disk file into a random buffer. Before
executing a GET statement, the file to be accessed must be opened for random I/O.

Additionally, the random file buffer must have been defined with a FIELD statement. If the
random file buffer has not been defined, there will be no way to access the data after the GET has
been executed.

<filenumber> is the number under which the file was opened. If <record number> is
omitted, the current record is read into the buffer. The current record is the record number one
greater than that of the last record accessed. The first time a particular file is accessed, the
current record is 1. The largest possible record number is 32767.

If an attempt is made to GET a record whose number is higher than that of the last record number in
the file, the buffer will be filled with NUL characters (ASCII 0), although no error will be
generated. The LOF function can be used to prevent this from occurring.

Examples:

GET#1,100

GET#2

GET FILE,IREC

GET#5,REC

10-31
BASIC-80 Disk File Operations

PUT (write random record)
Form: PUT [#] <filenumber> [, <record number>]

The PUT statement is used to write a record from a random buffer to a random disk file. Before
executing a PUT statement, the file to be accessed must be opened for random I/O.

Additionally, the random file buffer must have been defined with a FIELD statement. If the
random file buffer has not been defined, there will be no way to move data into the buffer before
executing the PUT statement.

<filenumber> is the number under which the file was opened. If <record number> is
omitted, the current record is written. The current record is the record number one greater
than that of the last record accessed. The first time a particular file is accessed, the current
record is 1. The largest possible record number is 32767.

If the <record number> is higher than the end-of-file record number, <record number>
becomes the new end-of-file record number. Space will be allocated on the disk to accommodate
the new end-of-file record, as well as all lower numbered records.

Before executing a PUT statement, the data to be written to a disk file must be moved into the
buffer area. The LSET/RSET statements are used to move the data to the random file buffer.

Examples:

PUT#1

PUT#2,43

PUT I,J-1

PUT 1, 4

10-32
Chapter Ten

MKI$, MKS$, MKD$ (make a numeric value into a string)

Forms: MKI$(<integer expression>)

MKS$(<single-precision expression>)
MKD$(<double-precision expression>)

The "make" functions, (MKI$, MKS$, MKD$) are used to convert numeric value to string value.
Any numeric value that is placed in a random file buffer must be converted to a string.

The MKI$ function is used to convert an integer to a 2-byte string. The integer expression must
be in the allowable range for integer values. If it is not, an "Illegal function call" error
will be generated. Any fractional portion of the number will be truncated.

The MKS$ function is used to convert a single-precision number to a 4-byte string. The
MKD$ function is used to convert a double-precision number to an 8-byte string.

These functions will not move the data to the random buffer. So after a numeric value is
converted to a string, it still must be moved to the random file buffer. Additionally, the
random file buffer must have been defined with a FIELD statement.

If the random file buffer has not been defined, there will be no way to access the data after the
GET has been executed. The data must also be moved into the random buffer using LSET or
RSET.

For example, to convert the integer variable IV% to a string and assign it to the field variable
FV$, the following single program statement could be used:

LSET FV$ =MKI$ (IV%)

The variable FV$ should have appeared in a previously executed FIELD statement.

Example:

90 AMT=(K+T)

100 FIELD #1, 8 AS D$, 20 AS N$

110 LSET D$ = MKS$(AMT)

120 LSET N$ = A$

130 PUT #1

10-33
BASIC-80 Disk File Operations

CVI, CVS, CVD (Converting string to numeric form)

Forms: CVI (<2-byte string>)

CVS (<4-byte string>)
CVD (<8-byte string>)

The CVI, CVS and CVD functions are used to convert string values to numeric values. These
functions are generally used to convert numeric values that have been read from a random disk
file. Data is always stored in random files as a string data type. Therefore, a numeric value read
from a random disk file must be converted from a string back into a number.

The CVI function converts a 2-byte string to an integer. If the length of the string is greater than 2
bytes, only the first two characters in the string will be used. If the length of the string is less than 2
bytes, an "Illegal function call" error will result.

The CVS function converts a 4-byte string to a single-precision number. If the length of the string is
greater than four bytes, only the first four characters in the string will be used. If the length of the
string is less than four bytes, an "Illegal function call" error will result.

The CVD function converts an 8-byte string to a double-precision number. If the length of the string
is greater than eight bytes, only the first eight characters in the string will be used. If the length of
the string is less than eight bytes, an "Illegal function call" error will result.

Example:

PRINT CVS(A$)

A#=CVD (BUFF$)

I = I+CVI (I$)

10-34
Chapter Ten

Random Access Techniques

CREATING A RANDOM ACCESS FILE

The following program steps are required to create a random file.

===

OPEN the file for random access

OPEN "R", 1 "FILE.DAT",32

In this example, the mode string specifies "R" -random access. File number 1 is assigned to the file
FILE.DAT. Since no drive specification was included with this file name, the current default drive
is assumed. This example also specifies a record length of 32 characters (bytes). If the record length is
omitted, the default record length is 128 characters (bytes).

===

Set up the random file buffer

FIELD#1, 20 AS NAMES, 4 AS AS, 8 AS PS

Use the FIELD statement to allocate space in the random buffer for the variables that will be written
to the random file. The FIELD statement references file number 1, which has been opened for
random input. (It is invalid to FIELD a file which has been opened for sequential input or output.)

This FIELD statement will allocate the first 20 characters of the random file buffer for the
variable NAME$, the next four characters for the variable A$, and the next eight characters for the
variable P$.

===

10-35
BASIC-80 Disk File Operations

Move the data into the random buffer

LSET NAME$=X$

LSET A$=MKS$(AMT)

LSET P$=TEL$

Use LSET to move the data into the random buffer. Numeric values must be made into strings
when placed in the buffer. To do this, use the "make" functions: MKI$ to make an integer
value into a string, MKS$ for a single-precision value, and MKD$ for a double-precision value.

In this program step, the single-precision variable AMT is first converted to a string, and then
it is assigned to the variable A$. The variable A$ has appeared in a previous FIELD statement.
The FIELD statement was used to allocate four characters (bytes) to the variable A$.

===

Write data to disk

PUT#1

Write the data from the buffer to the disk using the PUT statement. No record number was
specified with this PUT statement, so the current record number will be written. The current
record is the record number one higher than the last record accessed. The first time a file is
accessed, the current record is one.

Do not use a fielded string variable in an INPUT or LET statement. This causes the pointer for
that variable to point into string space instead of the random file buffer.

10-36
Chapter Ten

ACCESSING A RANDOM ACCESS FILE

The following program steps are required to access a random file:

===

OPEN the file for random access

OPEN "R",#1, "FILE. DAT",32

This step will open the file "FILE.DAT" for random access. The file can now be accessed by
referring to file number 1.

===

Set up random file buffer

FIELD#1, 20 AS NAME$,4 as A$, 8 AS P$

Use the FIELD statement to allocate space in the random buffer for the variables that will be read
from the file. In this example, 20 characters (bytes) are allocated to the string variable NAME$,
four characters are allocated to the string variable A$, and eight characters are allocated to the
string variable P$.

NOTE: In a program that performs both input and output on the same random file, you can
often use just one OPEN statement and one FIELD statement.

===

Read data into buffer

GET#1

Use the GET statement to move the desired record into the random buffer. No record number
was specified with this GET statement, so the current record number will be read. The current
record is the record number one higher than the last record accessed. The first time a file is
accessed, the current record is one.

10-37
BASIC-80 Disk File Operations

Access data in the buffer

The data in the buffer may now be accessed by the program. Numeric values must be
converted back to numbers using the "convert" functions: CVI for integers, CVS for single-
precision values, and CVD for double-precision

PRINT NAME$
AV=CVS(A$)
DP#=CVD(P$)

Additional Features

After a GET statement, INPUT# and LINE INPUT# may be used to read characters from the
random file buffer. PRINT#, PRINT# USING, and WRITE# may also be used to put characters
in the random file buffer before a PUT statement.

In the case of WRITE#, BASIC-80 pads the buffer with spaces (if necessary) and then inserts a
carriage return. Any attempt to read or write past the end of the buffer causes a "Field
overflow" error.

10-38
Chapter Ten

11-1
Microsoft BASIC-80 Summary

Chapter Eleven

Microsoft BASIC-80 Summary

OVERVIEW

This Chapter is a summary of the important concepts, ideas, keywords, etc. of the BASIC-80
programming language. The various intrinsic functions as well as the string functions are also
included in this chapter.

10-2
Chapter Ten

Abbreviations

Abbreviation Function

? Use in place of PRINT.

' Use in place of REM.

. "current line"; use in place of line number with LIST, EDIT, etc.

Data Type Declaration Characters
Character Data Type Examples

$ String ZDS$,WLW$

% Integer I%,VALUE%

! Single-Precision V!, FLAG!

Double-Precision DP#, PL#

D Double-Precision 1.23456789D-12
(exponential notation)

S Single-Precision 1.23456E+23
(exponential notation)

11-3
Microsoft BASIC-80 Summary

Arithmetic Operators

Operator Operation Performed

+ Addition

- Subtraction

* Multiplication

/ Division (floating point)

\ Integer division

^ Exponentiation

String Operator

Operator Operation Performed Example

 + concatenate (string together) "A"+"B"+"C"

Relational Operators

Operator Numeric Expressions String Expressions

< Less than Precedes

> Greater than Follows

= Equal to Equals

<= or =< Less than or equal to Precedes or equals

>= or => Greater than or equal to Follows or equals

<> or >< Does not equal Does not equal

10-4
Chapter Ten

Logical Operators

Operator Function

NOT Bitwise negation

AND Bitwise disjunction

OR Bitwise conjunction

XOR Bitwise exclusive OR

IMP Bitwise implication

EQV Bitwise equivalence

11-5
Microsoft BASIC-80 Summary

Commands
Command/Function Examples

AUTO <line number>,<increment>

Enable automatic line numbering AUTO
starting at <line number> and AUTO 10
incrementing by <increment>. AUTO 5,5

CLEAR

Set numeric values to zero, CLEAR
strings to null.

CLEAR,<expression>

Same as CLEAR, but <expression> CLEAR , 32768
is used to set the high memory limit
for use by BASIC-80.

CLEAR,<expressionl >,<expression2 >

Same as CLEAR<expression> but CLEAR, 32768, 2000
<expression2> is used to set the
amount of stack space for use
by BASIC-80.

CONT

Continues program execution CONT
after a BREAK or STOP.

DELETE <line number>

Deletes the specified line DELETE 100
number in the current program.

DELETE -<line number>

Deletes every line of the DELETE -500
current program up to and
including <line number>.

10-6
Chapter Ten

Command/Function Examples

DELETE <line number>-<line number>

Deletes all lines of the DELETE 10-1000
current program up to and
including the second number.

EDIT <line number>

Enter Edit Mode at the EDIT 100 specified line number.

FILES "<filename>"

List names of files residing FILES e? * BAS"
on the current disk.

LIST

List the program currently LIST in memory starting with the
lowest numbered line.

LIST <line number>

List the specified line LIST 100 number.

LIST <line number>-<line number>

List all lines from the LIST 10-100 first line up to and
including the second.

LLIST

List all or part of the
program currently in memory. LLIST
The listing will be printed LLIST 500
on the line printer. The LLIST 150-
options for the LLIST command LLIST -100
are the same as for the LIST LLIST 150 – 400
command.

11-7
Microsoft BASIC-80 Summary

Command/Function Examples

LOAD <"filename">,R

Load a program file from disk LOAD"B :GAME"
into memory. The R is optional, LOAD"PROG. ASC" , R
and if used will run the program
after it is loaded.

MERGE <"filename">

Merges a disk file into a MERGE"B :TEST .BAS"
program in memory.

NEW

Deletes the current program NEW and clears all variables.

RENUM <nn>,<mm>,<ii>

Renumbers program lines start- RENUM
ing at line <mm>, as line RENUM 300, , 5
<nn>, with increments of <ii>. RENUM 1000, 900, 20

RESET

Changes disk in default drive. RESET RUN <line number>

Executes the current program RUN 100
starting with specified line RUN
number. If line number is
not specified, execution starts
at the lowest line number.

RUN <"filename">,R

Loads a program from disk and RUN "PROG1"
executes it. R keeps all data RUN"B : GAME" , R
files open.

10-8
Chapter Ten

Command/Function Examples

SAVE "filename",A
SAVE "filename",P

Saves the current program on SAVE" COM2", A
disk. If A is used, the file SAVE"TESTI"
is saved in ASCII format. If SAVE" INVEN", P P
is used, the file is saved
in a protected format.
If neither the P or A is used,
the file is saved in a compressed
binary format.

SYSTEM

Closes all files and performs SYSTEM
a CP/M warm start.

11-9
Microsoft BASIC-80 Summary

Edit Mode Subcommands and Functions

Command Function

RETURN End editing and return to Command Mode.

<i>Space Bar Move cursor <i> spaces to the right.

<i>Back Space Move cursor <i> spaces to the left.

L List remainder of program line and return cursor to the beginning of

the program line.

X List remainder of program line, move cursor to the end of the line,

and go into Insert Mode.

I Insert text beginning at the current position of the cursor. Use ESC to

exit Insert Mode.

A Cancel editing changes and return cursor to beginning of line.

E End editing, save all changes and return to Command Mode.

Q End editing, cancel all changes and return to Command Mode.

H Delete remainder of line and then enter Insert Mode.

<i>D Delete specified number of characters <i> beginning at current cursor

position.

<i>C Change (or replace) the specified number of characters <i> using the

next <i> characters entered.

<i>S<c> Move the cursor to the <i>th occurence of character <c>, counting

from the current cursor position.

<i>K<c> Delete all characters from the current cursor position up to the <i>th

occurance of character <c>.

10-10
Chapter Ten

Print Using Format Field Specifiers

Numeric
Specifier Function Example

Numeric field. ###

. Decimal point position. ##.##

+ Print leading or trailing signs +## .##

(plus for positive numbers, minus
for negative numbers).

- Print trailing sign only if value ## .##-

printed is negative.

** Fill leading blanks with asterisks. **##.##

$$ Place dollar sign immediately to $$### • ## left of
leading digit.

**$ Asterisk fill and floating dollar **$###•## sign.

, Use comma every three digits ## ,### .##

(left of decimal point only).

^^^^ Exponential format. Number is #.##^^^^
aligned so leading digit is
non-zero.

String

Specifier Function Example

! Single character !

\<spaces>\ 2+ number of spaces in character field.

& Variable length string field. & Literal

Specifier Function Example

_ Literal character string field.

11-11
Microsoft BASIC-80 Summary

Program Statements

Statement/Function Examples

DATA TYPE DEFINITION

DEFINT <letter range>

Declare range of variable DEFINT I-N
names as integer data types.

DEFSNG <letter range>

Declare range of variable DEFSNG A-H, O-P
names as single-precision
data types.

DEFDBL <letter range>

Declare range of variable DEFDBL X,Y,Z
names as double-precision
data types.

DEFSTR <letter range>

Declare range of variable DEFSTR A-C, Z

names as string variables.

ASSIGNMENT AND ALLOCATION

DIM<list of subscripted variables>

Allocate storage for array. DIM A (20), B (12,2)

OPTION BASE n

Declare minimum value for OPTION BASE I
array subscript. The default
base is 0. This may be changed
to 1.

10-12
Chapter Ten

 Statement/Function Examples

ERASE <list of array names>

Remove an array from the program. ERASE A, B

LET <variable> = <expression>

Assign value of expression to variable. LET SUM = A+B+C

REM <remark>

Insert remark into program. REM GRP IS GROSS PAY

SWAP <variable>,<variable>

Exchange the values of two variables. SWAP A, B

SEQUENCE OF EXECUTION

END

Terminate program execution, 100 END
close all files and return
to Command Mode.

FOR <V>=<X> TO <Y> STEP <Z>

Allows repetitive execution of FOR I = 1 TO 100
a series of statements.

GOSUB <line number>

Branch to subroutine beginning GOSUB 100
at <line number>.

GOTO <line number>

Branch to specified line GOTO 400
number.

NEXT <variable>

Terminates a FOR loop. NEXT I

11-13
Microsoft BASIC-80 Summary

Statement/Function Examples

ON <expression> GOTO linel,...linek

Evaluate expression. If INT(<expression>) ON L1 GOTO 10, 20, 30
Equals one of the numbers 1-k, branch to
appropriate line number. If it is not equal,
go to the next statement.

ON <expression> GOSUB linel,...linek

Same as ON ...GOTO except branch is to ON L GOSUB 300,400
a subroutine.

RETURN

Terminates a subroutine following the RETURN Branches to the statement
most recent GOSUB.

STOP

Terminates program execution STOP and returns to Command Mode.

CONDITIONAL EXECUTION

IF <expression> THEN <statement(s)>
> ELSE <statement(s)>

Evaluate <expression>: If true, execute IF A=O THEN A=1
THEN clause. If false, execute ELSE ELSE A=0
clause. (if present)

10-14
Chapter Ten

Statement/Function Examples

WHILE <expression>

<loop statements>

WEND

Executes a series of statements WHILE A=0
in a loop as long as a given PRINT "ZERO"
condition is true.

NON-DISK I/O STATEMENTS

INPUT <;> <"prompt string">;<list of variables>

Inputs data from the terminal INPUT "AGE"; A
during program execution.

LINE INPUT <;> <"prompt string ">;<string variable>

Inputs an entire line (up to LINE INPUT J$
255 characters) to a string
variable, without the use of
delimiters.

DATA <list of constants>

Stores numeric and string DATA 34, 23. 1, 45.0
constants. These constants DATA "HELLO", "BYE"
are assigned to variables
by using the READ statement.

PRINT <list of expressions>

Outputs data on the terminal. PRINT "HELLO"
PRINT AS, Z,C

READ <list of variables>

Reads data into specified variables READ I, A, B
from a DATA statement. READ A$, B$

11-15
Microsoft BASIC-80 Summary

Statement/Function Examples

RESTORE <line number>

Resets DATA pointer so RESTORE
that data may be reread.

LPRINT <list of expressions>

Prints data on the line LPRINT "HELLO"
printer.

10-16
Chapter Ten

String Functions

Function Operation Example

ASC(X$) Returns ASCII code of first ASC ("B")

character in string argument. ASC (H$)

CHR$(I) Returns a one-character string CHR$ (66)

whose character has the ASCII CHR$ (N)
code of I.

HEX$(X) Converts a number to a HEX$ (100)

Hexadecimal string. HEX$ (A)

INKEY$ Reads one character from the A$=INKEY$

keyboard.

INPUT$(X,Y) Reads X characters from the INPUTS (

1,1)
keyboard or from file number Y.

INSTR(I,X$,Y$) Returns the position of the INSTR (A$, ,)

first occurrence of Y$ in X$
starting at position I.

LEFT$(X$,I) Returns left-most I characters LEFT$ (A$, 1)

of the string expression X$. LEFTS (C$, 3)

LEN(X$) Returns length of string X$. LEN (A$)

MID$(X$,I,J) Returns string of length J MID$ (X$, 5 ,10)

characters from X$ beginning
with the Ith character.

11-17
Microsoft BASIC-80 Summary

Function Operation Example

MID$(X$,I,J)=Y$ Replaces the characters in X$, MID$ (A$,1, 2)="Z"

beginning at position I, with
the characters in Y$. J is the
number of characters to use in
the replacement.

OCT$(X) Conerts the numeric expression OCT$ (24) X

to an octal string.

RIGHT$(X$,I) Returns the right-most I RIGHT$ (X$, 8)

characters of string X$.

SPACE$(X) Returns a string of X spaces. SPACE$ (20)

STR$(X) Converts a numeric expression STR$ (100)

to a string.

STRING$ (I ,J) Returns a string of length I STRING$ (20 , 33)

containing characters with
the ASCII code J.

STRING$(I,X$) Returns a string of length I STRING$ (20 , !)

containing the first character
of string X$.

VAL(X$) Converts the string X$ to a VAL ("3.14")

numeric value.

10-18
Chapter Ten

Arithmetic Functions

Function Operation Example

ABS(X) Returns absolute value. ABS(-1)

ATN(X) Returns arctangent of X. ATN (3)

(X must be in radians.)

CDBL(X) Converts X to double-precision. CDBL (A)

CINT(X) Converts X to an integer by LINT (46.6)

rounding.

COS(X) Returns the cosine of X. COS (A+B)

(X must be in radians)

CSNG(X) Converts X to single-precision. CSNG (V)

EXP(X) Returns e to the power of X. EXP (34. 5)

FIX(X) Returns truncated integer FIX (23.2)

portion of X.

INT(X) Returns largest integer INT (-12.11)

not greater than X.

LOG(X) Returns the natural logarithm LOG (45/7)

of X. X must be greater than zero.

RND(X) Returns a random number between RND (0)

0 and 1.

SGN(X) Returns -1 for negative X, 0 SGN (C/A)
for zero X, +1 for positive X.

SIN(X) Returns the sine of X. SIN (A* 1.3)

(X must be in radians.)

SQR(X) Returns the square root of SQR (A*B)

X. X must be non-negative.

TAN(X) Returns the tangent of X. TAN (X+Y+Z)

(X must be in radians.)

11-19
Microsoft BASIC-80 Summary

Special Functions

Function Operation Example

FRE(X) Returns memory space not FRE (0)

used by BASIC-80.

INP(I) Returns the byte read from INP (255)

port I.

LPOS(X) Returns current position LPOS (0)

of line printer print head
within the line printer
buffer.

NULL(X) Sets the number of nulls NULL (3)

to be printed at the end
of each line.

OUT I,J Sends byte j to port I. OUT 127,255

PEEK(I) Reads a byte from the PEEK (8192)

specified memory address.

POKE I,j Puts byte j into memory POKE (8192 , 200)

location I.

POS(X) Returns current cursor POs (1) position.

SPC(I) Prints I spaces on the PRINT SPC (5)

terminal.

TAB(I) Tabs carriage to specified PRINT TAB (20)

position.

VARPT(X) Returns address of variable VARPTR (V)

in memory.

WAIT I,J[,K] Status of port I is XOR'ed WAIT 21,1

with K and AND'ed with J.
Continued execution awaits
non zero result.

WIDTH I Sets the printed line width. WIDTH 80

WIDTH LPRINT I Sets the line printer width. WIDTH LPRINT 132

10-20
Chapter Ten

Special Features

ERROR TRAPPING

Statement/Function Example

ON ERROR GOTO <line number>

Enables error trapping and ON ERROR GOTO 100
specifies the first line of
the error trapping subroutine.

RESUME <line number>

Continues program execution RESUME
after an error recovery RESUME NEXT
procedure has been performed. RESUME 100

ERROR <integer expression>

Simulates the occurance of ERROR 10
an error, also allows error
codes to be defined by user.

ERL

Error line number. PRINT ERL

ERR

Error code number. PRINT ERR

TRACE FLAG

TRON

Enables trace flag. TRON

TROFF

Disables trace flag. TROFF

11-21
Microsoft BASIC-80 Summary

Statement/Function Example

OVERLAY MANAGEMENT

CHAIN [MERGE]"'<filename>"[,[<line number>]

[,ALL][,DELETE<range>]]

Calls program and passes CALL "PROG"
variables from the current program.

COMMON <list of variables>

Pass variables to a chained COMMON A, B
program.

10-22
Chapter Ten

Disk Input/Output Statements

Statement/Function Example

CLOSE#[<filenumber>[,<filenumber>]

Closes disk files. If no argument CLOSE #6
is supplied, all open files are
closed.

FIELD# <filenumber>,<field size> AS <string variable>

Allocates random buffer space to FIELD #1,3 AS A$
<string variable>, where <file number>
is the random buffer referenced, and
<field size> is the space reserved
for a given <string variable>.

GET#<file number>[,<record number>]

Transfers data from the <record number> GET #1, I
of the random file <file number> to the
random buffer. If <record number> is
omitted, the next record is transferred.

INPUT#<filenumber>,<variable list>

Reads data from file <filenumber> INPUT #3, A, B
and assigns the input to the
elements of <variable list>.

KILL "<filename>"

Deletes a disk file. KILL "A: GAME. BAS"

LINE INPUT#<file number>,<string variable>

Read an entire line from a file LINE INPUT #1, A$
<file number> and assigns it to
<string variable>.

11-23
Microsoft BASIC-80 Summary

Statement/Function Example

LSET <string variable> = <string expression>

Stores data in random file buffer, LSET A$="HELLO"
left justified.

OPEN <mode>,[#]<filenumber>,<"filename">

Opens a disk file, where <mode> is OPEN 110", 1, "GM. DAT"
the file type,<filenumber> is the I/O label,
and <file name> is the disk directory entry.

PRINT#<file number>,<list of expressions>

Writes data to a sequential disk file. PRINT #1, AS, B PUT [#]
<filenumber> [,<record number>]

Transfers data from the random file PUT #2.3
buffer to random file <file number>.
If <record number> is omitted,
the next record is-written.

RSET <string variable> = <string expression>

Stores data in a random file buffer, RSET B$="BYE"
right justified.

WRITE#<file number>,<list of expressions>

Writes data to a sequential disk WRITE #2, A, B$
file. Delimiters are inserted
between items in the I/O list.

10-24
Chapter Ten

Disk Input/Output Functions

Function Operation Example

CVD(X$) Converts 8-character string A#=CVD (A$)

to double precision number.

CVI(X$) Converts 2-character string I%=CVI (I$)

to an integer.

CVS(X$) Converts 4-character string B=CVS (B$)

to single precision number.

EOF(file no.) Returns true (-1) if a file IF EOF(1)

is positioned at its end.

LOC(file no.) Returns next record number X=LOC (1)

to read (random file).
Returns number of sectors
accessed (sequential file).

MKD$(Z#) Converts double-precision A$=MKD$ (A#)

number to an 8-character string.

MKI$(I%) Converts an integer to I$=MKI$ (I%)

a 2-character string.

MKS$(B) Converts a single-precision B$=MKS$ (B)

number to a 4-character string.

A-1
Appendix A

Appendix A

Error Messages

After an error occurs, BASIC-80 returns to the Command Mode and types Ok. (Although
overflow and division by zero errors will not cause BASIC-80 to stop execution.) Variable values
and the program text remain intact, but you cannot continue the program with the CONT
command. However, execution can be continued with a Command Mode GOTO.

The formats of error messages are:

Direct Statement <error message>
Indirect Statement <errror message> in nnnnn

where nnnnn is the line number where the error occurred. When an error occurs in a direct
statement, no line number is printed.

The error messages are listed on the next few pages, along with the error number. If an error should
occur for which there is no error code, BASIC-80 will print the message "Unprintable error".

A-2
Appendix A

GENERAL ERRORS

1 NEXT without FOR

The variable in a NEXT statement corresponds to no previously executed FOR statement.

2 Syntax error

A line has been encountered that contains some incorrect sequence of characters (such as
unmatched parenthesis, misspelled statement or command, incorrect punctuation, etc.).

3 RETURN without GOSUB

A RETURN statement has been encountered before a GOSUB was executed.

4 Out of data

A READ statement was executed but all of the DATA statements in the program have already
been read.

5 Illegal function call

The parameter passed to arithmetic or string function was out of range. Illegal function calls can
occur due to:

1. A negative array subscript (LET A(-1)=0).

2. An unreasonably large array subscript (>32767).

3. LOG with a negative or zero argument.

4. SQR with a negative argument.

5. A^B with A negative and B not an integer.

6. A call to a USR function before the address of a machine language subroutine has been
entered.

7. Calls to MID$, LEFT$, RIGHT$, INP, OUT, WAIT, PEEK, POKE, TAB, SPC,
STRING$, SPACE$, INSTR, or ON ...GOTO with an improper argument.

A-3
Appendix A

6 Overflow

The result of a calculation was too large to be represented in BASIC-80's number format. If an
underflow (i.e. a number is too small to be represented) occurs, zero is given as the result and
execution continues without any error message being printed.

7 Out of memory

A program is too large, has too many variables, too many FOR loops, too many GOSUB's, or
too complicated expressions.

8 Undefined line number

The line reference in a GOTO, GOSUB, IF ... THEN ... ELSE or DELETE was to a non-
existent line.

9 Subscript out of range

An attempt was made to reference an array element which is either outside the dimensions
of the array, or with the wrong number of subscripts.

10 Duplicate Definition

After an array was dimensioned, another dimension statement for the same array was
encountered. The error often occurs if an array was given the default dimension of 10
and later in the program the same array is specified in a DIM statement.

11 Division by zero

A division by zero has been encountered in an expression, or the evaluation of an expression
results in zero being raised to a negative power. Machine infinity with the sign of the
numerator is supplied as the result of the division, or positive machine infinity is supplied
as the result of the involution, and execution continues.

12 Illegal direct

A statement that is illegal in Direct Mode has been entered as a Direct Mode command.

A-4
Appendix A

13 Type mismatch

A string variable has been assigned a numeric value or vice versa; a function that expects a
numeric argument has been given a string argument or vice versa.

14 Out of string space

String variables have caused BASIC-80 to exceed the amount of free memory remaining.
BASIC-80 will allocate string space dynamically, until it runs out of memory.

15 String too long

An attempt was made to create a string more than 255 characters long.

16 String formula too complex

A string expression was too long or too complex. The expression should be broken
into smaller expressions.

17 Can't continue

An attempt has been made to continue a program that:

1. Has halted due to an error.

2. Has been modified during a break in execution.

3. Does not exist.

18 Undefined user function

A reference was made to a user-defined function which had never been defined.

19 No RESUME

BASIC-80 entered an error trapping routine, but the program ended before a RESUME
statement was encountered.

20 RESUME without error

A RESUME statement was encountered, but no error trapping routine had been entered.

A-5
Appendix A

21 Unprintable error

An error message is not available for the error condition which exists. This is usually
caused by an ERROR with an undefined error code.

22 Missing operand

During evaluation of an expression, an operator was found with no operand following it.

23 Line buffer overflow

An attempt has been made, to input a line that has too many characters.

26 FOR without NEXT

A FOR was encountered without a matching NEXT.

29 WHILE without WEND

A WHILE statement has been encountered without a matching wend.

30 WEND without WHILE

A WEND was encountered without a matching WHILE.

A-6
Appendix A

DISK RELATED ERRORS

50 Field overflow

An attempt was made to allocate more bytes than were specified for the record length of a
random file.

51 Internal error

An internal malfunction has occurred in BASIC-80. Report conditions under which error
occurred and all relevant data to Zenith Data Systems Customer Service.

52 Bad file number

A statement or command has referenced a file number that is not OPEN or is out of the range
of numbers specified at initialization.

53 File not found

A LOAD, KILL, or OPEN statement referenced a file that did not exist.

54 Bad file mode

An attempt was made to perform a PRINT or WRITE on a random file, to OPEN an already open
random file for sequential output, to perform a GET or PUT on a sequential file, to load
from a random file, or to execute an OPEN statement where the file mode is not I, O, or
R.

55 File already open

A sequential output mode is issued for a file that is already open; or a KILL is given for a
file that is open.

57 Disk I/O error

An I/O error occurred on a disk I/O operation. It is a fatal error, i.e., the operating system
cannot recover from the error.

58 File already exists

The file name specified in a NAME statement is identical to a file name already in use on the
disk.

A-7
Appendix A

61 Disk full

All disk storage space is in use.

62 Input past end

An INPUT statement is executed after all the data in the file has been INPUT, or for a null
(empty) file. To avoid this error, use the EOF function to detect the end of file.

63 Bad record number

In a PUT or GET statement, the record number is either greater than the maximum
allowed (32768) or equal to zero.

64 Bad file name

An illegal form is used for the file name with LOAD, SAVE, KILL, or OPEN.

66 Direct statement in file

A direct statement is encountered while an ASCII-format file is being loaded. The LOAD
is terminated.

67 Too many files

An attempt is made to create a new file (using SAVE or OPEN) when all 255 directory
entries are full.

A-8
Appendix A

RESERVED WORDS

Some words are reserved by BASIC-80 for use as statements, commands, operators, and
so on, and therefore may not be used in variable or function names. The reserved words
are listed below. Note that all intrinsic functions are considered to be reserved.

ABS AND ASC ATN
AUTO BASE CALL CHAIN
CINT CDBL CHR$ CLEAR
CLOSE COMMON CONT COS
CSNG CVD CVI CVS
DATA DEF DEFDBL DEFINT
DEFSNG DEFSTR DEFUSR DELETE
DIM EDIT ELSE END
EOF ERASE ERL ERR
ERROR EXP FIELD FILES
FIX FN FOR FRE
GET GOSUB GOTO HEX$
IF IMP INKEY$ INP
INPUT INSTR INT KILL
LEFT$ LEN LET LINE
LIST LLIST LOAD LOC
LOF LOG LPOS LPRINT
LSET MERGE MID$ MKD$
MKI$ MKS$ MOD NAME
NEW NEXT NOT NULL
OCT$ ON OPEN OPTION
OR OUT PEEK POKE
POS PRINT PUT RANDOMIZE
READ REM RENUM RESET
RESTORE RESUME RETURN RIGHT$
RND RSET RUN SAVE
SGN SIN SPACE$ SPC
SQR STEP STOP STR$
STRING$ SWAP SYSTEM TAB
TAN THEN TO TROFF
TRON USR VAL VARPTR
WAIT WEND WHILE WIDTH
WRITE XOR

B-1
Appendix B

Appendix B

ASCII Codes
DECIMAL TO OCTAL HEX TO ASCII CONVERSION

 DEC OCT HEX ASCII DEC OCT HEX ASCII

 0 000 00 NUL 32 040 20 SPACE
 1 001 01 SOH 33 041 21 !
 2 002 02 STX 34 042 22 "
 3 003 03 ETX 35 043 23 #
 4 004 04 EOT 36 044 24 $
 5 005 05 ENQ 37 045 25 %
 6 006 06 ACK 38 046 26 &
 7 007 07 BEL 39 047 27 ‘

 8 010 08 BS 40 050 28 (
 9 011 09 HT 41 051 29)
 10 012 OA LF 42 052 2A *
 11 013 OB VT 43 053 2B +
 12 014 OC FF 44 054 2C ,
 13 015 OD CR 45 055 2D -
 14 016 OE SO 46 056 2E Period
 15 017 OF SI 47 057 2F /

 16 020 10 DLE 48 060 30 0
 17 021 11 DC1 49 061 31 1
 18 722 12 DC2 50 062 32 2
 19 023 13 DC3 51 063 33 3
 20 024 14 DC4 52 064 34 4
 21 025 15 NAK 53 065 35 5
 22 026 16 SYN 54 066 36 6
 23 027 17 ETB 55 067 37 7

 24 030 18 CAN 56 070 38 8
 25 031 19 EM 57 071 39 9
 26 032 1A SUB 58 072 3A :
 27 033 1B ESC 59 073 3B ;
 28 034 1C FS 60 074 3C <
 29 035 1D GS 61 075 3D =
 30 036 1E RS 62 076 3E >
 31 037 1F US 63 077 3F ?

 DEC OCT HEX ASCII DEC OCT HEX ASCII

 64 100 40 @ 96 140 60 `
 65 101 41 A 97 141 61 a
 66 102 42 B 98 142 62 b
 67 103 43 C 99 143 63 c
 68 104 44 D 100 144 64 d
 69 105 45 E 101 145 65 e
 70 106 46 F 102 146 66 f
 71 107 47 G 103 147 67 g

 72 110 48 H 104 150 68 h
 73 111 49 1 105 151 69 i
 74 112 4A J 106 152 6A j
 75 113 4B K 107 153 6B k
 76 114 4C L 108 154 6C 1
 77 115 4D M 109 155 6D m
 78 116 4E N 110 156 6E n
 79 117 4F O 111 157 6F o

 80 120 50 P 112 160 70 p
 81 121 51 Q 113 161 71 q
 82 122 52 R 114 162 72 r
 83 123 53 S 115 163 73 s
 84 124 54 T 116 164 74 t
 85 125 55 U 117 165 75 u
 86 126 56 V 118 166 76 v
 87 127 57 W 119 167 77 w

 88 130 58 X 120 170 78 x
 89 131 59 Y 121 171 79 y
 90 132 5A Z 122 172 7A z
 91 133 5B [123 173 7B {
 92 134 5C \ 124 174 7C 1
 93 135 5D] 125 175 7D }
 94 136 5E ^ 126 176 7E ~
 95 137 5F _ 127 177 7F DELETE

B-2
Appendix B

Control Character Definitions

NUL Null; Tape Feed,
SOH Start of Heading; Start of Message
STX Start of Text; End of Address
ETX End of Text; End of Message
EOT End of Transmission; Shuts off TWX machines
ENQ Enquiry; WRU
ACK Acknowledge; RU
BEL Rings Bell
BS Backspace; For at Effector
HT Horizontal TAB
LF Line Feed or Space (New Line)
VT Vertical TAB
FF Form Feed (PAGE)
CR Carriage Return
SO Shift Out
SI Shift In
DLE Data Link Escape
DC1 Device Control 1; Reader on
DC2 Device Control 2; Punch on
DC3 Device Control 3; Reader off
DC4 Device Control 4; Punch off
NAK Negative Acknowledge; Error
SYN Synchronous Idle (SYNC)
ETB End of Transmission Block; Logical End of Medium
CAN Cancel (CANCL)
EM End of Medium
SUB Substitute
ESC Escape
FS File Separator
GS Group Separator
RS Record Separator
US Unit Separator

Refer to the chart on Page B-1. Note that any print control character defined above and listed in
column I of the chart can be produced from the combination of CTRL and the alphabetical character
in column III or IV which is on the same line and to the right of the print control character. That is,
DLE is CTRL-P or ^P, BEL is CTRL-G or AG, and so on.

C-1
 Appendix C

Appendix C

New Features in BASIC-80

New Reserved Words

BASIC-80 has new reserved words: CALL, CHAIN, COMMON, WHILE, WEND,
WRITE,OPTION BASE, RANDOMIZE.

Type Conversions

Conversion from floating point to integer values results in rounding. (Previous versions of
Microsoft BASIC would truncate the value.) This affects not only assignment statements (e.g.,
I%=2.5 results in I0/6=3), but also affects function and statement evaluations [e.g., TAB(4.5) goes
to the fifth position, A(1.5) yields A(2), and X=11.5 MOD 4 yields 0)

FOR/NEXT Loop Evaluation

The body of FOR/NEXT loop is skipped if the initial value of the loop exceeds the terminal value (or if
a negative STEP is specified and the initial value is less than the terminal value). See Chapter Four,
"Program Statements," for more information about FOR/NEXT loops.

Division by Zero and Overflow

Division by zero and overflow no longer produce fatal errors. See Chapter Two, "Expressions,"
for more information.

RND Function

The RND function has been changed so that RND with no argument is the same as RND with a positive
argument. The RND function generates the same sequence of random numbers each time it is
executed. The RANDOMIZE option should be used to reseed the random number generator. See
Chapter Seven, "Functions," for more information.

C-2
Appendix C

Printing Numeric Values

The rules for PRINTing single-precision and double-precision numbers have been changed.
See Chapter Four, "Program Statements," for more information about the PRINT statement.

String Space Allocation

String space is allocated dynamically, so the CLEAR statement is no longer used to set aside
memory for string storage. The first argument in a CLEAR statement is used to set the end of
memory, and the second argument is used to set the amount of stack space.

Invalid Input

Responding to INPUT with too many or too few items, or with the wrong type of value (numeric
instead of string, etc.), or with only a carriage return causes the message "?Redo from start" to
be printed. No assignment of input values is made until an acceptable response is given.

PRINT USING Characters

There are two new field formatting characters for use with PRINT USING. An ampersand
is used for variable length string fields, and an underscore signifies a literal character in a
format string.

WIDTH Statement

If the expression supplied with the WIDTH statement is 255, BASIC-80 uses an "infinite" line
width; that is, it does not insert carriage returns. WIDTH LPRINT may be used to set the line
width at the line printer.

EDIT Characters

The at-sign and underscore are no longer used as editing characters. Variable

Names

Variable names are significant up to 40 characters and can contain embedded reserved
words. However, reserved words must now be delimited by spaces. To maintain compatibility
with earlier versions of BASIC, spaces will be automatically inserted between adjoining reserved
words and variable names. This insertion of spaces may cause the end of a line to be
truncated if the line length exceeds 255 characters.

Protected Binary Format

BASIC-80 programs may be saved in a protected binary format so that they may not be LISTed or
EDITed.

D-1
 Appendix D

Append ix D

Programming Hints

As your level of programming experience increases, you will eventually have to concern yourself
with program efficiency. The two main resources you will have to conserve are: memory space
and execution time. This Appendix has been included to aid in your programming effort.

CONSERVING MEMORY SPACE
To conserve memory space, make sure that you do the following: Place multiple program
statements on a single line.

BASIC-80 must keep track of each program line as well as the program line number. If you place
multiple statements on a single line, less space will be used for program line overhead.

Remove all unnecessary REM statements.

When you use a REM statement, BASIC-80 will store the one-byte code which represents the
REM keyword plus the ASCII representation of the actual remark. This can result in a lot of
memory being used simply for remarks. (You will have to consider the trade-off of program
documentation vs. memory space when you remove these REM statements.)

Use a subroutine call (GOSUB) only when a GOTO won't work.

The GOSUB statement should be used only when a routine must be called from several different
places within the main program. If a routine is to be called from the same place every time, then use
a GOTO. Each active GOSUB will consume memory space (to update the stack), but a GOTO
will not.

D-2
Appendix D

Use as few parentheses in an expression as possible.

Structure your arithmetic expressions so they use as few parentheses as possible. Each time
BASIC-80 has to evaluate an expression enclosed in parentheses, it will consume more memory
space. BASIC-80 will also have to store the result of this evaluation in a temporary storage
location, thus using more memory space.

Use integer variables whenever possible.

This is very important, as integer variables only consume two bytes of memory. A single-
precision variable will take four bytes, and a double-precision will take eight bytes.

Dimension arrays sparingly.

Make sure that you only allocate as much space for an array as you will use. For example, if you
allow BASIC-80 to establish the 11-element default array size, and then only use four of these
elements, you have wasted more space than you have used. So always set the array size with a
dimension statement, never let BASIC-80 assume the default size of 11 elements. (Unless your
array size is only 11 elements.)

Split large programs into smaller modules.

BASIC-80 will allow you to CHAIN between programs, as well as pass variables between
programs. This makes it very easy to write a large program as several small programs and pass
variables between them.

Use DEF statements to declare variable types.

This will prevent you from having to use the type declaration characters, thus saving you one
byte for every variable that is not a single-precision data type.

Reduce the number of simultaneously open data files.

Every data file requires a buffer area, so it is more efficient to use the same buffer for several
different files. To do this, open the first file as file #1, and then access it as needed. Then close this
file and open the second file as file #1. Although you will not be able to simultaneously access
both files, you will still be able to access both files as needed.

Reduce the number of variables and arrays in a program.

You can accomplish this by reusing variables and arrays in a program when they are no longer
needed. Or, you can establish one variable to be used as a FOR/NEXT counter, and then use
it for every FOR/NEXT loop.

D-3
 Appendix D

SAVING EXECUTION TIME
To save execution time make sure you do the following: Define the most commonly used

variables first.

The variables are placed in the BASIC-80 variable table as they are encountered. When a variable
is referenced, the table is searched sequentially. Thus, if a variable is near the top of the
table, it will take less time to access.

Use integer variables in FOR/NEXT loops.

This is very important and can result in a significant time savings. If you wish to try an experiment,
set up a FOR/NEXT with a single-precision loop counter and time the execution. Then simply
define the loop counter as an integer data type and time the execution again. (Make sure you set
the loop for at least 10,000 iterations.) You will notice a significant difference in the execution
times.

Use variables instead of constants in arithmetic expressions.

BASIC-80 uses a floating point decimal representation for numeric values. It takes less time for
BASIC-80 to access a variable than to convert a constant to this representation. If you have a
constant you are planning to use quite often in a program, assign it to a variable and use the
variable instead.

This list is by no means exhaustive, but if you adhere to the above suggestions, you will be well
on the way to generating efficient code.

D-4
Appendix D

E-1
 Appendix E

Appendix E

Assembly Language Subroutines

BASIC-80 provides two methods for calling assembly language subroutines from a BASIC-80
program. The first method uses the USR function, which allows assembly language subroutines to
be called in the same way BASIC-80's intrinsic functions are called. The second method uses the
CALL statement, which generates the same calling sequence as the Microsoft FORTRAN, COBOL,
and BASIC Compilers.

Since assembly language subroutines bypass some of the built-in safeguards of BASIC-80, calling
assembly language subroutines renders BASIC-80 vulnerable to and defenseless against the errors in
those subroutines. Therefore, write your subroutines with caution.

E-2
Appendix E

MEMORY ALLOCATION

When using assembly language subroutines with BASIC-80, an important consideration is
memory space allocation. Memory space must be set aside for an assembly language
subroutine before it can be loaded.

During initialization, enter the highest memory location minus the amount of memory needed
for the assembly language subroutine(s). The /M switch can be used during initialization to set
the top of memory. (See Chapter One, "System Introduction & General Information," for more
information about the initialization procedure.) BASIC-80 uses all memory available from its
starting location up, so only the topmost locations in memory can be set aside for user sub-
routines.

After an assembly language subroutine is called, the stack pointer is set up for eight levels (16
bytes) of stack storage. If more stack space is needed, BASIC-80's stack can be saved and a new
stack set up for use by the assembly language subroutine. BASIC-80's stack must be
restored, however, before the program returns from the subroutine.

The assembly language subroutine may be loaded into memory by means of the CP/M system
monitor, or by using the BASIC-80 POKE statement. Assembly language subroutines may also be
assembled with the MACRO-80 assembler and loaded using the LINK-80 linking loader. (These
programs are not provided with BASIC-80, they must be purchased separately.)

E-3
 Appendix E

USR FUNCTION CALLS

Before a USR function is called, the entry address for the USR subroutine must be defined in a DEF
USR statement.

DEF USR
(define entry address for USR subroutine)

Form: DEF USR<digit>=<expression>

The DEF USR statement is used to define entry points for up to 10 assembly language
subroutines.

The <digit> is the number of the assembly language subroutine. <digit> may be any number
from 0-9. If <digit> is omitted, it it assumed to be 0.

The value of <expression> is the starting address of the assembly language subroutine.
This address is assumed to be in decimal unless a special base specifier character is used.
Hexadecimal numbers are specified with the prefix &H and octal numbers are specified with
the prefix &O or &.

The format of the USR function call is: USR[<digit>](argument)

where <digit> is from 0 to 9 and the argument is any numeric or string expression. <digit>
specifies which USR subroutine is being called, and corresponds with the digit supplied in the
DEF USR statement for that subroutine. If <digit> is omitted, USR0 is assumed. The address
given in the DEF USR statement determines the starting address of the subroutine.

E-4
Appendix E

When the USR function call is made, register A contains a value that specifies the data type of the
argument that was given. The value in A will be one of the

following:

Value in A Type of Argument

2 Two-byte integer (two's complement) 3 String

4 Single-precision floating point number

8 Double-precision floating point number Table E-1

Register Values Used to Specify Data Types.

If the argument is a numeric data type, the [H,L] register pair will point to the Floating Point
Accumulator (FAC) where the argument is stored. The FAC occupies eight bytes in memory -
enough for a double-precision number.

E-5
 Appendix E

NUMERIC STORAGE FORMAT Integer

Storage Format
An integer argument is stored as a 2-byte data value. The integer is stored in a two's
complement representation. (In the following discussion, the Floating Point Accumulator
will be referred to as the FAC.) An integer argument will be stored in the FAC as follows:

FAC-3 - Contains the lower 8 bits of the argument (the least significant byte)

FAC-2 - Contains the upper 8 bits of the argument (the most significant byte)

Single-Precision Storage Format

A single-precision argument is stored as a 4-byte data value. The first byte will be the exponent.
The exponent will be stored in excess 128 (200 octal) notation. This means that 200 (octal)
represents an exponent of 0, 201 (octal) represents an exponent of 1, 177 (octal) represents an
exponent of -1, and so forth. A single-precision number will be stored in the FAC as follows:

FAC-3 - Contains the lowest eight bits of the mantissa.

FAC-2 - Contains the middle eight bits of the mantissa.

FAC-1 - Contains the highest seven bits of the mantissa with leading 1 suppressed

(implied). Bit 7 is the sign of the number (0=positive, 1 =negative).

FAC - Contains the exponent stored in "excess 128" (200 octal) format

Double-Precision Storage Format

A double-precision argument is stored using the same format as the single-precision
number, only four more bytes are used to store the mantissa. A double-precision number is
stored in the FAC in the same manner as a single-precision number, except:

FAC-7 through FAC-4 contain four more bytes of the mantissa (FAC-7 contains the
lowest eight bits).
(least significant).

E-6
Appendix E

STRING STORAGE FORMAT

If the argument is a string, the [D,E] register pair points to three bytes called the "string
descriptor". Byte 0 of the string descriptor contains the length of the string (0 to 255). Bytes
one and two, respectively, are the lower and upper eight bits of the string starting address in
string space.

CAUTION: If the argument is a string literal in the program, the string descriptor will point to the
program text where the string appears. Be careful not to alter or destroy your program this way.
To avoid unpredictable results, add +"" to the string literal in the program.

Example:

A$ ="BASIC-80"+""

This will force BASIC-80 to copy the string literal into string space and will prevent alteration
of program text during a subroutine call.

Data Type Conversions

Usually, the value returned by a USR function is the same type (integer, string, single-precision
or double-precision) as the argument that was passed to it. However, calling the MAKINT
subroutine returns the integer in [H,L] as the value of the function, thus forcing the value
returned by the function to be integer.

To execute MAKINT, use the following sequence to return from the subroutine:

MAKINT EQU 105H ;address of MAKINT for CP/M
PUSH H ;save value to be returned
LHLD MAKINT ;get address of MAKINT subroutine
XTHL ;save return on stack and

;get back [H,L] RET ;return

Also, the argument of the function, regardless of its type, may be forced to an integer value of
the argument in [H,L]. Execute the following subroutine:

FRCINT EQU 103H ;address of FRCINT for CP/M
LXI H ;get address of subroutine

;continuation
PUSH H ;place on stack
LHLD FRCINT ;get address of FRCINT PCHL

E-7
 Appendix E

CALL STATEMENT

BASIC-80 user function calls may also be made with the CALL statement. The calling sequence
used is the same as that in Microsoft's FORTRAN, COBOL and BASIC compilers.

The general format of the CALL statement is: CALL <variable name>[(argument list)]

<variable name> is assigned an address that is the starting point in memory of the assembly
language subroutine. The address should be assigned to <variable name> before a CALL
statement is executed. <variable name> may not be an array variable name. <argument list>
contains the arguments that are passed to the assembly language subroutine.

A CALL statement with no arguments generates a simple "CALL" instruction. The
corresponding subroutine should return via a simple "RET." (CALL and RET are 8080 opcodes
- consult an 8080 reference manual for details.)

A subroutine CALL with arguments results in a somewhat more complex calling sequence. For each
argument in the CALL argument list, a parameter is passed to the subroutine. That parameter is the
address of the low byte of the argument. Therefore, parameters always occupy two bytes each,
regardless of data type.

The method of passing the parameters depends upon the number of parameters to pass:

A. If the number of parameters is less than or equal to 3, they are passed in the registers.
Parameter 1 will be in HL, 2 in DE (if present), and 3 in BC (if present).

B. If the number of parameters is greater than 3, they are passed as follows:

1. Parameter 1 in HL. 2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data block. BC will point to the low byte of

this data block (i.e., to the low byte of parameter 3).

Note that, with this scheme, the subroutine must know how many parameters to expect in order
to find them.

E-8
Appendix E

Conversely, the calling program is responsible for passing the correct number of parameters. There
are no checks for correct number or type of parameters.

If a subroutine expects more than three parameters, and needs to transfer them to a local data area, there
is a system subroutine named $AT (located in the FORTRAN library, FORLIB.REL) which will
perform the transfer. If you do not have FORTRAN, the $AT argument transfer subroutine is
listed on Page E-9.

$AT is called with HL pointing to the local data area, BC pointing to the third parameter, and A
containing the number of arguments to be transferred (i.e., the total number of arguments minus 2).
Your subroutine is responsible for saving the first two parameters before calling $AT.

For example, if a subroutine expects five parameters, it should use the following general procedure:

SUBR: SHLD P1 ;SAVE PARAMETER 1 XCHG

SHLD P2 ;SAVE PARAMETER 2
MVI A,3 ;NO. OF PARAMETERS LEFT
LXI H :POINTER TO LOCAL AREA
CALL $AT ;TRANSFER THE OTHER 3 PARAMETERS

[body of subroutine]

RET ;RETURN TO CALLER
P1: DS 2 ; SPACE FOR PARAMETER 1
P2: DS 2 ;SPACE FOR PARAMETER 2
P3: DS 6 ;SPACE FOR PARAMETERS 3-5

When parameters are accessed in a subprogram, remember that they are only pointers to the actual
arguments passed.

It is entirely up to the programmer to insure that the arguments in the calling program correspond in
number, type, and length with the parameters expected by the subprogram.

E-9
 Appendix E

A listing of the argument transfer subroutine $AT follows.

00100 ARGUMENT TRANSFER
00200 ;[B, C] POINTS TO 3RD PARAMETER
00300 ;[H, L] POINTS TO LOCAL STORAGE FOR PARAMETER 3
00400 ;[A] CONTAINS THE # OF PARAMETERS TO XFER(TOTAL-2)
00500
00600
00700 ENTRY $AT
00800 $AT: XCHG ;SAVE [H,L] IN [D,E]
00900 MOV H,B
01000 MOV L,C ;[H,L] = PTR TO PARAMETERS
01,100 AT1: MOV C,M
01200 INX H
01300 MOV B,M
01400 INX H ;[B,C] = PARAM ADR
01500 XCHG ;[H,L] POINTS TO LOCAL STORAGE
01600 MOV M,C
01700 INX H
01800 MOV M,B
01900 INX H ;STORE PARAM IN LOCAL AREA
02000 XCHG ;SINCE GOING BACK TO AT1
02100 DCR A ;TRANSFERRED ALL PARAMS?
02200 JNZ AT1 ;NO, COPY MORE
02300 RET ;YES, RETURN

INTERRUPTS
Assembly language subroutines can be written to handle interrupts. All interrupt handling
subroutines should save the stack, registers A-L, and the PSW. Interrupts should always be re-
enabled before returning from the subroutine, since an interrupt automatically disables all further
interrupts once it is received. It is also very important to choose the proper interrupt vector. With
CP/M BASIC-80, all interrupt vectors are free.

E-10
Appendix E

F-1
 Appendix F

Appendix F

Random and Sequential I/O

Programming Examples

A directory application, such as a computerized telephone book, is a practical use of random
files. The following two sample programs illustrate this technique. The first program,
"DIRECTORY", accepts the data required to build the random file and a sequential directory file.
The second program, "QUERY", retrieves the data from the directory file.

To fully understand this method of random I/O, you should look at what information is
contained in the directory file. The directory file has a key created from putting together the
individual's first and last names. The other field in the directory is the record number.
The record number is used as an index, and points to that particular individual's entry in the
random file.

When you run the "QUERY" program, you will supply the first and last name of a person. If it is a
valid name (that is, if it is an entry in the directory), the record number will be used. This will
point to the proper record in the random file, so the telephone number can be retrieved.

Note that these examples are NOT intended to be efficient examples of random file usage. They
are designed to show how to use the random and sequential file commands.

The example does not show how to add to the data in the file once it has been created. This
was done to keep the example simple. If you want to add more names to the file, you will
need to modify or rewrite the build program.

As it stands, the build program assumes that there is no pre-existing directory file and starts
building one. If it were changed to read in the old directory file, then new entries could be
added. (Lines 50 to 80 in the query program read the file.)

F-2
Appendix F

If you want to do this, first open A:TABLE.EXT for input and read all of it into an array such as NP$
and SP. Then close the file, but reopen it for output before you write out the directory.

Again, this example is not designed to be efficient. An efficient program would put the directory
as the first or last few records of the file A:RFILE.EXT. In addition, the directory would be
kept in alphabetical order for efficient searching.
You will understand these examples best if you type them in and use them.

5 REM "DIRECTORY PROGRAM"
10 OPEN "O",1,"A:TABLE.EXT"
20 OPEN "R",2,"A:RFILE.EXT"
30 FIELD J2, 12 AS LN$, 9 AS SN$, 12 AS SR$<operator types LINE FEED>

12 AS CI$, 10 AS SZ$,2 AS CD$,2 AS EX$,2 AS PN$
40 REC=REC+1

50 LINE INPUT "LAST NAME? ":N1$

60 LINE INPUT "FIRST NAME? ":N2$
70 LINE INPUT "STREET ADDRESS? ";N3$
80 LINE INPUT "CITY?" ";N4$
90 LINE INPUT "STATE ZIP? ";N5$
100 INPUT "PHONE NUMBER (XXX,XXX,XXXX) ";N%,N1%,N2%
110 LSET LN$=N1$:LSET SN$=N2$:LSET SR$=N3$:<operator types LINE FEED>

LSET CI$=N4$:LSET SZ$=N5$
120 LSET CD$=MKI$ (N%) :LSET EX$=MKI$ (N1%) <operator types LINE FEED>

:LSET PN$=MKI$(N2%)
130 KEY$=N1$+N2$
140 PRINT #1,KEY$;",",REC
150 PUT #2,REC
160 LINE INPUT "MORE INPUT (Y OR NO) " ; MI$<operator types LINE FEED>

:IF MI$="Y" GOTO 40
170 CLOSE
180 END

F-3
 Appendix F

Line Number Explanation

10 Open directory file and label it "A:TABLE.EXT".

20 Open a random file and label it as "A:RFILE.EXT."

30 Reserve space in the random file buffer for directory entires.

LN$=Last Name SN$=First
Name SR$=Street Address
C19=City
SZ$=State and Zip Code CD$=Area
Code EX$=Telephone Exchange
PN$=Last 4 digits of

telephone number

40 Increment record number counter.

50- 100 Accept input data.

110 Left-justify the string input for the random buffer.

120 Left-justify and convert integers to string values. (You must convert to strings
before PUTting values into the buffer.)

130 Construct the key from first and last names.

140 Output data to the directory file.

KEY$=Key for directory REC=Record number of
random file

150 Put the record in the random buffer.

160 Check for more data.

170 Close all files.

180 End the program and return to MBASIC Command Mode.

F-4
Appendix F

5 REM "QUERY PROGRAM"
10 CLEAR 200
20 OPEN "I",1,"A:TABLE.EXT"
30 OPEN "R",2,"A:RFILE.EXT"
40 FIELD #2,12 AS LN$,9 AS SN$,12 AS SR$,12 AS CI$,<operator types LINE FEED>

10 AS SZ$,2 AS CD$,2 AS EX$,2 AS PN$
50 IF EOF(1) THEN GOTO 90
60 CT=CT+1
70 INPUT #1,NP$(CT),SP(CT)
80 GOTO 50
90 INPUT "NAME (LAST,FIST)";L$,F$
100 KEY$=L$+F$
110 FOR I%=1 TO CT
120 IF KEY$=NP$(I%) THEN GO TO 150
130 NEXT I%
140 PRINT "NO RECORD EXIST":GOTO 170
150 GET #2,SP(I%)
160 PRINT LN$,SN$,CVI(CD$);"-";CVI(EX$);"-";CVI (PN$)
170 INPUT"MORE QUERIES? (Y OR N) ";M$:IF M$="Y"GOTO 90
180 CLOSE

F-5
 Appendix F

Line Number Explanation

10 Set up string storage space.

20 Open directory file for input.

30 Open the random file.

40 Reserve space in random file buffer.

50 Check for end-of-file condition.

60 Increment directory record counter.

70 Read directory into string.

80 Loop back for EOF check.

90 Supply the name for which you want the telephone number.

100 Create key from the first and last names.

110 Set up loop to search for record in the directory.

120 Compare input key to directory key.

130 If no match on first comparison, try the next key.

140 If no match is found after comparing all keys, print the message.

150 If match is found, put the requested record in the random buffer.

160 After converting the requested record back to integer, print it.

170 Check for more queries.

180 Close all files.

190 End the program and return to Microsoft BASIC's prompt.

F-6
Appendix F

I-1
 Index

Index

ABS, 7-3
absolute value function, 7-3
accessing a random access file, 10-36
accessing a sequential file, 10-21
Adding Data to a Sequential File, 10-23
Additional considerations for IF statements, 4-
16
additional features of random access files, 10-37
address, entry for USR routine, 7-24
allocation of

string space, 3-3
stack space, 3-3

arccosine, 7-11
arcsine, 7-11
arctangent function, 7-3
Arithmetic Functions, 7-2
Arithmetic Operators, 2-8
Array

Declarator, 6-2
Subscript, 6-3
Vertical, 6-4

Arrays, 6-1
ASC, 5-5
ASCII to numeric conversion, 5-5
ASCII to string conversion, 5-5
Assembly Language

Programs, 7-24
subroutines, 7-25,E-1

assign value to a variable, 4-5
associate file number with file name, 10-5
ATN, 7-3
AUTO, 3-2
automatic insertion of delimiters in disk file,
10-18
automatic line numbering, 3-2
avoiding Input past end errors, 10-9

Bad file mode, A-6,3-9
Bad file name, A-7
Bad file number, A-6
Bad record number, A-7
base specification characters, 7-24
BASIC-80

new features, C-1
Random I/O, 10-25
Sequential I/O, 10-11

BEL. character, 5-5
branch to subroutine, 4-11
buffer, moving data to, 10-29
buffer, sequential file, 10-22
buffer, random file, 10-27
build string, 5-12
call overlay, 8-15
CALL statement, E-7
calling sequence, E-7
Can't continue, A-4,3-4
cancel and quit (Edit Mode), 9-10
CDBL, 7-4
CHAIN, 8-15
change contents of memory location, 7-15
change sequence of random number, 7-8
change text (Edit Mode), 9-8
character pending at terminal, 5-6
Character Set, 1-13
check for end-of file, 10-9
CHR$, 5-5
CINT, 7-4
CLEAR, 3-3
close disk data file, 10-8
CLOSE, 10-8
Command Mode Statements, 3-1

F-2
Appendix F

COMMON, 8-16
concatenation, 5-3
conclude I/O activity to disk file, 10-8 Conditional
Execution, 4-14,4-15,4-17 Conserving Memory
Space, D-1 Constants, 2-2

Fixed Point Constants, 2-2 Floating Point
Constants, 2-2 Hex Constants, 2-3
Integer Constants, 2-2
Octal Constants, 2-3
Single and Double-Precision Numeric
Constants, 2-3 String Constants, 2-2

CONT, 3-4
continue execution after error trap, 8-3 continue
program execution, 3-4 Control Characters, 1-14
Control Statements, 4-7
Conversion, Type, 2-6
conversion from ASCII to numeric, 5-5
conversion from ASCII to string, 5-5
conversion from decimal to hexadecimal, 5-6
convert

decimal to octal, 5-10
numeric values to string, 10-32
string to numeric form, 10-33
string to numeric value, 5-13
to double-precision, 7-4
to integer, 7-4
to single-precision, 7-5

COS, 7-5
cosecant,7-11
cosine function, 7-5
cotangent, 7-11
CP/M extents, 10-9
CP/M file name, 10-5
Creating a Sequential file, 10-21
CSNG, 7-5
Current Line Editing, 9-11
CVD, 10-33
CVI, 10-33
CVS, 10-33

DATA, 4-18
data file, opening, 10-5
Data Type Conversion, 2-6
Data Type Definition, 4-2
debugging aid, 8-14
decimal to hexadecimal conversion, 5-6
decimal to octal conversion, 5-10
declare variable

as double-precision, 4-3
as integer, 4-2
as single-precision, 4-2
as string, 4-3

DEF FN, 7-23
DEF USR, 7-24
default

extension, 3-13,3-8
printer line width, 7-22
record length, 10-5
terminal line width, 7-22

DEFDBL, 4-3
define entry address for USR routine, 7-24
define function, 7-23
defintion of data types, 4-2
DEFINT, 4-2
DEFSNG, 4-2
DEFSTR, 4-3
default drive, 10-5
DELETE, 3-4
delete current program, 3-9
delete program lines, 3-4
Deleting Text (Edit Mode), 9-6
delimiters in sequential files, 10-13
DIM, 4-4
Dimension statement, 6-2
Direct statement in file, A-7
disable error trapping, 8-2
disable trace flag, 8-14
disk file, opening, 10-5
Disk File Operations, 10-1
Disk full, A-7
Disk I/O error, A-6
Division by zero, A-3,2-9
double-precision, 4-3
Double-Precision Storage Format, E-5
Duplicate definition, A-3,4-4,6-3

I-3
 Index

e raised to a power, 7-6
EDIT, 3-5
Editing, 9-1
ELSE, 4-15
enable automatic line numbering, 3-2
enable Edit Mode, 9-2
enable error trapping, 8-2
enable trace flag, 8-14
Ending and Restarting Edit Mode, 9-10
END, 4-7
enter Edit Mode, 3-5
entry address for USR routine, 7-24
EOF, 10-9
ERASE, 4-5
ERL variable, 8-5
ERR variable, 8-5
Error Codes, 8-6
error simulation, 8-4
Error Trapping, 8-2
ERROR, 8-4
examine contents of memory location, 7-15
Example of

Error Trap, 8-3
input from terminal, 4-19
INPUT$, 5-7
integer to string conversion, 10-32
LINE INPUT, 4-20
numeric input, 10-12
RESTORE statement, 4-24
WHILE/WEND loop, 4-17
BASIC-80 Variables Names, 2-5
FOR/NEXT loop, 4-9
IF statements, 4-15
Nested IF statement, 4-16
Nested Loops, 4-9
numeric output, 4-22

excess 128
storage format, E-5
exchange variable values, 4-6
execute program, 3-12
exit BASIC-80, 3-13
Expressions and Operators, 2-8
Expressions, 2-1
EXP, 7-6
extend line (Edit Mode), 9-5

FIELD, 10-27
Field overflow, A-6,10-27
fields in sequential files, 10-13
File already exists, A-6
File already open, A-6
File Management Statements, 10-4
File Manipulation Commands, 10-2
File not found, A-6
FILES, 3-6
Finding Text (Edit Mode), 9-7
FIX, 7-6
FOR without NEXT, A-5
FOR/NEXT Loop Evaluation, C-1
FOR/NEXT, 4-8
formatted

numeric fields, 8-9
output, 8-8
output errors, 8-13
string fields, 8-8

formatting characters, 8-7
FRE, 7-13
function, user-defined, 7-23
Functional Operators. 2-14
Functions, 7-1

generate error, 8-4
GET, 10-30
GOSUB, 4-11
GOTO, 4-12

hack and insert (Edit Mode), 9-6
hard copy device output, 4-21
HEX$, 5-6
high-order byte, 7-18
hints, programming, D-1
hyperbolic cosecant, 7-11

cosine, 7-11
cotangent, 7-11
secant, 7-11
sine, 7-11
tangent, 7-11

F-4
Appendix F

I/O port, monitoring of, 7-21
I/O port, input from, 7-13
I/O Statements (Non-Disk), 4-18
IF/THEN/ELSE, 4-15
Illegal direct, A-3
Illegal function call, A-2
illegal input, 4-19
incremental value of loop counter, 4-8
infinite line width, 7-22
initial value of loop counter, 4-8
initialize variables, 3-3
INKEY$, 5-6
INP, 7-13
INPUT, 4-19
INPUT#, 10-11
INPUT$,5-7
input

byte from I/O port, 7-13
data from sequential file, 10-11
entire line from sequential file, 10-16
entire line, 4-20
from terminal, 4-19
past end, 10-9

Input past end, A-7,10-19
insert (Edit Mode), 9-4
insert remark, 4-6
inserting delimeters in sequential files, 10-17
Inserting Text (Edit Mode), 9-4
Installation Guide, 1-2
INSTR, 5-8
Integer, 4-2
Integer Division, 2-9
Integer Storage Format, E-5
Internal error, A-6
INT, 7-7
Invalid Input, C-2
inverse cosine, 7-11
inverse sine, 7-11
Initialization of BASIC-80, 1-13
invoke assembly language subroutine, 7-25
invoking Edit Mode, 9-2

largest record number, 10-10
least significant byte (LSB), 7-18
LEFT$, 5-8
left-justify and place in random buffer, 10-29
LEN, 5-9
length of file, 10-9
LET, 4-5
Line buffer overflow, A-5
Line Format, 1-17
LINE INPUT, 4-20
LINE INPUT#, 10-16
Line numbers, 1-17
line printer, outputting data to, 4-21
list line (Edit Mode), 9-9
list names of files, 3-6
list program on line printer, 3-7
list program on terminal, 3-7
listing a program, 3-7
LIST, 3-7
LLIST, 3-7
load and execute program, 3-12
load overlay, 8-15
load program file from disk, 3-8
LOAD, 3-8
LOC, 10-10
LOF, 10-9
LOG, 7-7
Logical Operators in Relational Expressions, 2-14
Logical Operators, 2-11
logical record size, 10-27
logical records, 10-27
loop counter, 4-8
loop, 4-8
low-order byte, 7-18
LPOS, 7-14
LPRINT, 4-21
LSET, 10-29

I-5
 Index

make numeric value into spring, 10-32
Manual Scope, 1-9
Mathematical functions, 7-11
Matrix

Addition, 6-8
Input Subroutine, 6-6
Manipulation, 6-6
Multiplication, 6-8

maximum record number, 10-10
Memory Allocation E-2
memory location, examining contents of, 7-15
memory space conservation D-1
MERGE, 3-9
merge programs, 3-9
MID$ function, 5-9
MID$ statement, 5-10
minimum subscript, 6-3
Missing operand, A-5
MKD$, 10-32
MKI$, 10-32
MKS$, 10-32
mode string, 10-5
Modes of Operation, 1-14
Modulus Arithmetic, 2-9
monitor port, 7-21
most significant byte (MBS), 7-18
move data to random buffer, 10-29
Moving the Cursor (Edit Mode), 9-3
Multi-dimensional arrays, 6-5
multi-dimensional array subscripts, 6-5
multiple statements in an IF, 4-15

natural logarithm base value, 7-6
natural logarithm function, 7-7
Nested IF statements, 4-16
Nested Loops, 4-8
New features in BASIC-80, C-1
New Reserved Words, C-1
NEW, 3-9
NEXT without FOR, A-1,4-10
NEXT, 4-8
No RESUME, A-4
numeric fields, formatted, 8-9
Numeric Input

(from sequential disk file), 10-12
Numeric Storage Format, E-5

OCT$, 5-10
ON ERROR GOTO, 8-2
ON/GOSUB, 4-13
ON/GOTO, 4-13
one-dimensional arrays, 6-4
ON, 4-13
open disk data file, 10-5
OPEN, 10-5
Operator

Arithmetic, 2-8
Logical, 2-11
Functional, 2-14
Relational, 2-10

Option Base statement, 6-3
OPTION BASE, 4-4
Other Edit Mode Features, 9-11
Out of data, A-2,4-23
Out of memory, A-2
Out of string space, A-3,3-3
output byte to I/O port, 7-14
output data to line printer, 4-21
output data to terminal, 4-25
Overflow, A-3,2-9,7-4,7-6
Overlay Management, 8-15

passing variables to a chained program, 8-16
PEEK, 7-15
pending character at terminal, 5-6
POKE, 7-15
port, output to, 7-14
port, input from, 7-13
port, monitoring of, 7-21
POS, 7-16
Precedence of Arithmetic Operators, 2-8
Preparing the Diskette 1-11
print blanks, 7-16
print line number as its executed, 8-14
PRINT# USING, 10-17
Print Positions, 4-21
PRINT USING, 8-8
print zones, 4-21
printed line longer than terminal width, 4-21

F-6
Appendix F

printer line width, 7-22
printing data on the line printer, 4-21
printing numeric values, 4-22
program editing, 9-1
Program Statements, 4-1
Programming Hints, D-1
prompt string, 4-19
protected files, 10-2
Protected File, 3-13
PUT,' 10-31

random access
file, creation of, 10-34
record size, 10-5
Statements, 10-26
Techniques, 10-34

random number generator, 7-8
random record, reading, 10-30
random record, writing, 10-31
RANDOMIZE, 7-8
range of a FOR/NEXT loop, 4-8
READ, 4-23
read one character from keyboard, 5-6
read random record, 10-30
read values from DATA statement, 4-23
reading a random access file, 10-34
record length, 10-5
Redo from start, 4-19
register values, E-4
Relational Expressions using Logical Operators, 2-14
Relational Operators, 2-10
REM, 4-6
renumber program lines, 3-10
RENUM, 3-10
repetive execution loop, 4-8
replace portion of a string, 5-10
Replacing Text, 9-8
reserved words, A-8
reserved words, new, C-1
reset data pointer, 4-24

RESET, 3-11
RESTORE, 4-24
RESUME, 8-3
RESUME without error, A-4,8-3
return

address of FIELD buffer, 7-20
address of variable, 7-18
amount of free memory, 7-13
current cursor position, 7-16
current record number, 10-10
from subroutine, 4-11
leftmost characters, 5-8
length of string, 5-9
number of records, 10-9
number of sectors accessed, 10-10
numerical representation, 5-13
position of print head, 7-14
rightmost characters, 5-11
string of spaces, 5-11
string representation, 5-12

return substring, 5-9
RETURN without GOSUB, A-2
RETURN, 4-11
RIGHT$, 5-11
right-justify and place in random buffer, 10-29
RND function, new features, C-1
RND, 7-8
round to integer, 7-6
RSET, 10-29
RUN, 3-12

save changes and exit (Edit Mode), 9-9
SAVE, 3-13
Saving Execution Time, D-1
Scalar Multiplication, 6-7
scaled format, 4-22
search (Edit Mode), 9-7
search and " kill " (Edit Mode), 9-7
search for substring, 5-8
secant, 7-11
seed random number generator, 7-8
send special character to terminal, 5-5
Sequence of Execution, 4-7

I-7
 Index

sequence of random numbers, 7-8
Sequential

Access Statements, 10-10
Access Techniques, 10-21
data pointer, 10-11
disk file, writing to, 10-16
disk file, reading from,10-11
file, accessing a, 10-22
file, I/O buffer, 10-22

sequential file, creation of, 10-21
sequential file input, 10-12
set

line width 7-22
random access record size, 10-5
random file buffer, 10-27

set-up array, 4-4
SGN, 7-9
sign of expression, 7-9
simulate occurrence of error, 8-4
sine function, 7-10
Single-Precision Storage Format, E-5
single-precison, 4-2
SIN, 7-10
SPACE$, 5-11
SPC, 7-16
Special Features, 8-1
Special functions, 7-12
SQR, 7-10
square root function, 7-10
stack space allocation, 3-3
STEP, 4-8
STOP, 4-14
store constants, 4-18
STR$, 5-12
stream of ASCII chararacters, 10-10
string

arrays, 6-5
fields, formatted, 8-8
formula too complex, A-4
Functions, 5-4
Input (from sequential disk file), 10-14
Input/Output, 5-2
of spaces, 5-11
Operations, 5-3
space allocation, 3-3,C-1

String Storage Format, E-6
String too long, A-4
STRING$, 5-12
Strings, 5-1
string, 4-3
Subscript out of range, A-3,4-4,6-2
substring search, 5-8
suspend execution, 4-14
SWAP, 4-5
Syntax error, A-2,4-3,10-5
SYSTEM, 3-13
System Software Requirements, 1-10

TAB 7-17
tab carriage, 7-17
tangent function, 7-10
TAN, 7-10
terminal

line width, 7-22
value of loop counter, 4-8
width, 4-21

terminators in sequential files, 10-13
text insertion (Edit Mode), 9-4
THEN, 4-15
Too many files, A-7 Trace Flags, 8-14
Transposition of a Matrix, 6-7
trapping error, 8-2
TROFF, 8-14
TRON, 8-14
truncate supplied argument, 7-6
Type Conversion, 2-6,C-1
Type mismatch, A-4,4-5,7-23

unconditional branch, 4-12

Undefined line number, A-3,4-16,4-
12,8-2
Undefined user function, A-4
unmatched WEND, 4-17
unmatched WHILE, 4-17
Unprintable error, A-5,8-4
unscaled format, 4-22
user-defined errors, 8-4
User-Defined Functions, 7-23
USR function calls, E-3
USR function data type conversions,
E-6
USR, 7-25

F-8
Appendix F

VAL, 5-13
variables, 2-4
Variable Names and Declaration Characters, 2-4
variable pointer, 7-18
VARPTR, 7-18
Vertical Arrays, 6-4

WAIT, 7-21
WEND without WHILE, A-5,4-17
WEND, 4-17

WHILE without WEND, A-5,4-17
WHILE/WEND, 4-17
WIDTH LPRINT, 7-22
WIDTH, 7-22
write

data to sequential disk file, 10-19
directory information to disk, 3-11
program to disk, 3-13
random record, 10-31
to sequential disk file, 10-16

WRITE, 4-25
WRITE#, 10-19

