

Microsoft
FORTRAN-80

CP/M® Version

Installation Guide
for HEATH/ZENITH 8-bit digital computer systems

595-2741-01

Copyright © 1981 HEATH COMPANY
Heath Company Printed in the

All Rights Reserved BENTON HARBOR, MICHIGAN 49022 United States of America

CP/M is a registered t rademark of Digi ta l Research

2
INSTALLATION GUIDE

Technical consultation is available for any problems you may encounter in verifying proper operation of
this product. We are sorry, but we are not able to evaluate or assist in the debugging of any programs you
may develop with this product. For technical assistance, call:

(616) 982-3860

Consultation is available between 8:00 am and 4:30 pm (EST), on normal business days.

Portions of this Manual have been adapted from Microsoft publications or documents.
COPYRIGHT © by Microsoft, 1979, all rights reserved.

3
INSTALLATION GUIDE

CONTENTS OF THE DISKETTES

The diskettes that you received will have the following files:

Microsoft FORTRAN-80 Distribution Disk I

F80.COM
M80.COM
L80.COM
FORLIB.REL

F80.COM is the FORTRAN-80 Compiler. Its commands and operations are defined in the
Microsoft FORTRAN-80 Reference Manual. The MACRO-80 Assembler (M80.COM) and
the Linking Loader (L80.COM) are described in the Microsoft Utility Manuals. FORLIB.REL is
the FORTRAN-80 Compiler System Library. Modification of this file is accomplished
through use of the Library Manager.

Microsoft FORTRAN-80 Distribution Disk II

CREF.COM
LIB.COM
DSKDRV.MAC
FCHAIN,MAC
INIT.MAC
IONIT.MAC
LPTDRV.MAC
DTBF.MAC
LUNTB.MAC
PI.FOR

The Cross Reference facility (CREF.COM) and the Library Manager (LIB.COM) are described
in the Microsoft Utility Manuals. PLFOR is a sample program to calculate the value of pi. You
can use it to learn the necessary procedures to compile, link, and execute a program. After
this file has been used for this purpose, you may delete it from the disks.

4

Several files with the extension ".MAC" have been included on the FORTRAN-80
Distribution Disk II. These files contain the source code for some of the library functions in the
FORTRAN-80 runtime library. The following table lists these source files and their functions.

Filename Function

DSKDRV.MAC CP/M runtime disk driver
FCHAIN.MAC FORTRAN CALL FCHAIN statement
INIT.MAC Runtime initialization
IOINIT.MAC I/O flag and variable initialization
LPTDRV.MAC Line printer device driver
DTBF.MAC Runtime data buffer
LUNTB.MAC Logical unit number dispatch table

These source files are provided for the benefit of experienced system programmers who may
wish to modify them for their own applications. These routines use the conditional assembly
feature of the MACRO-80 Assembler, and they have been set to generate code only for C:P/M. The
use of FCHAIN is described on Page 10-18 of the FORTRAN-80 Users Manual. For additional
information on the use of the ".MAC" files, consult Appendix B in the FORTRAN-80 Reference
Manual.

After you have assembled your custom routine, you can create a new library which includes this
routine. The Library Manager Utility, LIB-80, should be used for this function, Make sure you
make a copy of the standard library before you create a new one.

It is very important that you test any new routine before you include it in your library. We
cannot assume responsibility for consultation on modified or custom user libraries.

Based on the type of distribution media received, the files mentioned above may e recorded on
one or more disks.

5
INSTALLATION GUIDE

DISKETTE USE

Diskette Loading
Refer to Figure 1-A or 1-B, open the disk drive door, and insert the diskette(s) so the diskette
label faces the open door. Then carefully close the drive door.

6

Diskette Handling

Diskettes are easily damaged. Observe the following precautions when handling diskettes:

1. Keep the diskette in its storage envelope whenever it is not in use.

2. Keep the diskette away from magnetic fields, including magnetic paper clip holders,

magnetized scissors or screwdrivers, and heavy electrical equipment. Magnetic fields
can distort the data recorded on the diskette.

3. Replace damaged or excessively worn storage envelopes.

4. Write only on the diskette label, and then only with a felt-tip pen. Do not use a pencil or

ball-point pen, as these may damage the recording surface.

5. Keep the diskette away from hot or contaminating material.

6. Do not expose the diskette to sunlight, liquids, or smoke.

7. Do not touch the diskette surface. Abrasions can alter stored data.

7
INSTALLATION GUIDE

Write-Protection

The diskette can be write-protected so that data cannot be written to it. (All distribution
diskettes are shipped write-protected.) The method of write-protection depends on the size of
the diskette.

A 5.25-inch diskette has a write-enable notch on the side. When this notch is covered with a tab
or opaque tape, no data can be written on the diskette. Figure 2-A illustrates a write-protect 5.25-
inch diskette; Figure 2-B depicts a write-enabled 5.25-inch diskette.

8

An 8-inch diskette has a write-protect notch on its side. If this write-enable notch is exposed, no
data can be written to the diskette. To write-enable an 8-inch diskette, cover the write-protect
notch with a tab or opaque tape. Figure 3-A shows a write-protected 8-inch diskette; Figure 3-B
shows a write-enabled 8-inch diskette. Note that 8-inch diskettes are just the opposite of 5.25-
inch diskettes in that the diskette is write-protected when the write-protect tab is removed.

9
INSTALLATION GUIDE

PREPARING WORKING DISKETTES

Using the procedure outlined in your CP/M manual, power-up your computer and boot-up
CP/M.

If you have two or more drives of the same size, duplicate your FORTRAN-80 distribution
diskette(s) using DUP.COM. If you do not have two or more drives of the same size:

1. Initialize the blank diskette(s) to which you will copy using
FORMAT.COM.

2. Duplicate the FORTRAN-80 distribution disk(s) using PIP.COM.

NOTE: All distribution diskettes are write-protected to ensure that you always have an

accurate copy of the software. Therefore, duplicate the distribution diskettes and then
store them in a safe place. Use your copies for day-to-day use of the programs.

10

Microsoft
FORTRAN-80
LANGUAGE

CP/M® Version

Software Reference
Manual

for HEATH/ZENITH 8-bit digital computer systems

Copyright © 1981 HEATH COMPANY
Heath Company Printed in the
All Rights Reserved B E N T O N HARBOR, MICHIGAN 49022 United States of America

CP/M is a registered trademark of Digital Research

II

Portions of this Manual have been adapted from Microsoft publications or documents and are
reproduced with permission.

COPYRIGHT © by Microsoft, 1979, all rights reserved.

III

Table of Contents

Chapter One - Introduction

Overview .. 1-1
FORTRAN Program Form ... 1-4

FORTRAN Character Set .. 1-4
Letters .. 1-4
Digits ... 1-4
Alphanumerics .. 1-4
Special Characters .. 1-5

FORTRAN Line Format .. 1-5
Line Types .. 1-6
Statement Label .. 1-8

Statements .. 1-9
Executable ... 1-9
Non-Executable ... 1-9

Chapter Two - Compiling FORTRAN Programs

Overview .. 2-1
Format of Commands ... 2-2
FORTRAN-80 Compilation Switches ... 2-4

Sample Compilation ... 2-6
FORTRAN Compiler Error Messages .. 2-7

Fatal Errors ... 2-8
Warnings .. 2-9

FORTRAN Runtime Error Messages .. 2-10

Chapter Three -- Data Representation/Storage Format

Overview 3-1
Data Types .. 3-2

Integer ... 3-2
Rules ... 3-2

Integer*4 .. 3-3
Rules .. 3-3

Real .. 3-4
Rules .. 3-4

Double-Precision ... 3-5
Rules .. 3-5

Logical ... 3-6
Rules .. 3-6
Hollerith .. 3-7

IV

Data Storage ... 3-8
Function Components .. 3-9

Constants ... 3-9
Variables .. 3-9
Arrays... 3-9

Array Element ... 3-10

Chapter Four - FORTRAN Expressions

Overview .. 4-1
Arithmetic Expressions .. 4-2

Arithmetic Expression Evaluation ... 4-4
Logical Expressions .. 4-5

Relational Expressions ... 4-5
Logical Operators .. 4-6

Hollerith, Literal, and Hexadecimal Constants .. 4-8

Chapter Five -- Assignment Statements

Overview .. 5-1
Arithmetic Assignment Statement ... 5-2
Logical Assignment Statement ... 5-4
ASSIGN Statement .. 5-5

Chapter Six - FORTRAN Control Statements

Overview .. 6-1
GO TO Statements ... 6-2

Unconditional GO TO Statement .. 6-2
Computed GO TO Statement ... 6-3
Assigned GO TO Statement .. 6-3

IF Statements .. 6-5
Logical IF Statement ... 6-5
Arithmetic IF Statement .. 6-6

DO Statement ... 6-7
CONTINUE Statement .. 6-10
STOP Statement .. 6-10
PAUSE Statement .. 6-11
CALL Statement ... 6-11
RETURN Statement .. 6-12
END Statement ... 6-12

V

Chapter Seven - Input/Output Statements

Overview ... 7-1
Logical Unit Numbers (LUN) ... 7-2

FORMAT Specifiers .. 7-2
Input/Output Lists ... 7-3

Lengths of 1/0 Lists .. 7-3
Simple Lists ... 7-3
Implied DO Lists ... 7-4

Sequential 1/0 .. 7-6
Unformatted Sequential I/O ... 7-6

READ ... 7-8
WRITE ... 7-8

Formatted Sequential I/O ... 7-9
READ ... 7-10
WRITE ... 7-11

Random I/O ... 7-12
Unformatted Random I/O ... 7-12

READ ... 7-13
WRITE ... 7-14

Formatted Random I/O ... 7-15
READ .. 7-16
WRITE ... 7-17

Auxiliary I/O Statements .. 7-18
OPEN Subroutine .. 7-18
ENDFILE Statement ... 7-19
REWIND Statement .. 7-19
ENCODE/DECODE Statements ... 7-20

VI

Chapter Eight - FORMAT Statements

Overview .. 8-1
Field Descriptors ... 8-2
Numeric Conversion ... 8-3

F-Type Conversion ... 8-3
F-Input ... 8-3
F-Output ... 8-4

E-Type Conversion ... 8-5
E-Input ... 8-5
E-Output ... 8-5

D-Type Conversions ... 8-6
D-Input ... 8-6
D-Output .. 8-6

G-Type Conversions .. 8-6
G-Input ... 8-6
G-Output .. 8-7

I-Type Conversions.. 8-8
I-Input .. 8-8
I-Output ... 8-8

Hollerith Conversions ... 8-9
A-Type Conversion .. 8-9

A-Input .. 8-9
A-Output... 8-10

H-Type Conversion .. 8-10
H-Input .. 8-11
H-Output .. 8-11

Logical Conversions ... 8-12
L-Input .. 8-12
L-Output .. 8-12

X Descriptor ... 8-13
Scale Factor ... 8-14

Effects of Scale Factor on Input ... 8-14
Effect of Scale Factor on Output ... 8-15

Other Control Features of Format Statements .. 8-16
Repeat Specifications .. 8-16
Field Separators ... 8-17
Format Carriage Control ... 8-18
Format Specification in Arrays ... 8-19

VII

Chapter Nine - Specification Statements

Overview ... 9-1
Array Declarators .. 9-2
Statements .. 9-3

PROGRAM Statement .. 9-3
Type Statement .. 9-4
EXTERNAL Statement ... 9-5
DIMENSION Statement .. 9-6
COMMON Statement ... 9-6
EQUIVALENCE Statement .. 9-8
DATA Initialization Statement .. 9-10
IMPLICIT Statement ... 9-11
INCLUDE Statement ... 9-12

Chapter Ten - Function and Subprograms

Overview ... 10-1
Statement Functions : ... 10-2
Library Functions ... 10-4
Function Subprograms Constructing a FUNCTION Subprogram 10-8

Referencing a FUNCTION Subprogram 10-9 Subroutine Subprograms 10-11
Referencing a Subroutine Subprogram ... 10-13

RETURN from Function and Subroutine Subprograms .. 10-14
Processing Arrays in Subprograms .. 10-15
Block Data Subprograms; .. 10-17
Program CHAINing.. 10-18

Chapter Eleven - FORTRAN Statements Summary

Overview ... 11-1
Summary of Statements .. 11-2

Chapter Twelve - FORTRAN-80 Reference Manual Index
Overview .. 12-1

VIII

1-1
Introduction

Chapter One

Introduction

OVERVIEW

FORTRAN is a universal, problem-oriented programming language designed to simplify the
preparation and check-out of computer programs. The name of the language - FORTRAN - is an
acronym for FORmula TRANslator.

The syntactical rules for using the language are rigorous and require the programmer to define
fully the characteristics of a problem in a series of precise statements. These statements, called the
source program, are translated by a program called the FORTRAN compiler into a relocatable
module. This module is then translated by another program, called the linker, into the machine
language of the computer on which the program is to be executed.

This Reference Manual defines the Microsoft FORTRAN-80 source language for the Heath H8 and
the Heath/Zenith H/Z89 computers.

This language includes most of the provisions of the American National Standard FORTRAN
language as described in ANSI document X3.9-1966, approved on March 7, 1966, plus a number
of language extensions and some restrictions.

Examples are included throughout this Manual to illustrate the construction and use of the language
elements. The programmer should be familiar with all aspects of the language to take full
advantage of its capabilities.

1-2
Chapter One

The following is a list of the extensions to ANSI Standard FORTRAN (X3.9-1966)

1. When c is used in a "STOP c" or "PAUSE c" statement, c maybe up to six ASCII
characters in length.

2. Error" and "End of File" branches may be specified in READ and WRITE

statements using the ERR= and END= options.

3. The standard subprograms PEEK, POKE, INP, and OUT have been added to the

FORTRAN library.

4. Statement functions may use subscripted variables as arguments.

5. Hexadecimal constants may be used wherever Integer constants are normally allowed.

6. The literal form of Hollerith data (a character string between apostrophe characters)

is permitted in place of the standard nH form.

7. There is no restriction to the number of continuation; lines.

8. Mixed mode expressions and assignments are allowed, and the conversion is done

automatically.

9. Logical variables maybe used as integer quantities in the range +127 to -127.

10. Logical operations may be performed on integer data. (.AND., .OR., ..NOT.,
.XOR., can be used for 16-bit or 8-bit Boolean operations.)

11. ENCODE/DECODE may be used for both editing and converting data.

12. Complete language facilities are provided for random access files.

The FORTRAN programmer should note the above added features and utilize them to the fullest
advantage.

1-3
Introduction

FORTRAN-80 places the following restrictions upon ANSI Standard FORTRAN.

1. The COMPLEX data type has not been implemented.

2. The statements within a program unit must appear in the following order:

1. PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA

2. Type, EXTERNAL, DIMENSION 3. COMMON

4. EQUIVALENCE

5. DATA

6. Statement Functions

7. Executable Statements

3. A different amount of computer memory is allocated for each of the data types:

integer, real, double-precision, logical.

4. The equal sign of an assignment statement and the first comma of a DO statement
must appear on the initial statement line.

5. Unformatted sequential I/O statements must always provide a variable list.

The FORTRAN programmer should note the above restrictions and adhere to them when writing
a FORTRAN source program.

1-4
Chapter One

FORTRAN PROGRAM FORM

FORTRAN source programs consist of one program unit called the main program and any number
of program units called subprograms. Main programs and program units are constructed of an
ordered set of statements which precisely describe procedures for solving problems and which also
define information to be used by the FORTRAN compiler during compilation of the object
program. Each statement is written using the FORTRAN character set and following a prescribed
line format.

FORTRAN Character Set

To simplify reference and explanation, the FORTRAN character set is divided into four subsets
and a name is given to each.

LETTERS

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y.Z,,$
(The $ is considered a letter.)

No distinction is made between upper and lower case letters. However, for clarity and
legibility, exclusive use of upper case letters is recommended.

DIGITS

0,1,2,3,4,5,6,7,8,9

Strings of digits representing numeric quantities are normally interpreted as decimal numbers.
However, in certain statements, the interpretation is in the hexadecimal number system in which case
the letters A, B, C, D, E, F may also be used as hexadecimal digits.

ALPHANUMERICS

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,$ 0,1,2,3,4,5,6,7,8,9

All letters and digits are considered part of this subset.

1-5
Introduction

SPECIAL CHARACTERS

= Equality Sign
+ Plus Sign
- Minus Sign
(Left Parenthesis
) Right Parenthesis
. Decimal Point

The following special characters are classified as Arithmetic Operators and
are significant in the unambiguous statement of arithmetic expressions.

+ Addition or Positive Value
- Subtraction or Negative Value
* Multiplication
** Exponentiation
/ Division

The other special characters have specific application in the syntactical expression of the
FORTRAN language and in the construction of FORTRAN statements.

Any printable character may appear in a Hollerith or literal field.

FORTRAN Line Format

The lines of a FORTRAN source program consist of 80 character positions or columns, numbered
1 through 80, and are divided into four fields.

1. Statement Label (or Number) field – Columns 1 through 5 (See definition of
statement labels).

2. Continuation character field – Column 6

3. Statement field – Columns 7 through 72

4. Identification field – Columns 73 through 79

The identification field is available for any purpose the FORTRAN programmer may desire and is
ignored by the FORTRAN processor.

NOTE: The last column (80) must never contain a character. This column is reserved for the

carriage return character.

1-6
Chapter One

LINE TYPES

The lines of a FORTRAN statement are placed in Columns 1 through 72 formatted according to
line types. The four line types, their definitions, and column formats are:

Comment Line - used for source program annotation at the convenience of the programmer.

1 Column 1 contains the letter C

2. Columns 2 - 72 are used in any desired format to express the comment or they may be left

blank.

3. A comment line may be followed only by an initial line, an END line,'' or another

comment line.

4. Comment lines have no effect on the object program and are ignored by the

FORTRAN processor except for display purposes in the listing of the program.

Example:

C COMMENT LINES ARE INDICATED BY THE
C CHARACTER C IN COLUMN 1.
C THESE ARE COMMENT LINES

END Line - the last line of a program unit.

1. Columns 1-5 may contain a statement label.

2. Column 6 must contain a zero or blank.

3. Columns 7-72 must contain the characters "E", "N" and "D", in that order. They may

be separated by blank characters.

4. Each FORTRAN program unit must have an END line as its last line to inform the

processor that it is at the physical end of the program unit.

5. An END line may follow any other type line.

Example:
END

1-7
Introduction

Initial Line - the first or only line of each statement.

1. Columns 1-5 may contain a statement label to identify the statement.

2. Column 6 must contain a zero or blank.

3. Columns 7-72 must contain all or part of the statement.

4. An initial line may begin anywhere within the statement field.

Example:

C THE STATEMENT BELOW CONSISTS
C OF AN INITIAL LINE

A= .5*SQRT(3-2.*C)

Continuation Line – used when additional lines of coding are required to complete a
statement originating with an initial line.

1. Columns 1-5 are ignored. Column 1 must not contain a C.

2. If Column 1 contains a C, it is a comment line.

3. Column 6 must contain a character other than zero or blank.

4. Columns 7-72 contain the continuation of the statement.

5. There may be as many continuation lines as needed to complete the statement.

Example:

1 5 (columns by 5)

C THE STATEMENTS BELOW ARE AN INITIAL LINE

C AND 2 CONTINUATION LINES

BETA(1,2) =

1 A6BAR**7-(BETA(2,2)-A5BAR*50

2 +SQRT (BETA(2,1)))

1-8
Chapter One

STATEMENT LABEL

A statement label may be placed in columns 1-5 of a FORTRAN statement initial line and is used for
reference purposes in other statements. The rules for a statement label are:

1. The label is an integer from 1 to 99999.

2. In the evaluation of the numeric value of the label, leading zeros and blanks are not

significant.

3. A label must be unique within a program unit.

4. A label on a continuation line is ignored by the FORTRAN processor

Example:
1 (columns by 5)

200 R = SQRT(A/PI)

1-9
Introduction

STATEMENTS

Individual statements deal with specific aspects of a procedure described in a program unit and are
classified as either executable or non-executable.

EXECUTABLE

Executable statements specify actions and cause the FORTRAN compiler to generate object
program instructions. There are three types of executable statements:

1. Assignment statements.

2. Control statements.

3. Input/Output statements.

NON-EXECUTABLE

Non-executable statements describe to the compiler the nature and arrangement of data and provide
information about input/output formats and data initialization to the object program during program
loading and execution. There are five types of non-executable statements:

1. Specification statements.

2. DATA Initialization statements.

3. FORMAT statements.

4. FUNCTION defining statements.

5. Subprogram statements.

1-10
Chapter One

2-1
Compiling FORTRAN Programs

Chapter Two

Compiling FORTRAN Programs

OVERVIEW

After a FORTRAN source program is created, it must then be compiled. To tell the FORTRAN
Compiler what to compile and with which options, it is necessary to input a "command string,"
which is read by the FORTRAN-80 command scanner.

This command string contains the information needed by the Compiler in order to compile the
source program.

After the source program has been compiled without errors, it is then necessary to link the
program before it can be executed. This process is explained in the "LINK-80" section of this
Reference Manual.

2-2
Chapter Two

FORMAT OF COMMANDS

To run FORTRAN-80, type "F80" followed by a RETURN. FORTRAN-80 will return the prompt
"*", indicating it is ready to accept commands. At this point, the command string followed by a
RETURN should be typed. The general format of a FORTRAN-80 command string is:

objprog-dev:filename.ext,list-dev:filename.ext = source-dev:filename.ext

where:

objprog-dev: The device on which the object program is to be written. If the device name is

omitted, it defaults to the current default disk.

list-dev: The device on which the program listing is written. It can be the terminal, a

hardcopy device or a disk file. The default device for the disk file is the
current default disk.

source-dev: The device from which the source-program input to FORTRAN-80 is

obtained. If a device name is omitted, it defaults to the current default disk.

filename.ext These arc the filename and filename extensions for the object program file,

the listing file, and the source file. Filename extensions may be omitted.

The default filename extensions are:

source file .FOR
object file .REL
listing file .PRN

Either the object file or the listing file or both may be omitted.

If neither a listing file nor an object file is desired, place only a comma to the left of the equal sign.
This is useful for checking the syntax of a newly created FORTRAN source program.

2-3
Compiling FORTRAN Programs

If the names of the object file and the listing file are omitted, the default name is the name of the
source file with the above default extensions.

Examples:

*=TEST Compile the program TEST.FOR and place the
object in TEST.REL

*B:TEST=B:TEST Compile B:TEST.FOR, put object in B:TEST.REL

and listing in B:TEST.PRN

*,=TEST.FOR Compile TEST.FOR but produce no object or
listing file. This is useful when checking for
errors.

*B:SAMPLE,LST:=SAMPLE Compile the program SAMPLE.FOR, write the listing

to LST: and put the object in B:SAMPLE.REL.

After the program has compiled, the prompt “*” will be displayed on the terminal device. In
order to return control to CP/M, type CTRL-C.

The command string can also be typed on the same line as the command to invoke the
Compiler. In order to do this, type "F80 <command string>". (The space is required.) When
using this method, the Compiler will return to CP/M after the program has been compiled.

Examples:

F80 TEST=TEST Invoke the Compiler, compile TEST.FOR and write the
object in TEST.REL. After compilation, return to CP/M.
The Compiler prompt "*" is not displayed with this
method.

2-4
Chapter Two

FORTRAN-80 COMPILATION SWITCHES

A number of different switches may be given in the command string that will affect the
compilation process.

Each switch should be preceded by a slash

Switch Action

O Print all listing addresses, in octal.

H Print all listing addresses, in hexadecimal.(default)

N not list the compiler generated opcodes.

A List compiler generated opcodes (default).

R Force generation of an object file.

L Force generation of a listing file.

P Each /P allocates an extra 100 bytes of stack space for use during compilation. Use

IP if stack overflow errors occur during compilation. Otherwise this switch
should not be needed.

M Specifies to the Compiler that the generated code should be in a form which

can be loaded into ROMs. When a / M is specified, the generated code will differ
from normal in the following ways:

1. FORMATs will be placed in the program area, with a "JMP" around them.

2. Parameter blocks (for subprogram calls with more than 3 parameters) will be

initialized at runtime, rather than being initialized by the loader.

2-5
Compiling FORTRAN Programs

Examples:

* =TEST/L Compile file TEST.FOR, write listing in file TEST.PRN
and produce object file TEST.REL.

* =BIGGONE/P/P Compile file BIGGONE.FOR and produce object file

BIGGONE.REL. Compiler is allocated 200 extra bytes of
stack space.

*PROG,PROG=PROG/O Compile file PROG.FOR, write listing in file PROG.PRN

and produce object file PROG.REL. The addresses in the
listing file will be in octal.

*=SAMPLE/L/A Compile file SAMPLE.FOR, write listing in

SAMPLE.LST and produce object file
SAMPLE.REL. The compiler generated opcodes will be
printed in the listing file.

*FIRM,FIRM=FIRM/M Compile file FIRM.FOR, write listing in file FIRM.PRN

and produce object file FIRM.REL. Generates code
suitable for ROM's.

If a FORTRAN program is intended for ROM, the programmer should be aware of the following
ramifications:

1. DATA statements should not be used to initialize RAM. Such initialization is done

by the loader, and will therefore not be present at execution. Variables and arrays
may be initialized during execution via assignment statements, or by READing into
them.

2. FORMATs should not be read into during execution.

3. DISK files should not be OPENed on any LUNs other than 6, 7, 8, 9,10.

2-6
Chapter Two

Sample Compilation

B: SAMPLE,LST:=B: SAMPLE/N

FORTRAN-80 Ver. 3.4 Copyright 1978,79,80 (C) By Microsoft - Bytes: 9320
created: 26-NOV-80

1 C SAMPLE PROGRAM AVERAGE
2 C WILL COMPUTE AVERAGE OF THREE NUMBERS
3 PROGRAM SAMPLE
4 REAL NUMBER(3)
5 DATA NUMBER /100.,200.,300./
6 DATA SUM,AVER /0.,0./
7 C LOOP TO CALCULATE SUMMATION
8 DO 600 1 = 1,3
9 SUM = SUM + NUMBER(I)
10 600 CONTINUE
11 AVER = SUM/3
12 WRITE(1,700) AVER
13 700 FORMAT(' ',F6.2)
14 STOP SAMPLE
15 END

PROGRAM UNIT LENGTH=0067 (103) BYTES
DATA AREA LENGTH--0021 (33) BYTES

SUBROUTINES REFERENCED:

$I1 $INIT $L1
$AB $T1 $DA
$W2 $ND $ST

VARIABLES:

NUMBER 0001" SUM GOOD" AVER 0011"

I 0015"

LABELS:

$$L 0006' 600L 0024' 700L 0017"

Note: The single quote mark (') implies a program relative value and the double quote mark (")
implies a data relative value.

2-7
Compiling FORTRAN Programs

FORTRAN COMPILER ERROR MESSAGES

The FORTRAN-80 Compiler detects two kinds of errors: Warnings and Fatal Errors.

When a Warning is issued, compilation continues with the next item on the source line. When a
Fatal Error is found, the compilation ignores the rest of the logical line, including any continuation
lines.

Warning messages are preceded by percent signs (%), and Fatal errors by question marks (?).

Next, a line number will be printed by the Compiler. This line number represents the point at which
the Compiler discovers the error. It is important to note that this line number may not correspond to
the actual physical line number of the error. The line number is followed by the error code or error
message. The last twenty characters scanned before the error is detected are also printed.

Example:

?Line 25: Mismatched Parenthesis

%Line 16: Missing Integer Variable

When either type of error occurs, the program should be changed so that it compiles without errors.
No guarantee is made that a program that compiles with errors will execute sensibly.

The next several pages contain a list of the various errors detected by the Compiler. The
runtime messages are also explained.

Appendix D, "Microsoft Errors," contains a detailed explanation of both the Compiler and the
runtime errors.

2-8
Chapter Two

Fatal Errors:

Number Message

100 Illegal Statement Number
101 Statement Unrecognizable or Misspelled
102 Illegal Statement Completion
103 Illegal DO Nesting
104 Illegal Data Constant
105 Missing Name
106 Illegal Procedure Name
107 Invalid DATA Constant or Repeat Factor
108 Incorrect Number of DATA Constants
109 Incorrect Integer Constant
110 Invalid Statement Number
111 Not a Variable Name
112 Illegal Logical Form Operator
113 Data Pool Overflow
114 Literal String Too Large
115 Invalid Data List Element in I/O
116 Unbalanced DO Nest
117 Identifier Too Long
118 Illegal Operator
119 Mismatched Parenthesis
120 Consecutive Operators
121 Improper Subscript Syntax
122 Illegal Integer Quantity
123 Illegal Hollerith Construction
124 Backwards DO reference
125 Illegal Statement Function Name
126 Illegal Character for Syntax
127 Statement Out of Sequence
128- Missing Integer Quantity
129 Invalid Logical Operator
130 Illegal Item in Type Declaration
131 Premature End Of File on Input Device
132 Illegal Mixed Mode Operation
133 Function Call with No Parameters
134 Stack Overflow
135 Illegal Statement Following Logical IF

2-9
Compiling FORTRAN Programs

Warnings

Number Message

0 Duplicate Statement Label
1 Illegal DO Termination
2 Block Name = Procedure Name
3 Array Name Misuse
4 COMMON Name Usage
5 Wrong Number of Subscripts
6 Array Multiply EQUIVALENCEd within a Group
7 Multiple EQUIVALENCE of COMMON
8 COMMON Base Lowered
9 Non-COMMON Variable in BLOCK DATA

10 Empty List for Unformatted WRITE
11 Non-Integer Expression
12 Operand Mode Not Compatible with Operator
13 Mixing of Operand Modes Not Allowed
14 Missing Integer Variable
15 Missing Statement Number on FORMAT
16 Zero Repeat Factor
18 Format Nest Too Deep
19 Statement Number Not FORMAT Associated
20 Invalid Statement Number Usage
21 No Path to this Statement
22 Missing Do Termination
23 Code Output in BLOCK DATA
24 Undefined Labels Have Occurred
25 RETURN in a Main Program
27 Invalid Operand Usage
28 Function with no Parameter
29 Hex Constant Overflow
30 Division by Zero
32 Array Name Expected
33 Illegal Argument to ENCODE/DECODE

2-10
Chapter Two

FORTRAN RUNTIME ERROR MESSAGES

Runtime errors are displayed on the console terminal as they occur. The error is surrounded by
asterisks, for example:

FW

Fatal errors cause execution to cease (control is returned to the operating system). Warning errors
are ignored (though the data may be wrong) until 20 warnings are encountered; then execution
ceases.

WARNING ERRORS

Code Meaning

FW Field Width Too Small
EX Illegal Exponentiation
IB Input Buffer Limit Exceeded
TL Too Many Left Parentheses on FORMAT
OB Output Buffer Limit-Exceeded'
DE Decimal Exponent Overflow (exponent >' 99)
IS Integer Size Too Large
BE Binary Exponent Overflow
IN Input Record Too Long
OV Arithmetic Overflow
CN Conversion Overflow (REAL to INTEGER Conversion)
GL Computed GOTO Number Too Large
GS Computed GOTO Number Too Small
SN Argument to SIN Too Large
A2 Both Arguments of ATAN2 Function Are
BI Buffer Size Exceeded During Binary I/O
RC Negative Repeat Count in FORMAT

2-11
Compiling FORTRAN Programs

FATAL ERRORS

Code Meaning

ID Illegal FORMAT Descriptor
F0 FORMAT Field Width is Zero
MP Missing Period in Format
IR Attempting Real In Integer Field
IT I/O Transmission Error
DO Illegal Increment or Limit in DO Loop
ML Missing Left Parenthesis in FORMAT
DZ Division by Zero, REAL or INTEGER
LG Illegal Argument to LOG Function (Negative or Zero)
SQ Illegal Argument to SQRT Function (Negative)
IO Illegal I/O Operation
DT Data Type Does Not Agree With Format Specification
EF EOF Encountered on READ
FN File Not Found on OPEN
DF Disk Full Encountered on WRITE
UN Logical Unit Number (LUN) Too Large
OM Out of Memory

2-12
Chapter Two

3-1
Data Representation/Storage Format

Chapter Three

Data Representation/Storage Format

OVERVIEW

The FORTRAN language specifies that data types be categorized into several classifications.
These classifications are: integer, extended integer, real, double-precision, logical and
Hollerith.

Within each individual data type there exists another classification referred to as function
component. The classifications of function components are: constants, variables, arrays and
array elements.

A constant represents a fixed value, and therefore may not be changed during program
execution. Variable data, on the other hand, may be subject to modification. An array is a group
of storage locations associated with a single symbolic name. This symbolic name is called the
array name. An array element refers to a single entity within an array.

3-2
Chapter Three

DATA TYPES

FORTRAN recognizes several unique data types: integer, real, double-precision, extended integer,
logical and Hollerith. A data type can be selected in the source program by using the data type
statement. (The data type statement is discussed in Chapter 9, "Specification Statements".)

The data type can also be established by following the predefined default convention. The
default convention associates all symbolic names starting with the letters I,J,K,L,M,N with the
data type integer. All other symbolic names are associated with the real data type.

A data type is usually determined by specific program requirements. For instance, because
integer arithmetic always executes faster than double-precision arithmetic, integer variables
are almost always assigned to repetitive "DO LOOPS" as index counters.

Integer

Integers are precise representations of integral numbers (positive, negative or zero) having
precision to 5 digits in the range -32768 to +32767 inclusive
(-2**15 to 2**15-1).

Integers are stored as a 16-bit value. The low order bits, 0 through 14, represent the binary
value. The high-order bit, (bit 15) is used to indicate if a value is positive or negative.
Negative integers are stored as the two's complement of a positive integer.

RULES:

• 1 to 5 decimal digits are interpreted as a decimal number.

Examples:

 -763
1

+00672

• A preceding plus (+) or minus (-) sign is optional.

Examples:
-32768
+32767

• No decimal point (.) or comma (,) is allowed.

3-3
Data Representation/Storage Format

Integer* 4

Extended Integers are precise representations of integral numbers (positive, negative or zero)
having precision to 10 digits in the range -2147483648 to 2147483647 inclusive (-2**31 through
2**31-1).

Extended Integers are stored as 32-bit values. The low order bits, 0 through 30, represent the binary
value. The high-order bit (bit 31) is used to indicate if a value is positive or negative. Negative integers
are stored as the two's complement of a positive integer.

RULES:

• 1 to 10 decimal digits are interpreted as a decimal number.

Examples: -596
1

1314653487

• A preceding plus (+) or minus (-) sign is optional.

Examples: -2147483648
+2147483647

• No decimal point(.) or comma(,) is allowed, but spaces are permitted in the source

program.

Examples: 31 150
 -2 846 766

3-4
Chapter Three

Real

Representations of real numbers (positive, negative or zero) in computer storage are represented in
a four-byte, floating-point form. Storage of real data is precise to seven significant digits and their
magnitude may lie between the approximate limits of 10**-38 and 10**38 (2**-127 and
2**127).

Both real and double-precision values are stored in a floating-point format. The storage unit for a
real value is 32 bits in length. Bits zero through 23 are allocated to the mantissa. Bits 24 through
31 are reserved for the characteristic.

The mantissa is stored in two's complement notation. The mantissa is a binary fraction such
that the radix point is always assumed to be to the left of the fraction. The mantissa is
always normalized such that the high-order bit is one, eliminating the need to actually save
that bit. This bit is assumed to be a one unless the exponent is zero. In this case only, the-high-
order bit is assumed to be a zero.

RULES

A decimal number with precision to seven digits is represented in one of the following
forms;

a. +/-.f or +/-i.f
b. +/-i.E+ or +/-i.-e
c. +/-.fE+ or +/-.f-e
d. +/-.fE+ or +/-i.f-e

where i, f, and E (-e) are each strings representing integer, fraction, and exponent respectively.

Plus (+) and minus (-) characters are optional.

The decimal point is not optional. All real numbers must be expressed with a decimal point.
The value of the exponent E (-e) is interpreted as a real number times 10**e, where the range of
the exponential value is between plus or minus 38 (i.e., -38<=e<=+38).

If the constant preceding E+ or -e contains more significant digits than the precision for real
data allows, truncation occurs, and only the most significant digits in the range will be
represented.

3-5
Data Representation/Storage Format

Double-Precision

Approximations of real double-precision numbers (positive, negative or zero) are represented
in computer storage in 8-byte, floating-point form. Double-precision data are precise to
16 significant digits in the same magnitude range as real data.

Both real and double-precision values are stored in a floating-point format. However, the
storage unit for a double-precision value is 64 bits in length. See the discussion on real data for
more information on the floating-point format.

RULES

A decimal number with precision to 16 digits is represented in one of the following forms:

a. +/-.f or +/-i.f
b. +/-i.D+ or +/-i.-d
c. +/-.fD+ or +/-.f-d
d. +/-i.fD+ or +/-i.f-d'

where i, f, and D (-d) are each strings representing integers, fraction, and exponent
respectively. Note that a real constant is assumed single precision unless it contains- a "D"
exponent.

Plus (+) and minus (-) characters are optional. The decimal point is not optional. All real
numbers must be expressed with a decimal point. In the form shown in b above, if r
represents any of the forms preceding D+ or -d (i.e., rD+ or -d), the value of the constant is
interpreted as r times 10**e, where

38<=d<=38.

If the constant preceding D+ or -d contains more significant digits than the precision for
double-precision data allows, truncation occurs, and only the most significant digits in the range
will be represented.

3-6
Chapter Three

Logical

A logical data type is an element in computer storage representing only the logical true and false
values. The storage unit for a single logical value is seven bits. However, bit eight is frequently
used to represent a signed integer. A logical true constant is assigned a negative one value. Any
non-zero value is also treated as a true constant.

The logical expression may take on only two values, true or false. The internal representation of
false is zero. A non-zero value is always represented and internally stored as true.

When a logical expression appears in a FORTRAN statement it is evaluated according to the
rules given below. Logical types may also be used as one-byte signed integers in the range from
-128 to +127.

RULES

Any non-zero value is assigned the logical value of ".TRUE.".

A logical ".FALSE." value is only assigned when all bits in the byte are set to zero.

Logical values may be used as one-byte integers. The rules for using logical values as integers
remain the same. Note that the range is only from -128 to +127 (i.e.,-2**7 to 2**7-1) when
using logical values as integers.

3-7
Data Representation/Storage Format

Hollerith

Any number of characters from the computer's character set are valid entries in the string. All
characters including blanks are significant. Hollerith data require one byte for storage for each
character in the string. Hexadecimal data may be associated (via a DATA statement) with any type
data. Its storage allocation is the same as the associated datum.

Hollerith or literal data may be associated with any data type by use of DATA
initialization statements (see Chapter 9, "Specification Statements").

Up to eight Hollerith characters may be associated with double-precision type storage. Real type
storage allows up to four characters, and integer storage uses up to two characters. Logical type
storage uses only one character.

DATA STORAGE

The amount of memory required to store each data type can be varied according to how the variable
is specified with a TYPE statement (see TYPE statement).

The data types and memory requirements are listed below:

1. BYTE, INTEGER* 1 LOGICAL*1, and LOGICAL each require one byte (8 bits) of
memory storage.

2. INTEGER*2, LOGICAL*2, and INTEGER each require two bytes (16 bits) of

memory storage.

3. REAL, INTEGER*4, and REAL*4 each require four bytes (32 bits) of memory
storage.

4. DOUBLE PRECISION and REAL*8 each require eight bytes (64 bits) of memory storage.

3-8
Chapter Three

FUNCTION COMPONENTS

Data names recognized by the FORTRAN compiler are separated into three distinct groups:
constants, variables and arrays. In the source language these names are frequently used to
identify and assign values to a particular item.

Constants

FORTRAN constants are always identified by stating their actual value. A constant may be
either a positive or a negative value. The symbol for a negative value (-) must always precede a
negative constant. However, a positive value may or may not use the (+) symbol before the
constant.

Variables

FORTRAN variables are always identified by stating their symbolic name. A symbolic name in
FORTRAN is always a unique string of from one to six alphabetical or numeric characters. The
first character of a name is always alphabetical.

NOTE: System variable names and runtime subprogram names are
distinguished from other variable names in that they begin with the
dollar sign character (S). It is therefore strongly recommended that
in order to avoid conflicts, symbolic names in FORTRAN source
programs begin with some character other than "$".

Arrays

An array in FORTRAN is an ordered set of data arranged in a meaningful pattern. This data is
always characterized by the property of dimension. An array may have 1, 2 or 3 dimensions and
is identified by a symbolic name. Each element in an array is uniquely addressable by means of
a subscript. (For more information on arrays, see Chapter 9, "Specification Statements".)

3-9
Data Representation/Storage Format

ARRAY ELEMENT

An array element is one member of the data set that makes up an array. Reference to an array element in
a FORTRAN statement is made by appending a subscript to the array name. The subscript is used to
uniquely identify a single element within the array.

Rules that govern the use of subscripts are as follows:

1. A subscript contains 1, 2 or 3 subscript expressions enclosed in parentheses.

2. If there are two or three subscript expressions within the parentheses, they must be

separated by commas.

3. The number of subscript expressions must be the same as the specified dimensionality of

the array. (An exception to this rule is the EQUIVALENCE statement. See Chapter 9,
"Specification Statements" for a complete discussion of this exception.)

4. A subscript expression is written in one of the following forms:

K C*V V-K

V C*V+K C*V–K

V+K

where C and K are integer constants and V is an integer variable name.

5. Subscripts themselves may not be subscripted. Examples of valid subscripts:

X(2*J-3,7)

A(I,J,K)

I(20)

C(L-2)

Y(I)

3-10
Chapter Three

TYPE ALLOCATION
INTEGER 2 bytes are required for storage.

Negative numbers are the two's complement of positive representations.

LOGICAL 1 byte is required for storage. Zero (false) or non-zero (true)

A non-zero valued byte indicates true (the logical constant .TRUE. is
represented by the hexadecimal value FF). A zero valued byte indicates false.
When used as an arithmetic value, a logical datum is treated as an
integer in the range -128 to +127.

REAL 4 bytes are required for storage.

The first byte is the characteristic expressed in excess 200 (octal) notation:
i.e.. a value of 200 (octal) corresponds to a binary exponent of 0. Values less
than 200 (octal) correspond to negative exponents and values greater than
200 correspond to positive exponents. By definition, if the characteristic is
zero, the entire number is zero. The next three bytes constitute the mantissa.
The mantissa is always normalized such that the high order bit is one,
eliminating the need to actually save that bit. The high order bit is used
instead to indicate the sign of the number. A one indicates a negative number,
and zero indicates a positive number. The mantissa is assumed to be a binary
fraction whose binary point is to the left of the mantissa.

EXTENDED 4 bytes are required for storage.
INTEGER

Negative numbers are the two's complement of positive representations.

DOUBLE 8 bytes are required for storage.
PRECISION

The internal form of double-precision data is identical with that of real data
except double-precision uses 4 extra bytes for the mantissa.

TABLE 3-1

Storage Allocation by Data Types

4-1
FORTRAN Expressions

Chapter Four

FORTRAN Expressions

OVERVIEW

A FORTRAN expression is composed of a single operand or a string of operands connected by
operators.

Two expression types - Arithmetic and Logical - are provided by FORTRAN. The operands,
operators, and rules of use for both types are described in the following chapter.

4-2
Chapter Four

ARITHMETIC EXPRESSIONS

Arithmetic expressions are composed of arithmetic operands and arithmetic operators. The
evaluation of an arithmetic expression yields a single numeric value.

An arithmetic operand may be:

• A constant

• A variable name

• An array element

• A FUNCTION reference

The arithmetic operators and their functions are:

Operator Function

** Exponentiation
* Multiplication
/ Division
+ Addition and Unary Plus
- Subtraction and Unary Minus

The following rules define all permissible arithmetic expression forms:

1. A constant, variable name, array element reference or FUNCTION reference standing alone

is an expression.

Examples:

S(I) JOBNO 217 17.26 SQRT(A+B)

2. If E is an expression whose first character is not an operator, then +E and -E are called signed

expressions.

Examples:

-S +JOBNO -217 +17.26 -SQRT(A+B)

4-3
FORTRAN Expressions

3. If E is an expression, then (E) means the quantity resulting when E is evaluated.

Examples:

(-A) (JOBNO) -(X+1) (A-SQRT(A+B))

4. If E is an unsigned expression and F is any expression, then: F+E, F-E, F*E, F/E and F**E

are all expressions.

Examples:

-(B(I,J)+SQRT(A+B(K,L)))

1.7E-2**(X+5.0)

-(B(I+3,3*J+5)+A)

5. An evaluated expression may be integer, real. double-precision, or logical. The type is
determined by the data types of the elements of the expression.

If the elements of the expression are not all of the same type, the type of the expression is
determined by the element having the highest type. The type hierarchy (highest to lowest) is
as follows:

double-precision
real
integer*4
integer
logical

6. Expressions may contain nested parenthesized elements as in the following:

A*(Z-((Y+X)/T))**J

where Y+X is the innermost element, (Y+X)/T is the next innermost, Z-((Y+XJ/T) the
next. In such expressions, care should be taken that the number of left parentheses and the
number of right parentheses are equal.

4-4
Chapter Four

Arithmetic Expression Evaluation

Arithmetic expressions are evaluated according to the following rules:

1. Parenthesized expression elements are evaluated first. If parenthesized elements are
nested, the innermost elements are evaluated, then the next innermost until the entire
expression has been evaluated.

2. Within parentheses and/or wherever parentheses do not govern the order or evaluation,

the hierarchy of operations in order of precedence is as follows:

a. FUNCTION evaluation
b. Exponentiation
c. Multiplication and Division d. Addition and Subtraction

The expression: A*(Z-((Y+R)/T))**J+VAL

is evaluated in the following sequence:

Y+R = e1

(e1)/T = e2

Z-e2 = e3

e3**J = e4

A*e4 = e5

e5+VAL = e6

3. The expression X**Y**Z is not allowed. It should be written as follows:

(X**Y)**Z or X**(Y**Z)

4. Use of an array element reference requires the evaluation of its subscript. Subscript

expressions are evaluated under the same rules as other expressions.

4-5
FORTRAN Expressions

LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

1. A single logical constant (i.e., .TRUE. or .FALSE.), a logical variable, logical array
element, or logical FUNCTION reference. (see Chapter 10 "Functions and
Subprograms".)

2. Two arithmetic expressions separated by a relational operator (i.e., a relational

expression).

3. Logical operators acting upon logical constants, logical variables, logical array elements,
logical FUNCTIONS, relational expressions or other logical expressions. The value of a
logical expression is always either.TRUE. or.FALSE..

Relational Expressions

The general form of a relational expression is as follows:

e1 r e2

where e1 and e2 are arithmetic expressions and r is a relational operator. The six relational operators
are as follows:

.LT. Less Than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal' to
.GT. Greater than
.GE. Greater than or equal to

The value of the relational expression is .TRUE. if the condition defined by the operator is met.
Otherwise, the value is .FALSE..

Examples:

A .EQ. B
(A**J) .GT. (ZAP*(RHO*TAU-ALPH))

4-6
Chapter Four

Logical Operators

Table 4-1 lists the logical operations. U and V denote logical expressions.

.NOT.U The value of this expression is the logical complement of U (i.e., 1
bits become 0 and 0 bits become 1).

U.AND.V The value of this expression is the logical product of U and V (i.e.,
there is a 1 bit in the result only where the corresponding bits in both
U and V are 1).

U.OR.V The value of this expression is the logical sum of U and V (i.e., there
is a 1 in the result if the corresponding bit in U or -V is 1 or if the
corresponding bits in both U and V are 1).

U.XOR.V The value of this expression is the exclusive OR of U and V (i.e.,
there is a one in the result if the corresponding bits in U and V are
1 and 0 or 0 and 1 respectively).

Examples:

If U = 01101100 and V = 11001001, then:

NOT.U = 10010011

U.AND.V = 01001000

U.OR.V = 11101101

U.XOR.V = 10100101

Table 4-1.

Logical Operators

The following are additional considerations for construction of logical expressions:

1. Any logical expression may be enclosed in parentheses. However, a logical
expression to which the NOT. operator is applied must be enclosed in parentheses
if it contains two or more elements.

4-7
FORTRAN Expressions

2. In the hierarchy of operations, parentheses may be used to specify the ordering of
the expression evaluation. Within parentheses, and where parentheses do not dictate
evaluation order, the order is understood to be as follows:

a. FUNCTION Reference
b. Exponentition (**)
c. Multiplication and Division (* and /) d. Addition and Subtraction (+ and -)
e. .LT., .LE., .EQ., .NE., .GT., GE. f. NOT.
g. AND.
h. .OR., .XOR.

Examples:

The expression:

X .AND. Y .OR. B(3,2) .GT.' Z

is evaluated as:

e1 = B(3,2) .GT. Z
e2 = X .AND. Y
e3 = e2 .OR. e1

The expression:

X .AND. (Y OR. B(3,2) .GT. Z)

is evaluated as;

e1 = B(3,2) .GT. Z
e2 = Y .OR. e l
e3 = X .AND. e2

3. It is invalid to have two contiguous logical operators except when the second

operator is .NOT.

Examples:

A .AND. .NOT. B is permitted
A .AND. .OR. B is not permitted

4-8
Chapter Four

HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS
IN EXPRESSIONS

Hollerith, literal, and hexadecimal constants are allowed in expressions in place of
integer constants. These special constants always evaluate to an integer value and are
therefore limited to a length of two bytes. The only exceptions to this are:

1. Long Hollerith or literal constants may be used as subprogram

parameters.

2. Hollerith, literal, or hexadecimal constants may be up to four bytes long
in DATA statements when associated with real variables or integer*4
variables, or up to eight bytes long when associated with double-precision
variables.

The Hollerith and literal constants are constructed by enclosing the entire string of
characters in a set of single quotation marks. Two quotation marks in succession may
be used to represent the quotation mark character within the string.

Example:

'THIS IS A LITERAL'

A hexadecimal constant is specified by the letter Z or X followed by up to four
hexadecimal digits (0-9) and (A-F) enclosed in a set of single quotation marks.

X’FFFF’

Z’AB’

5-1
Assignment Statements

Chapter Five

ASSIGNMENT Statements

OVERVIEW

Assignment statements are used to associate the value of an expression with a symbolic name.
The symbolic name is usually referred to as a variable. The three types of assignment statements
are:

1. Arithmetic assignment statement

2. Logical assignment statement

3. ASSIGN statement

The arithmetic assignment statement assigns the value of an arithmetic expression to an
arithmetic variable or array element.

The logical assignment statement assigns the value of a logical expression to a logical variable or
array element.

The ASSIGN statement assigns a statement label to an integer variable.

5-2
Chapter Five

ARITHMETIC ASSIGNMENT STATEMENT

The general form of the arithmetic assignment statement is:

v = e

where v is any variable or array element and e is an expression.

FORTRAN semantics defines the equality sign (=) as meaning "to be replaced by" rather than
the normal "is equivalent to".

An arithmetic assignment statement, when executed, will evaluate the expression on the right of the
equality sign and place that result in the storage space allocated to the variable or array element on
the left of the equality sign.

The following conditions apply to arithmetic assignment statements:

1. Both v and the equality sign must appear on the same line. This holds even when the
statement is part of a logical IF statement. (A detailed discussion of the logical IF
statement is presented in Chapter 6 "FORTRAN Control Statements".)

2. The line containing v = must be the initial: line of the statement unless the statement is

part of a logical IF statement. In that case the v = must occur no later than the end of the
first line after the end of the IF.

3. If the data types of the variable, v, and the expression, e, are different, then the value

determined by the expression will be converted, if possible, to conform to the
data type of the variable.

When the data type of the variable (v) and the expression (e) are different, the value of the
expression must conform to the range of the variable. For example, if the value of an expression is
32,800, an attempt to assign this value to an integer variable will produce unpredictable results.

5-3
Assignment Statements

Table 5-1 shows which type expressions may be equated to which type of variable. Y
indicates a valid replacement. Footnotes to Y indicate conversion considerations.

EXPRESSION TYPES (e)
Variable
Types (V) Integer Real Logical Double Ext Int

Integer Y Ya Yb Ya Yg
Real Yc Y Yc Ye Yc
Logical Yd Ya Y Ya Yd
Double Yc Y Yc Y Yc
Ext Int Yf Ye Yc Ye Y

Yb,f

Footnotes:

a. The real expression value is converted to integer.

b. The sign is extended through the second byte.

c. The variable is assigned the real representation of the integer value of the
expression.

d. The variable is assigned the truncated value of the integer expression (the low-

order byte is used, regardless of sign).

e. The variable is assigned the rounded value of the real expression.

f. The sign is extended through the third and fourth bytes.

g. The variable is assigned the truncated value of the Extended Integer expression.

Table 5-1.

Assignment by Type

5-4
Chapter Five

LOGICAL ASSIGNMENT STATEMENT

The general form of the logical assignment statement is: v = e

where v is a logical variable or a logical array element and e is a logical expression.
The expression e is evaluated at the time of the execution of the assignment statement.

The results of this evaluation will be either zero (false) or non-zero (true). The results of
evaluating e will be placed in the storage location allocated to the logical variable v.

The variable or array element v must be explicitly defined as a logical variable type.

Examples:

FLAG=.TRUE.
TEST=.FALSE.
COMP=(L.LT.10)

5-5
Assignment Statements

ASSIGN STATEMENT

The ASSIGN statement is used to assign a statement label to an integer variable. The integer
variable can then be used as the transfer destination in a subsequent Assigned GO TO statement.
(For a detailed discussion of the Assigned GO TO, refer to Chapter 6 "FORTRAN Control
Statements".)

The general form of the statement is:

ASSIGN j to i

where j is a statement label of an executable statement and i is an integer variable.

The integer variable to which a statement number has been assigned may not be used as an
arithmetic variable. Although the integer variable may be redefined as an arithmetic integer value
and used accordingly.

Example:

The statement:

ASSIGN 400 TO LABEL

will associate the variable LABEL with the statement label 400. Arithmetic operations
with the variable LABEL are now invalid.

The statement.

LABEL=100

will disassociate the variable LABEL from statement label 400. The variable LABEL can now be
used as an arithmetic operand, but not as a statement label.

5-6
Chapter Five

6-1
FORTRAN Control Statements

Chapter Six

FORTRAN Control Statements

OVERVIEW

FORTRAN control statements are executable statements which affect and guide the logical
flow of a FORTRAN program. The statements in this category are as follows:

1. GO TO statements:

1. Unconditional GO TO

2. Computed GO TO

3. Assigned GO TO

2. IF statements:

1. Arithmetic IF

2. Logical IF

3. DO

4. CONTINUE

5. STOP

6. PAUSE

7. CALL

8. RETURN

9. END

6-2
Chapter Six

GO TO STATEMENTS

Unconditional GO TO Statement

The unconditional GO TO statement transfers control to some other statement within the
program unit.

The statement is of the following form:

GO TO k

where k is the statement label of an executable statement in the same program unit.

This statement will unconditionally transfer control to the statement identified by the specified
label. It will transfer control to the same statement every time it is executed.

Example:

GO TO 376

 .

 .

 .
376 A=100

This statement will transfer control to the statement labeled 376.

6-3
FORTRAN Control Statements

Computed GO TO Statement

The computed GO TO statement transfers control to a statement based on the value of an integer
variable given within the statement.

The statement is of the following form:

GO TO (k1,k2,...,kn),j

where the ki are statement labels, and j is an integer variable, 1 <= j <= n. This statement causes
transfer of control to the statement labeled kj. If j < 1 or j > n, control will be passed to the next
statement following the Computed GO TO.

Example:

GO TO(7, 70, 700, 7000, 70000), J

When j = 3, the computed GO TO transfers control to statement 700. Making j 0 or j = 6 would cause
control to be transferred to the next statement after the GO TO statement.

Assigned GO TO Statement

This statement will transfer control to the statement label represented by an integer variable.

Assigned GO TO statements are of the following forms:

GO TO j,(k1,k2,...,kn)

GO TO j

where j is an integer variable name, and the ki (if present) are statement labels of executable statements.

This statement causes transfer of control to the statement whose label is equal to the current value of
the integer variable j.

The value of j must be established via an ASSIGN statement. (For detailed information on the
ASSIGN statement, refer to Chapter 5 "Assignment Statements".)

(cont'd.)

6-4
Chapter Six

QUALIFICATIONS

1. The ASSIGN statement must logically precede an assigned GO TO.

2. The ASSIGN statement must assign a value to j which is a statement label included in

the list of k's, if the list is specified.

Examples:

ASSIGN 80 TO LABEL
 .
 .
 .
GO TO LABEL,(80,90,100)

Only the statement labels 80, 90 or 100 may be assigned to, LABEL. Upon execution of the GO
TO statement, control would be transferred to the label assigned the variable LABEL. In the
above program segment, control would be transferred to the statement with the label 80.

GO TO TRANS

The value assigned to TRANS must be the label of an executable statement within the program unit.
Upon execution of the GO TO statement, control would be transferred to the label assigned to the
integer variable TRANS.

6-5
FORTRAN Control Statements

IF STATEMENTS

Logical IF Statement

A logical IF statement will cause a conditional statement execution. The logical IF
statement is of the form:

IF (u)s

where u is a logical expression and s is any executable statement except a DO statement or another
logical IF statement. The logical expression u is evaluated as TRUE. or .FALSE. Chapter 4
"FORTRAN Expressions", contains a discussion of logical expressions.

CONTROL CONDITIONS

If u is FALSE, the statements is ignored and control goes to the next statement following the
logical IF statement.

If, however, the expression is TRUE, then control goes to the statements, and subsequent
program control follows normal conditions.

If s is a replacement statement (v = e), the variable and equality sign (=) must be on the same line.
This line can be either immediately following IF (u) or on a separate continuation line.

Examples:

IF(T.GT.20) GO TO 115

IF(Q.AND.R) ASSIGN 10 TO J

IF(Z) CALL DECL(A,B,C)

IF(A.OR.B .LE. PI/2) I=J

6-6
Chapter Six

Arithmetic IF Statement

The arithmetic IF statement transfers control to one of a series of statements depending
upon the value of an arithmetic expression.

The arithmetic IF statement is of the form:

IF(e) m1,m2,m3

where e is an arithmetic expression and m1, m2 and m3 are statement labels. Evaluation of
expression e determines one of three transfer possibilities:

If e is: Transfer to:

< 0 m1
= 0 m2
> 0 m3

Examples:

Statement Expression Value Transfer to

IF (A)3,4,5 15 5

IF (N-1)50,73,9 0 73

IF (B-100)6,7,8 -50 6

6-7
FORTRAN Control Statements

DO STATEMENT

The DO statement provides a method for repetitively executing a series of statements.

The statement takes one of the two following forms:

DO k i = m1,m2,m3

or

DO k i = m1,m2

k must be a statement label. i must be an integer or logical variable. m1, m2, m3 must be integer
constants or integer or logical variables. i, m1, m2, and m3 must be positive.

The variables are defined as follows:

k is the terminal statement

i is the control variable

m1 is the initial variable

m2 is the terminal variable

m3 is the incremental variable

If m3 is 1, it may be omitted

The statement labeled k , called the terminal statement, must be an executable statement. The
terminal statement must physically follow its associated DO. The executable statements following
the DO, up to and including the terminal statement, constitute the range of the DO statement. The
terminal statement may not be an arithmetic IF, GO TO, RETURN, STOP, PAUSE or another DO.

If the terminal statement is a logical IF and its expression is .FALSE., then the statements in the
DO range are reiterated. If the expression is .TRUE., the statement of the logical IF is executed
and then the statements in the DO range are reiterated. The statement of the logical IF may not be a
GO TO, arithmetic IF, RETURN, STOP or PAUSE. (The logical IF statement is discussed earlier
in this chapter.)

The controlling integer variable, i, is called the index of the DO range. The index must be positive
and may not be modified by any statement in the range. If m1, m2, and m3 are INTEGER*1
variables or constants, the DO loop will execute faster and be shorter, but the range is limited to 127
iterations.

6-8
Chapter Six

During the first execution of the statements in the DO range, i is equal tom 1; the second execution, i =
m 1 +m3; the third, i =m 1 +2 *m3, etc., until i is equal to the highest value in this sequence less than or
equal to m2, and then the DO is said to be satisfied. The statements in the DO range will always be
executed at least once, even if m1 > m2.

When the DO has been satisfied, control passes to the statement following the terminal statement,
otherwise control transfers back to the first executable statement following the DO statement.

The range of a DO statement may be extended to include all statements which may logically be
executed between the DO and its terminal statement. Thus, parts of the DO range may be situated
such that they are not physically between the DO statement and its terminal statement but are executed
logically in the DO range. This is called the extended range.

Extended Range Example:

DO 600 I=1,20
 .
 .
 .
GO TO 100
 .
 .
 .

200 J=i*2
 .
 .
 .

600 CONTINUE
 .
 .
 .

100 J=J+1 •t
 .
 .
 .

Extended Range .
GO TO 200

In the above program segment, the range of the DO loop is extended to include the statement
labeled 100, as well as the statement which returns control to the DO loop. It is important to note
that the control variable should not be changed either in the DO loop or in the extended range.
Also note that the transfer back to the DO loop must be made to a statement before the terminal
statement.

6-9
FORTRAN Control Statements

Within the range of a DO statement, there may be other DO statements, in which case the DO's are
said to be nested. That is, if the range of one DO contains another DO, then the range of the inner DO
must be entirely included in the range of the outer DO. The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

Nested DO loop Examples:

DO 500 I=1,40
 .
 .
 .
DO 300 J=1,10
 .
 .
 .

300 CONTINUE
 .
 .
 .

500 CONTINUE

In the above program segment, note that the range of the inner loop is entirely contained in the
range of the outer loop.

6-10
Chapter Six

CONTINUE STATEMENT

The CONTINUE statement transfers control to the next executable statement

The form of the CONTINUE statement is as follows:

CONTINUE

CONTINUE is frequently used as the terminal statement in a DO statement range when the statement
which would normally be the terminal statement is one of those which are not allowed.

STOP STATEMENT

The STOP statement is used to terminate program execution.

A STOP statement has one of the following forms:

STOP
or

STOP c

where c is any string of one to six characters. When STOP is encountered during execution of the
object program, the characters c (if present) are displayed on the operator control console and
execution of the program terminates. The STOP statement, therefore, constitutes the logical
end of the program.

6-11
FORTRAN Control Statements

PAUSE STATEMENT
The PAUSE statement temporarily suspends program execution. A PAUSE statement has one
of the following forms:

PAUSE
or

PAUSE c

where c is any string of up to six characters. When PAUSE is encountered during execution of the
object program, the characters c (if present) are displayed on the operator control console and
execution of the program ceases. Execution may be terminated by typing a "T" and a carriage
return at the operator console. Typing any other character and a carriage return will cause
execution to resume.

CALL STATEMENT
CALL statements control transfers into SUBROUTINE subprograms and provide parameters for
use by the subprograms.

A call statement has one of the following forms:_

CALL s(a l ,a2,...an)
or

CALL s

Where s is the SUBROUTINE name and the ai are the actual arguments to be used by the
subprogram. A detailed discussion of CALL statements appears in Chapter 10, "Functions and
Subprograms".

6-12
Chapter Six

RETURN STATEMENT
The logical termination of a subprogram is a RETURN statement.

The general form of the RETURN statement is:

RETURN

A more detailed discussion of the form, use and-interpretation of the RETURN statement is in

Chapter 10, "Functions and Subprograms".

END STATEMENT

The END statement must physically be the last statement of any FORTRAN program.

It has the following form:

END

The END statement is an executable statement and may have a statement label. When it is
encountered at the end of a main program unit, it causes a transfer of control to be made to the system
exit routine, $EX, which returns control to the operating system.

7-1
Input/Output Statements

Chapter Seven

INPUT/OUTPUT STATEMENTS

OVERVIEW

FORTRAN I/O is performed with the READ and WRITE statements. The READ statement is used
for input, and the WRITE statement is used for output. Unformatted I/O will transmit binary
information. Formatted I/O is used in conjunction with format specifications to control data
editing and conversions.

The READ and WRITE statements reference the CP/M I/O devices via a logical unit number.
Some logical unit numbers are pre-assigned to specific devices.

READ and WRITE statements are grouped as follows:

1. Unformatted Sequential I/p

Specifies binary data transmission using a sequential I/O device.

2. Formatted Sequential I/O

Specifies character data. transmission using a sequential I/O device. A FORMAT
statement must be referenced in order to control the editing and translation of data.

3. Unformatted Random I/O

Specifies binary data transmission using a random access I/O device.

4. Formatted Random I/O

Specifies character data transmission using a random access I/O device. A FORMAT
statement must be referenced in order to control the editing and translation of data.

7-2
Chapter Seven

LOGICAL UNIT NUMBERS (LUN)

FORTRAN communicates with the CP/M I/O devices via a Logical Unit Number ;LUN). The
Logical Unit Number must be an unsigned integer number or integer variable in the range 1-10. If an
integer variable is used, an integer value must have been assigned to the variable prior to execution
of the I/O statement.

The Logical Unit Numbers 1-10 have been pre-assigned to specific CP/M I/O devices.
Logical Unit Numbers 1, 3, 4, and 5 refer to the console terminal. Unit 2 is assigned to a hardcopy
device. Units 6-10 are assigned to disk files. The Following table summarizes these assignments
with d: indicating the current default disk.

LUN CP/M Device Name

1 TTY:
2 LST:
3,4,5 TTY:
6 d:FORT06.DAT
7 d:FORT07.DAT
8 d:FORT08.DAT
9 d:FORT09.DAT

10 d:FORT10.DAT

Changing the Logical Unit default assignment is done with the OPEN subroutine. The
following FORTRAN statement illustrates this point:

CALL OPEN (3, 'DATA DAT',0)

This would associate LUN 3 with the file DATA.DAT. on the currently selected drive.
Subsequent I/O to this file would be accomplished by referencing unit 3 in the READ or WRITE
statement.

Note that in the example the file name must be padded with blanks to fill exactly eleven spaces and the
extension for the filename must occupy the last three spaces.

FORMAT Specifiers

All Formatted I/O statements reference FORMAT statements to define the conversion and editing
performed during the transmission of data. The reference can either be a statement label of a
FORMAT statement or an array name containing the format specifiers. FORMAT statements are
discussed in Chapter 8.

7-3
Input/Output Statements

INPUT/OUTPUT LISTS

Most forms of READ/WRITE statements may contain an ordered list of data names
which identify the data to be transmitted. The order in which the list items appear is the
same as that in which they will be transmitted.

Lists have the following form:

m1,m2,...,mn

where the mi are list items separated by commas, as shown.

Lengths of I/O Lists

The length of an I/O list refers to the number of bytes needed to store the elements of the list. With
several forms of I/O it is very important to know the length of the I/O list. The actual number
of bytes required by an I/O list is a function of the number and data type of each
individual I/O element. The following table illustrates this relationship.

Data Type Bytes Required per Element

LOGICAL 1
INTEGER 2
EXTENDED INTEGER 4
REAL 4
DOUBLE PRECISION 8

7-4
Chapter Seven

Simple Lists

A simple I/O list consists of the name of a variable, an array element or array name. One or more
of these items may be enclosed in parentheses without changing their intended meaning.

Example:

A C(1,2)

An array name appearing in a list without subscript(s) is considered equivalent to the listing of each
successive element of the array.

Example:

If B is a two dimensional array, the list item B-is equivalent to:

B(1,1),B(2,1),B(3,1). . . ,B(1,2),B(2,2)...,B{j,k)

where j and k are the subscript limits of B.

Implied DO Lists

Implied DO lists provide for iteration within an I/O list. Implied DO lists are of the form:

(I/O list, i = m1,m2,m3)

or
(I/O list, i = m1,m2)

The elements i,m1,m2,m3 have the same meaning as defined for the DO statement. The implied
DO list functions as though the I/O statement was within the range of a DO loop. (For more
information on the DO statement, refer to Chapter 6.) The DO implication applies to all list items
enclosed in parentheses with the implication.

7-5
Input/Output Statements

Examples:

Implied Do Lists Equivalent Lists

(X(I),I=1 ,4) X(1),X(2),X(3),X(4)

(Q(J),R(J),J=1,2) Q(1),R(1),Q(2),R(2)

(G(K),K=1,7,3) G(1),G(4),G(7)

((A(I,J),I=3,5),J=1,9,4) A(3,1),A(4,1),A(5,1

A(3,5),A(4,5),A(5,5)
A(3,9),A(4,9),A(5,9)

(R(M),M=1,2),I,ZAP(3) R(1),R(2),I,ZAP(3)

(R(3),T(I),I=1,3) R(3), T(1)

R(3), T(2)
R(3), T(3)

For example, the elements of an array may be transmitted in an order different from the order in
which they appear in storage. The array A(3,3) occupies storage in the order:

A(1,1),A(2,1),A(3,1),
A(1,2),A(2,2),A(3,2)
A(1,3),A(2,3),A(3,3).

By specifying the transmission of the array with this DO-implied list item:

((A(I,J),J=1,3),1=1,3

the order of transmission is:

A(1,1),A(1,2),A(1,3),
A(2,1),A(2,2),A(2,3),
A(3,1),A(3,2),A(3,3).

7-6
Chapter Seven

SEQUENTIAL I/O

Unformatted Sequential I/O
Unformatted sequential I/O is used to transfer binary data without any data editing or formatting.
The amount of data transferred is a function of the number and data type of the elements in the
I/O list.

An I/O list must be included in the I/O statement. Failure to provide an I/O list will result in a
compiler error.

The two forms of the unformatted sequential I/O statement are:

READ(u,ERR=LI,END=L2) k

WRITE(u,ERR=LI,END=L2) k

where:

u specifies a Logical Unit Number.

L1 specifies an I/O error branch. (optional)

L2 specifies an EOF branch. (optional)

k is an I/O list.

7-7
Input/Output Statements

The length of an unformatted sequential record may be greater than 128 bytes if so desired. If
the record is greater than 128 bytes, some special considerations must be noted.

NOTE: Special Considerations

The unformatted sequential I/O processor assumes 128-byte record. Any I/O to an
unformatted sequential file will position the record pointer at the end of a 128-byte physical
record. This can cause unexpected results if a different number of bytes are read
than were originally written.

For example, assume that several 180-byte records were written to air: -- unformatted
sequential file. Now assume that only 100 bytes are read from the first 180-byte record in the
file. The 100-byte record will be input and assigned to the elements in the I/O list. The
record pointer will then be positioned at the beginning of the next 128-byte physical record.
Note that this will result in the excess data being read in subsequent READ statements.
The excess data will NOT be skipped over.

The best way to avoid this is simply to keep the length of the input and output records the
same. If this simple precaution is adhered to, then more than 128 bytes can be transmitted
using unformatted sequential I/0.

7-8
Chapter Seven

READ (unformatted sequential input)

The unformatted sequential READ will read one logical record. The logical record may extend
across more than one physical record. Some special considerations must be noted if the logical record
size is greater than 128 bytes. See the preceding note on "Special Considerations").

The amount of data transmitted corresponds to the number and data type of the elements in the I/O list
k.

[f there are as many elements in the I/O list as fields in the input record, the entire record is read. If there
are fewer elements in the I/O list than fields in the input record, then the unread items in the record
are skipped.

[f there are more elements in the I/O list than fields in the input record, then as many records as are
necessary to fill the I/O list will be read.

Example:

READ(6) A,B,C

Reads one record from the external storage device associated with logical unit number 6. Assign
the input data to the variables A,B and C.

WRITE (unformatted sequential output)

The output statement (WRITE) will output the data specified in the I/O list k to the file referenced by
the logical unit number u. One logical record will be output every time the WRITE is executed. (If
this logical record is more than 256 bytes, then some special considerations must be noted. See
the preceding note on "Special Considerations").

Example:

WRITE(6) I,J,K,L

The data assigned to the integer variables I,J,K and L are output to the file associated with logical
unit number 6. This statement will output 128 bytes, but only the first 8 will contain data. (4 integer
variables x 2 bytes/integer element). The remaining 120 bytes will contain the ASCII NUL
character (0).

7-9
Input/Output Statements

Formatted Sequential I/0

Formatted sequential I/O is used to transfer character data. The transferring of data is done in a
sequential manner. A FORMAT statement must be referenced in order to control the editing and
formating of the data. (See FORMAT statements, Chapter 8.)

Two forms of the statement are available:

READ (u,f,ERR=L1,END=L2) k

WRITE (u,f,ERR=L1,END=L2) k

where:

u Specifies a Logical Unit Number

f Specifies the label of a FORMAT statement

L1 Specifies an I/O error branch. (optional) L2 Specifies an EOF branch.
(optional)

k Is an I/O list. (optional)

The size of each I/O record must not be longer than 127 bytes. An attempt to write more than 127 bytes
per record will result in the record being truncated to exactly 127 bytes. If the record is long
enough to overflow the internal I/O buffer, a runtime error will result.

An attempt to read more than 127 bytes per record will result in the internal I/O buffer overflowing,
thus causing a runtime I/O error.

The FORTRAN programmer is responsible for verifying that the length of the record is less
than or equal to 127 bytes. The length of the record is a function of the number and data type of the
elements in the l/O list. (The subject of I/O lists is covered on pages 7-4 and 7-5).

Use of the END= and the ERR= statements is optional. The ERR= branch will be taken only when a
hardware related I/O error occurs. The END= branch will be taken only when an end of file
condition occurs. If these options are omitted, hardware related errors and end of file conditions
will cause fatal runtime errors. Thus, execution of the program will be terminated.

7-10
Chapter Seven

READ (formatted sequential input)

The input statement (READ) when used with a variable list, will input a number of items,
corresponding to the elements in the list k. The data will be edited and converted according to the
specifications of the format statement labeled f.

Each time execution of the READ statement begins, a new record from the input file is read. The
number of records to be input by a single READ statement is determined by the list, k, and
format specifications. The length of each record must not exceed 127 bytes.

If there are as many elements in the I/O list as fields in the input record, then the entire record is read. If
there are fewer elements in the I/O list then fields in the input record, the unread fields are skipped.

If there are more elements in the I/O list than fields in the input record, then as many records as are
necessary to fill the I/O list will be read.

Example:

READ(6,100) A,B,C,D
 .
 .
 .
100 FORMAT(4F6.2)

The above program segment will input data from the external storage device associated with
logical unit number 6. The input data will be assigned to the variables A,B,C and D. The input
data will be formatted according to the FORMAT statement referenced by the label 100.

The input statement (READ) when used without a variable list, will read literal data into an
existing literal field. The FORMAT statement referenced in the READ statement will contain the
new literal field.

Example:

READ(6,100)
 .
 .
 .

100 FORMAT(1OH1234567890)

This will result in the next 10 characters of the file associated with logical unit number 6 being read.
The input data will replace the characters "1234567890" in the FORMAT statement.

7-11
Input/Output Statements

WRITE (formatted sequential output)

The output statement (WRITE), when used with a variable list, will output the data specified in
the list k to the file referenced by logical unit u. The FORMAT statement f will specify the
external representation of the data.

As many records as are desired may be output with a single WRITE statement. The number of
records output will be determined by the list and FORMAT specifications. Successive data are
output until the data specified in the list are exhausted. The programmer is responsible for
verifying that the length of the record does not exceed 127 bytes.

The first character of the FORMAT statement is assumed to be the carriage control character.
When writing to a disk file, it is good programming practice to use a plus (+) for the carriage
control character. If this is not used, then a carriage control character will be stored as the first
field of each record. (See Chapter 8, FORMAT statements)

Example:

WRITE(3,10)A,B,C,D
 .
 .
 .

10 FORMAT('+',4A4)

The data assigned to the variables A, B, C and D are output to Logical Unit Number 3, formatted
according to the FORMAT statement labeled 10. Note the use of the plus (+) carriage control
character.

The output statement (WRITE), when used without a variable list, may be used to write
alphanumeric information when the characters to be written are specified within the FORMAT
statement. For example, to write the characters `A CONVERSION' on unit 1, the following
program segment could be used:

WRITE(1,26)
26 FORMAT ('1',12HA CONVERSION)

7-12
Chapter Seven

RANDOM I/O

Unformatted Random I/O

For an unformatted random disk access, the record number desired is specified by using the REC=n
option in the READ or WRITE statement. This type of I/O allows direct access to the nth record
of a disk file.

Record number n may be an integer variable or integer constant. If an integer variable is used, an
integer value must have been assigned to the variable prior to the execution of the I/O statement.

The transmission of data is done without any editing or formatting. Exactly one physical record
(128 bytes) is transmitted.

The two types of unformatted random I/O are:

READ (u,REC=n,ERR=L1,END=L2) k (input)

WRITE(u,REC=n,ERR=L1,ENIJ=L2) k (output)

where:

u specifies a Logical Unit Number.

n specifies the record no. to access.

L1 specifies an I/O error branch. (optional)

L2 specifies an EOF branch. (optional)

k is an I/O list.

If the integer value specifying the record number is negative or zero, a runtime I/O error will result.

The Logical Unit Number u must reference a disk file. An attempt to randomly access a device that
is not capable of random access will result in a runtime I/O error.

Use of the ERR= and END= statements is optional. The ERR= branch will be taken only when a
hardware related I/O error occurs. The END= branch will be taken only when an end of file
condition occurs.

7-13
Input/Output Statements

If these options are omitted, hardware related errors and end of file conditions will cause fatal
runtime errors. Thus, execution of the program will be terminated.

READ (unformatted random input)

The input statement (READ) will input the record corresponding to the integer value n and
assign the data to the elements of the I/O list k.

If the I/O list contains as many elements as fields in the input record, then the entire record is
read. If the I/O list contains fewer elements than fields in the input record, then the unread
items are skipped.

If the I/O list contains more elements than fields in the input record, then the same record is
read as many times as necessary to fill the I/O list.

Example:

READ(6,REC=3) I,J,K

Read record number 3 from the file associated with Logical Unit Number 6. Assign the input
data to the integer variables I,J and K. (Note that 6 bytes will be read- 3 integer variables x 2
bytes per integer variable.)

7-14
Chapter Seven

WRITE (unformatted random output)

The output statement (WRITE) will output the values referenced by the I/O list k to the record
corresponding to the integer variable n. If a previous record number n exists, it will be written
over. If no record number n exists, the file will be extended to create one.

The amount of data output will correspond to the type and number of elements in the I/O list k. If the
amount of data output is less than 128 bytes, the record will be padded with ASCII NUL characters
(0) so that it is exactly 128 bytes.

If more than 128 bytes are output, the original 128 byte record will be written over until all the
elements in the I/O list are output. This will result in some or all of the data being destroyed.

It is the responsibility of the programmer to insure that no more than 128 bytes are output. The
amount of data output is a function of the number and type of elements in the I/O list.

Example:

WRITE(6 REC=4) J,K,A

Write record number 4 to the file associated with Logical Unit Number 6. Note that 128 bytes
will be written, but only the first 8 will contain data.(2 integer variables x 2 bytes/integer variable
+ (1 real variable x 4 bytes/real variable). The remaining 120 bytes will contain ASCII
NUL characters (0).)

7-15
Input/Output Statements

Formatted Random I/O

Formatted random I/O is used to directly access character data using a random access drive. The
REC=n option is used in the READ or WRITE statement to allow access to the nth record of the
file. Exactly one physical record (127 bytes for a formatted file) is transmitted.

A format statement is referenced to control the editing and formatting of the data during
transmission.

It is recommended that the carriage control be suppressed by using the + character for
carriage control. If the + character is used, then no carriage control character will be stored with
the record. For a complete discussion of carriage control characters, refer to Chapter 8.

The two forms of formatted random I/O are:

READ(u,f,REC=n,ERR=LI,END=L2)k (input)

WRITE(u,f,REC=n,ERR=LI,END=L2)k (output)

where:

u specifies a Logical Unit Number.'

f specifies the label of a FORMAT statement.

n specifies the record number to access.

L1 specifies an I/O error branch (optional).

L2 specifies an EOF branch (optional)

k is an I/O list

If the integer value specifying the record number is negative or zero, a runtime I/O error will
result.

The Logical Unit Number must reference a disk file. An attempt to randomly access a device that
is not capable of random access will result in a runtime I/O error.

Use of the ERR= and END= statements is optional. The ERR= branch will only be taken when a
hardware related I/O error occurs. The END= branch will only be taken when an end of file
condition occurs.

7-16
Chapter Seven

If these options are omitted, hardware related errors and end-of-file conditions will cause fatal
runtime errors. Thus, execution of the program will be terminated.

READ (formatted random input)

The input statement (READ) will input the record corresponding to the integer value n and assign
the data to the elements in the I/O list k. The data will be edited according to the specifications
of the FORMAT statement referenced by the label f.

If there are as many elements in the I/O list as fields in the input record, then the entire record will be
read. If there are fewer elements in the I/O lisfthan fields' in the record, the unread items will be
skipped.

If there are more elements in the I/O list than fields in the input record, the input record will be read as
many times as necessary to fill the I/O list.

It is important to note that no more than 127 bytes can be input with a formatted random read
statement. Although each CP/M sector contains 128 bytes, only 127 are available with formatted
random I/O The byte following the data is assigned by the FORTRAN I/O processor to be a line
feed. (ASCII 0A)

Upon execution of a formatted random read, the FORTRAN I/O processor must find this line feed
character. If the processor can not find this character, a runtime I/O error will result.

Because of this, the only files that can be read with a formatted random read are those which are
created using a formatted random write. An attempt to read a file not created with a formatted
random write will usually result in a runtime I/O error.

Examples:

READ(6,100,REC=2) A,B,C
 .
 .

100 FORMAT(3A4)

Read record number 2 from Logical Unit Number 6. Assign the input values to the variables A,B
and C.

7-17
Input/Output Statements

WRITE (formatted random output)

The output statement (WRITE) will output the values associated with the I/O list k to the record
corresponding to the integer value n. If a previous record number n exists, it will be written over.
If no record number n exists, the file will be extended to create one.

The amount of data transmitted will correspond to the number and type of elements in the I/O
list k. If the amount is less than 127 bytes, the record will be padded with the ASCII NUL character
(0) so that it is exactly 127 bytes. The last data byte will be a carriage return character. The
FORTRAN I/O processor will generate this character for subsequent use when the file is READ.

NOTE: The programmer is responsible for verifying that only 127 bytes are output. This 127
byte record also includes the carriage control character. If a + is used for carriage control, then the user
has access to all 127 bytes in the record.

If the carriage control character is omitted, the I/O processor will generate an ASCII line feed
character (Hex -- 0A). The first byte of the output file will contain this character, thus leaving 126
bytes for use.

If more than 127 bytes are written, the FORTRAN I/O processor will be unable to generate the line
feed character to mark the end of the record. Although no error will be displayed during execution of
the WRITE statement, subsequent READ's to this file will generate runtime I/O errors.

Examples:

DIMENSION J(120)
 .
 .
 .

I=6

WRITE(6,100,REC=I) J
100 FORMAT('+',60A2)

This statement will write the contents of the 60 element array j to the 6th record of the file associated
with Logical Unit Number 6. No carriage control character will be stored with the record. 120 bytes
will be written with this statement. The next byte stored will be the line feed character generated by
the FORTRAN I/O processor. The remaining 7 bytes will be ASCII NUL (0) characters.

7-18
Chapter Seven

AUXILIARY I/O STATEMENTS

FORTRAN provides several auxiliary I/O statements to perform various file management
functions.

OPEN Subroutine

A file may be OPENed using the OPEN subroutine. LUNs 1-5 may also be assigned to disk files
with OPEN. The OPEN subroutine allows the program to specify a file name and device to be
associated with a LUN.

An OPEN of a non-existent file creates a null file of the appropriate name. An OPEN of an
existing file followed by sequential output deletes the ex sting file. An OPEN of an existing file
followed by an input allows access to the current contents of the file. The open subroutine is
of the form:

CALL OPEN(u,filenanie,drive)

where:

u is the logical unit number to be associated with the file. u must be an unsigned
integer constant or integer variable with a value in the range 1-10 inclusive. If an
integervariable is used, a value must be assigned to the variable prior to CALLing
the OPEN subroutine.

"filename" is an ASCII name which CP/M will associate with the file. The
filename should be a Hollerith or literal constant, or a variable or array name
which contains the ASCII file name. The filename must be a valid CP/M file name
and must fill exactly eleven spaces. The extension to the filename, if present, must
occupy the last three spaces. If the filename contains less than eleven characters,
blanks should be used to fill the remaining positions.

"drive" is the number of the disk drive on which the file exists. This number
must be an Integer constant or Integer variable within the range allowed by the
operating system. If the drive specified is /, the currently selected drive is
assumed; 1 is drive A, 2 is drive B, etc.

Examples:

CALL OPEN (7, 'DATADAT',0)

CALL OPEN (3,'DATAFILE ',2)

7-19
Input/Output Statements

ENDFILE Statement

ENDFILE writes the end of file mark and then closes the file associated with LUN u. The ENDFILE
statement is of the form:

ENDFILE u

REWIND Statement

REWIND closes the file associated with LUN u, then opens it again. The REWIND statement is of the
form:

REWIND u

7-20
Chapter Seven

ENCODE/DECODE Statements

ENCODE and DECODE statements transfer data, according to format specifications, from one
section of memory to another. DECODE changes data from internal format to the specified format.
ENCODE changes data of the specified format into internal format. The two statements are of the
form:

ENCODE(a,f) k

DECODE(a,f,) k

where:

a is an array name
f is FORMAT statement number k is an I/O List

DECODE is analogous to a READ statement, since it causes the character data in the array A to be
converted according to the format specifications and then assigned to the elements in the I/O list
k. The format specifications are referenced by the statement number f.

ENCODE is analogous to a WRITE statement, since it causes the elements in the I/O list k to be
translated to character format and stored in array a. The FORMAT statement referenced by f will
control the translation process.

The total number of characters that can be processed by an ENCODE or DECODE statement is
determined by the data type of the array A. The following table illustrates this relationship.

Data Type Characters per Array Element

LOGICAL 1
INTEGER 2
EXTENDED INTEGER 4
REAL 4
DOUBLE PRECISION 8

Care should be taken that the array A is always large enough to contain all of the data being processed.
There is no check for overflow. An ENCODE operation which overflows the array will
probably wipe out important data following the array. A DECODE operation which
overflows will attempt to process the data following the array.

8-1
FORMAT Statements

Chapter Eight

FORMAT Statements

OVERVIEW

FORMAT statements are non-executable statements used in conjunction withformatted I/O and
with ENCODE and DECODE statements. They specify conversion methods and data editing
information. FORMAT statements require statement labels for reference.

The general form of a FORMAT statement is as follows:

m FORMAT (s1,s2...sn)

where m is the statement label and each si is a field descriptor. The word FORMAT and the
parentheses must be present as shown.

8-2
Chapter Eight

FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields and specify the type of conversion to be exercised
upon each transmitted datum. The FORMAT field descriptors may have any of the following
forms:

Descriptor Classification

rEw.d Numeric Conversion

rFw.d
rGw. d
Dw.d
rIw

rAw Hollerith Conversion
nHh1h2...hn
'11,12 ... In'

rLw Logical Conversion

nX Spacing Specification'

mP Scaling Factor

w is a positive integer constant defining the field width (including digits, decimal points,
algebraic signs) in the external data representation.

d is an integer specifying the number of fractional digits appearing in the external data
representation.

The characters F, G, E, D, I, A and L indicate the type of conversion to be applied to the items in an
input/output list.

r is an optional, non-zero integer indicating that the descriptor will be repeated r times.

The hi and li are characters from the FORTRAN character set.

m is an integer constant (positive, negative, or zero) indicating scaling.

n is a positive integer constant defining the number of spaces to insert in the I/O record.

8-3
FORMAT Statements

NUMERIC CONVERSIONS

Input operations with any of the numeric conversions will allow the data to be represented in
a "Free Format"; i.e., commas may be used to separate the fields in the external representation.

F-type Conversion

Real or double-precision type data are processed using this conversion. w characters are
processed of which d characters are considered fractional

Form: Fw.d

F-INPUT

Data values which are to be processed under F conversion can follow a relatively loose format.
The format is as follows:

1. Leading spaces (ignored)

2. A + or - sign (an unsigned input is assumed to be positive)

3. A string of digits

4. A decimal point

5. A second string of digits

6. The letter E (exponent indicator)

7. A + or - sign

8. An integer exponent

The following conditions must be observed:

If the integer exponent is present, then the exponent indicator and the sign (+ or -) must also
be included. (If the sign is omitted, it is assumed to be positive.)

All non-leading spaces are considered zeros.

8-4
Chapter Eight

Input data can be any number of digits in length, and correct magnitudes will be developed, but
precision will be maintained only to the extent specified in Chapter 3, "Data
Representation/Storage Format", for real data.

F-input Examples:

FORMAT Input Value Internal Value

F8.5 234562341 234.56234
F6.2 12.123 12.123
F9.2 89.56E+3 89560.0
F5.2 1234567.89 123.45
F8.5 -12345678 -12.34567

Note in the above examples that if no decimal point is given among the input characters, the d in
the FORMAT specification establishes the decimal point. If a decimal point is included in the input
characters, the d specification is ignored.

F-OUTPUT

Values are converted and output as: a minus sign (if negative), followed by the integer portion of
the number, a decimal point and d digits of the fractional portion of the number.

If a value does not fill the field, it is right-justified in the field and enough preceding blanks
to fill the field are inserted.

If a value requires more field positions than allowed by w, a runtime error will result.

F-output examples:

FORMAT Internal Value output (b=blank)

F10.4 368.42 bb368.4200
F7.1 -4786.361 -4786.4
F8.4 8.7E-2 bbb.0870
F6.4 4739.76 **FW**

8-5
FORMAT Statements

E-Type Conversion

Form: Ew.d

Real or double-precision type data are processed using this conversion. w characters are processed of
which d characters are considered fractional. The transmission of data is in exponential form.

E-INPUT

Data values which are to be processed under E conversion are edited in exactly, the same way as
with the F field descriptor.

E-OUTPUT

Values are converted, rounded to d digits, and output as:

1. a minus sign (if negative)

2. a decimal point

3. d decimal digits

4. the letter E (exponent indicator)

5. the sign of the exponent (minus or plus)

6. two exponential digits

The values as described are right-justified in the field w with preceding blanks to fill the field if
necessary. The field width w should satisfy the relationship:

w >=d+7

Otherwise a runtime error will result.

E-output examples:

FORMAT Internal Value Output (b=blank)

E12.5 76.573 bb.76573E+02
E14.7 -32672.354 bb-3267235E+05
E7.3 56.93 **FW**
E13.4 -0.0012321 bbb-.1232E-02
E9.2 76321.73 bb.76E+05

8-6
Chapter Eight

D-Type Conversions

Form: Dw.d

D-Input

D-Input functions in the same manner as E-input except the input data is converted and
assigned to a double-precision data type.

D-input examples:

FORMAT Input Value Internal Value

D10.2 23456bbbbb 23456000.0D0
D10.2 bb234.56bb 234.56D0
D15.3 123.5678901D+04 1.235678901D+06

D-Output

D-Output functions in the same manner as E-output except that the D exponent indicator is used
in place of the E exponent indicator.

D-output examples:

FORMAT Internal Value Output (b--blank)

D12.5 76.573 bb.76573D+02
D14.7 -32672.354 .32672354D+05
D13.4 -0.0012321 bb-.12321D-02
D8.2 76321.73 b.76D+05

G-Type Conversions

Form: Gw.d

Real or double-precision type data are processed using this conversion. w characters are
processed of which d characters are considered fractional.

G-INPUT

The G descriptor edits input data in exactly the same manner as the F descriptor.

8-7
FORMAT Statements

G-OUTPUT

The method of output conversion is a function of the magnitude of the number being output. This
method is useful when the magnitude of the number is not known beforehand.

The following table shows how the number will be output, where n is the magnitude of the
number:

Magnitude Equivalent Conversion (b=blank)

n < 0.1 Ew.d
.1 <= n < 1 F(w-4).dbbbb
1 <= n < 10 F(w-4).(d-1)bbbb

10d-2 <= n < 10d-' F(w-4).1bbbb
10d-1 <= n < 10d F(w-4).0bbbb

n > 10d Ew.d

G-output examples:

FORMAT Internal Value Output (b=blank)

G13.6 0.01234567 bb.123457E-01

G13.6 123.45678901 bb123.457bbbb

G13.6 123456.7890 bb123457.bbbb

G13.6 -1234567.89012345 b-.123457E+07

For comparision, the following examples illustrate the same values output under the F field descriptor.

FORMAT Internal Value Output (b=blank)

F13.6 0.01234567 bbbbb.0123456

F13.6 123.45678901 bbb123.456789

F13.6 123456.7890 123456.789000

F13.6 -1234567.89012345 **FW**

Note in the last example that the F format descriptor field was too small for the magnitude of the
data. In this case a runtime error will result.

8-8
Chapter Eight

I-Type Conversions

Form: Iw

This descriptor specifies the transmission of integer data. I-INPUT

A field of w characters is input and converted to internal integer format. A minus sign may precede
the integer digits. If a sign is not present, the value is considered positive. Integer values in the
range -32768 to 32767 are accepted. Non-leading spaces are treated as zeros.

I-input examples:

FORMAT Input (b=blank) Internal Value

I4 b124 124
I4 -124 -124
I7 bbb732b 7320

I-OUTPUT

Values are converted to integer constants. Negative values are preceded by a minus sign. If
the value does not fill the field, it is right-justified in the field and enough preceding blanks to fill,
the field are inserted. If the value exceeds the field width, a runtime error will result.

I-output examples:

FORMAT Internal Value Output (b=blank)

I6 +281 bbb281

I6 -23261 -23261

I3 126 126

I4 -226 -226

I3 1234 **FW**

8-9
FORMAT Statements

HOLLERITH CONVERSIONS

A-Type Conversion

The form of the A conversion is as follows:

Form: Aw

This descriptor causes unmodified Hollerith characters to be read into or written from a specified list
item.

The maximum number of actual characters which may be transmitted using Aw is equal to the number
of bytes needed to store the corresponding list item. (i.e., 1 character for logical items, 2 characters
for integer items, 4 characters for real items and 8 characters for double-precision items).
Refer to Chapter 3, "Data Representation/Storage Format", for a discussion of the storage
requirements of the various data types.

A-INPUT

If w is greater than n (where n is the number of bytes of storage required by the corresponding list
item), the rightmost n characters are taken from the external input field.

If w is less than n, the w characters appear left justified with w-n trailing blanks in the internal
representation.

A-input examples:

Format Input Type Internal Value (b=blank)

Al A Integer Ab
A4 ABCD Integer AB
Al A Real Abbb
A7 ABCDEFG Real DEFG

8-10
Chapter Eight

A-OUTPUT

If w is greater than n the external output field will consist of w-n blanks followed by the n characters
from the internal representation.

If w is less than n, the external output field will consist of the leftmost w characters from the
internal representation.

A-output examples:

FORMAT Internal Value Type Output

A1 AZ Integer A
A2 AB Integer AB
A3 ABCD Real ABC

H-Type Conversion

The forms of H conversion are as follows:

nHh1h2...hn
'h1h2...hn'

These descriptors process hollerith character strings between the descriptor and the external field,
where each 'h represents any character from the ASCII character set.

Special consideration is required if an apostrophe (') is to be used within the literal string in the
second form. An apostrophe character within the string is represented by two successive
apostrophes. See the examples on the following page.

8-11
FORMAT Statements

H-INPUT

The n characters of the string hi are replaced by the next n characters from the input record. This
results in a new string of characters in the field descriptor. See the last example on Page 7-11 for more
information.

H-input examples:

FORMAT Input(b=blank) Resultant descriptor (b =blank)

4H1234 ABCD 4HABCD
7HbbFALSE TRUEbbb 7HTRUEbbb

H-OUTPUT

Then characters hi, are placed in the external field. In the nHh 1 h2...hn form the number of characters
in the string must be exactly as specified by n. Otherwise, characters from other descriptors will be
taken as part of the string.

In both forms, blanks are counted as characters.

H-output examples:

Format(b=blank) Output (b=blank)

1HA or 'A' A
8HbSTRINGb or 'bSTRINGb' bSTRINGb
11HX(2,3)=12.0 or 'X(2,3)=12.0' X(2,3)=12.0
12HIbSHOULDN'T or 'IbSHOULDN"T' IbSHOULDN'T

8-12
Chapter Eight

LOGICAL CONVERSIONS

The form of the logical conversion is as follows:

Form: Lw

L-Input

The external representation occupies w positions. It consists of optional blanks followed by
a "T" or "F", followed by optional characters.

L-Output

If the value of an item in an output list corresponding to this descriptor is 0, an F will be
output; otherwise, a T will be output. If w is greater than 1, w-1 leading blanks precede the
letters.

L-Output examples:

FORMAT Internal Value Output(b=blank)

L1 < >0 T
L5 < >0 bbbbT
L7 = 0 bbbbbbF

8-13
FORMAT Statements

X DESCRIPTOR

The form of the X descriptor is as follows:

Form: nX

This descriptor causes no conversion to occur, nor does it correspond to an item in an input/output list.
When used for output, it causes n blanks to be inserted in the output record. Under input circumstances,
this descriptor causes the next n characters of the input record to be skipped.

X-input example:

FORMAT Input Internal values

10 FORMAT (F4.1,3X,F3.0) 12.5ABC120 12.5,120

X-output example:

FORMAT Output(b=blank)

3 FORMAT (IHA,4X,2HBC) AbbbbBC

8-14
Chapter Eight

SCALE FACTOR

The P descriptor is used to specify a scaling factor for real conversions.

Form: nP

where n is an integer constant (positive, negative, or zero).

The scale factor must precede the field descriptor with which it is used. Once a scale factor is
specified, it applies to all real conversions encountered in the FORMAT statement. The scale
factor remains unchanged until another P descriptor is encountered or the I/O terminates. The scale
factor may be disabled by specifying a scale factor of 0.

Effects of Scale Factor on Input:

During input the scale factor produces the following result:

Value assigned to I/O list element = external value / 10**n

If an exponent is present in the external data field, the scale factor will have no effect.

Examples:

FORMAT Input Internal Value

2..PF9.5 bbb45.123 .45123
-2PF9.5 bbb45.123 4512.3

8-15
FORMAT Statements

Effect of Scale Factor on Output:

E-OUTPUT, D-OUTPUT:

The coefficient is shifted left n places relative to the decimal point, and the exponent is reduced
by n (the value remains the same).

F-OUTPUT

The external value will be 10**n times the internal value.

G-OUTPUT

The scale factor is ignored if the internal value is within the range to be output using F conversion.
Otherwise, the effect is the same as for E output.

Examples:

FORMAT Internal Value Output(b=blank)

1PE12.5 34.567 b3.45670E+01
2PF9.3 12.345 b1234.500
3PG9.3 10.00 b10.0bb

8-16
Chapter Eight

OTHER CONTROL FEATURES
OF FORMAT STATEMENTS

Repeat Specifications

The E, F, D, G, I, L, X and A field descriptors may be indicated as repetitive descriptors by
using a repeat count r in the form rEw.d, rFw.d, rGw.d, rlw, rLw, rX and rAw.

Example:

The statement: 600 FORMAT(A2,A2,I2,I2,I2,F6.2,F6.2)

Is equivalent to: 600 FORMAT(2A2,3I2,2F6.2)

Repetition of a group of field descriptors is accomplished by enclosing the group in parentheses
preceded by a repeat count. Absence of a repeat count indicates a count of one.

Up to two levels of parentheses, including the parentheses required by the FORMAT
statement, are permitted.

Example:

The statement: 600 FORMAT(2(4X,I2,F5.2),A4)

Is equivalent to: 600 FORMAT(4X,I2,F5.2,4X,I2,F5.2,A4)

Repetition of FORMAT descriptors is also initiated when all descriptors in the FORMAT
statement have been used but there are still items in the input/output list that have not been processed.

When this occurs the FORMAT descriptors are re-used starting at the first opening parenthesis in
the FORMAT statement. A repeat count preceding the parenthesized descriptor(s) to be re-used
is also active in the re-use.

This type of repetitive use of FORMAT descriptors terminates processing of the current record and
initiates the processing of a new record each time the re-use begins.

8-17
FORMAT Statements

Field Separators

Two adjacent descriptors must be separated in the FORMAT statement by either a comma or one
or more slashes.

Example:

2A4,F6.3 or 2A4/F6.3

The comma is used simply to separate the fields in the FORMAT statement. The slash not only
separates field descriptors, but it also specifies the demarcation of formatted records.

Each slash terminates a record and sets up the next record for processing. When the slash is
encountered during input, the remainder of the input record is ignored. When the slash is
encountered during output, the remainder of the output record is filled with ASCII NUL
characters, and the next output record is set up for processing.

Successive slashes (///.../) cause successive records to be ignored on input and successive blank
records to be written on output.

8-18
Chapter Eight

Format Carriage Control

The first character of every formatted output record is used to convey carriage control
information to the output device. This is a very useful feature when performing output to a
CRT terminal or a hard copy device.

The carriage control character determines what action will be taken before the line is printed.
The carriage control character should be the first literal field in a FORMAT statement used for
formatted output.

If no carriage control character is present, then the first character of the FORMAT statement will be
used for carriage control. The options are as follows:

Character Effect ASCII code (hex)

0 Skip 2 lines 0A,0A
1 Insert Form Feed 0C
+ No action (none)

Other Skip 1 line 0A

If formatted output is to be performed to a disk file, then special consideration should be given
to the carriage control character. The first field of the disk file will be determined by the
carriage control character in the FORMAT statement. If the plus (+) character is used for the
carriage control character, then no carriage control character will be stored with the disk file.

Example:

FORMAT('+',12A2)

The carriage control character in this FORMAT statement is very useful when outputting data to
a disk file. It will suppress any carriage control character from being stored with the record.

FORMAT('1',6I2,2X,I2)

The carriage control character in this FORMAT statement will issue a form feed before the line is
printed.

8-19
FORMAT Statements

Format Specifications in Arrays

The FORMAT reference, f, of a formatted READ or WRITE statement may be an array name
instead of a statement label. This provides the facility for altering a FORMAT specification
during execution of the object program.

If such a reference is made, the information contained in the array, taken in sequential order,
must constitute a valid FORMAT specification.

The FORMAT specification which is to be inserted in the array has the same form as defined for a
FORMAT statement (i.e., it begins with a left parenthesis and ends with a right parenthesis).

The FORMAT specification may be inserted in the array by use of a DATA initialization
statement. It can also be inserted by use of a formatted READ statement together with an Aw
FORMAT.

For example, assume the FORMAT specification:

(3F10.3,6I6)

or a similar 12 character specification which is to be stored into an array. The array must allow a
minimum of 12, bytes of storage. The FORMAT could be stored in an array as follows:

DATA A/'(3F1','0.3,','4I6)'/

The following statement will READ using the format in the array:

READ(6;A) B,C,D,I1,I2,I3,I4,I5,I6

Note that the array name A was referenced instead of a statement label.

8-20
Chapter Eight

9-1
Specification Statements

Chapter Nine

Specification Statements

OVERVIEW

Specification statements are non-executable statements which supply determinative information to the
FORTRAN compiler. This information is used to define data types of variables and arrays, specify array
dimensionality and size, and to allocate data storage.

The specification statements are:

1. PROGRAM statement'

2. type statement

3. EXTERNAL statement

4. DIMENSION statement

5. COMMON statements

6. EQUIVALENCE statements

7. DATA Initialization Statements

All specification statements are grouped at the beginning of a program unit and must be ordered as they
appear above. The PROGRAM statement must be the first statement of the main program unit, and it must not
appear in any other program unit.

The other specification statements may be preceded only by a FUNCTION, SUBROUTINE or
BLOCK DATA statement. All specification statements must precede statement functions and the first
executable statement.

9-2
Chapter Nine

ARRAY DECLARATORS

Three kinds of specification statements may specify array declarators. These statements are
the following:

DIMENSION statements
type statements
COMMON statements

Of these, DIMENSION statements have the declaration of arrays as their sole function. The other
two serve dual purposes.

Array declarators are used to specify the name, dimensionality and sizes of arrays. An array
may be declared only once in a program unit. An array declarator has one of the following
forms:

ui (k)
ui (kl,k2)
ui (kl,k2,k3)

where ui is the name of the array, called the declarator name, and the k's are integer constants.

Array storage allocation is established upon appearance of the array declarator. Such storage is
allocated linearly by the FORTRAN compiler where the order of ascendancy is determined by the
first subscript varying most rapidly and the last subscript varying least rapidly.

For example, if the array declarator AMAT(3,2 ,2) appears, storage is allocated for the 12 elements in
the following order:

AMAT(1,1,1)
AMAT(2,1,1)
AMAT(3,1,1)
AMAT(1,2,1)
AMAT(2,2,1)
AMAT(3,2,1)
AMAT(1,1,2)
AMAT(2,1,2)
AMAT(3,1,2)
AMAT(1,2,2)
AMAT(2,2,2)
AMAT(3,2,2)

9-3
Specification Statements

STATEMENTS

PROGRAM Statement
The PROGRAM statement provides a means of specifying a name for the main program unit. It
is of the form:

PROGRAM n

where n is the program name.

If present, the program statement must appear before any other statement in the main program
unit. The name consists of one through six alphanumeric characters, the first of which must be a
letter. If no PROGRAM statement is present in a main program, the compiler will assign a name
of $MAIN to that program. During the compilation process the program name will be
displayed on the console device.

9-4
Chapter Nine

type Statement

Variable, array and FUNCTION names are automatically typed integer or real by the 'predefined'
convention unless they are changed by a type statement.

For example, the type is integer if the first letter of an item is I, J, K, L, M or N. Otherwise, the
type is real. Type statements provide for overriding or confirming the predefined convention by
specifying the type of an item. In addition, these statements may be used to declare arrays.

Type statements have the following general form:

t v1,v2,...vn

where t represents one of the terms:

BYTE
INTEGER, INTEGER*1, INTEGER*2, INTEGER*4
REAL, REAL*4, REAL*8
LOGICAL, LOGICAL* 1, LOGICAL* 2
DOUBLE PRECISION

Each v is an array declarator or a variable, array, or FUNCTION name. The following
relationships should be, noted:

1. BYTE, INTEGER* 1, LOGICAL* 1, and LOGICAL are all equivalent size;

2. INTEGER-2, LOGICAL*2, and INTEGER are equivalent size;

3. REAL, INTEGER*4, and REAL*4 are equivalent size;

4. DOUBLE PRECISION and REAL*8 are equivalent size.

Examples:

BYTE BUFF(256)
REAL IN,IOUT
DOUBLE PRECISION DPARG

9-5
Specification Statements

EXTERNAL Statement

This statement allows for external procedure names to be used as arguments to other subprograms.
The external procedure name can be a SUBROUTINE, BLOCK DATA or FUNCTION name.
The statement is of the general form:

EXTERNAL ul,u2,...,un

where each ui is a SUBROUTINE, BLOCK DATA or FUNCTION name.

The EXTERNAL statement will allow any name in the list ui to be used as an argument
when calling a subroutine.

When a BLOCK DATA subprogram is to be included as an argument to another subprogram, its
name must have appeared in an EXTERNAL statement within the main program unit.

For example, if SUM and AFUNC are subprogram names to be used as arguments in the subroutine
SUBR, the following statements would appear in the calling program unit:

 .
 .
 .
EXTERNAL SUM, AFUNC
 .
 .
 .
CALL SUBR(SUM,AFUNC,X,Y)

9-6
Chapter Nine

DIMENSION Statement

The DIMENSION statement is a non-executable statement used to reserve storage for an array. It
also defines the number of dimensions and elements in an array. The elements of the array are then
referred to by using the array name followed by a subscript. The general form of the
statement is:

DIMENSION ul,u2,u3

where each ui is an array declarator.

Example:

DIMENSION RAT(5,5),BAR(20)

This statement declares two arrays - the 25 element array RAT and the 20 element array BAR.
(For information on arrays and array storage allocation, see the discussion of array declarators on
Page 9-2.)

COMMON Statement

COMMON statements are non-executable, storage-allocating statements which assign variables
and arrays to a storage area called COMMON storage. This provides the facility for various
program units to share the same storage area. They are of the general form:

COMMON /cb/nlist/cb/nlist/.../cb/nlist

where each cb is a COMMON block storage name and each nlist is a sequence of variable names,
array names or constant array declarators, separated by commas. The elements in nlist make up the
COMMON block storage area specified by the name cb.

A COMMON block name is made up of from 1 to 6 alphanumeric characters, the first of which must
be a letter. The name of a COMMON block may appear more than once in the same COMMON
statement, or in more than one COMMON

9-7
Specification Statements

If any nlist is omitted, leaving two consecutive slash characters (/ /), the block of storage so indicated
is called blank COMMON. If the first block name is omitted, the first two slashes may also be
omitted.

The length of a COMMON area is the number of storage units required to contain the variables and
arrays declared in the COMMON statement (or statements).

The lengths of COMMON blocks of the same name need not be identical in all program units
where the name appears. However, if the lengths differ, the program unit specifying the
greatest length must be loaded first. (See Section C, "LINK-80", in this Manual.)

Example:

COMMON /AREA/A,B,C/BDATA/X,Y,Z,FL,ZAP(30)

In this example, two blocks of COMMON storage are allocated – AREA with space for three
variables and BDATA, with space for four variables and the 30 element array, ZAP.

Example:

COMMON //A1,B1/CDATA/ZOT(3,3)//T2,Z3

In this example, Al, B1, T2 and Z3 are assigned to blank COMMONS. The pair of slashes preceding
Al could have been omitted. CDATA names COMMON block storage for the nine element array,
ZOT and thus ZOT (3,3) is an array declarator. ZOT must not have been previously declared.

9-8
Chapter Nine

EQUIVALENCE Statement

The EQUIVALENCE statement permits the sharing of the same storage location by two or more
entities.

Each element in the sequence is assigned to the same storage location by the compiler. Thus, the
same storage location can be referenced with different variables.

The order in which the elements appear is not significant. The statement is of the general form:

EQUIVALENCE (nlist),(nlist),...,(nlist)

where each nlist represents a sequence of two or more variables or array elements,
separated by commas.

Example:

EQUIVALENCE (A,B,C)

The variables A, B and C will share the same storage location during object program
execution.

If an array element is used in an EQUIVALENCE statement, the number of subscripts must be the
same as the number of dimensions established by the array declarator. It can also be one, where
the one subscript specifies the array element's number relative to the first element of the array.

If the dimensionality of an array, Z, has been declared as Z(3,3) then in an EQUIVALENCE
statement Z(6) and Z(3,2) have the same meaning. The subscripts of array elements must be
integer constants.

Making Arrays Equivalent

If an element of one array is made equivalent to an element of another array, the EQUIVALENCE
statement will also set equivalences between the corresponding elements of the two arrays. If the
first elements of two equally dimensioned arrays are made equivalent, both arrays will share the
same storage area.

9-9
Specification Statements

It is invalid to EQUIVALENCE two or more elements of the same array. It is also invalid to
EQUIVALENCE two or more elements belonging to the same or different COMMON
blocks.

Example:

DIMENSION A(7),B(3)
EQUIVALENCE (A(5),B(3))

This EQUIVALENCE statement will establish the following equivalences:

ARRAY A ARRAY B

A(1)
A(2)
A(3) = B(1)
A(4) = B(2)
A(5) = B(3) A(6)
A(7)

EQUIVALENCE and COMMON Interaction

Variables may be assigned to a COMMON block through an EQUIVALENCE statement.
EQUIVALENCE statements can increase the size of a COMMON block by adding more elements to
the end of the block. COMMON block size may be increased only from the last element
established by the COMMON statement forward, not from its first element backward.

Example:

DIMENSION Z(4),X(6)

COMMON Z

EQUIVALENCE (Z(2),X(1))

9-10
Chapter Nine

DATA Initialization Statement

The DATA initialization statement is a non-executable statement which provides a means of
initializing variables and array elements. The statement is of the following form:

DATA list/u1,u2,...,un/,list.../uk,uk+1,...uk+n/

where "list" represents a list of variable, array or array element names, and the ui are constants
corresponding in number and type to the elements in the list.

There is an exception to the one-for-one correspondence of list items to constants. An array
name (unsubscripted) may appear in the list, and as many constants as necessary to fill the array may
appear in the corresponding position between slashes.

Instead of ui, it is permissible to write k*ui in order to declare the same constant, ui, k times in
succession. k must be a positive integer.

Example:

DIMENSION C(7)
DATA A,B,C(1),C(3)/14.73,-8.1,2*7.5/

This implies that:

A=14.73, B=-8.1, C(1)=7.5, C(3)=7.5

The type of each constant ui must match the type of the corresponding item in the list, except that; a
Hollerith or literal constant may be paired with an item of any type.

When a Hollerith or literal constant is used, the number of characters in its string should be no greater
than the number of bytes required by the corresponding item, i.e., 1 character for a logical
variable, up to 2 characters for an integer variable up to 4 characters for a real variable and up to 8
characters for a double-precision variable.

If fewer Hollerith or literal characters are specified, trailing blanks are added to fill the remainder of
storage. Hexadecimal data are stored in a similar fashion. If fewer hexadecimal characters are used,
sufficient leading zeros are added to fill the remainder of the storage unit.

9-11
Specification Statements

IMPLICIT Statement

The IMPLICIT statement is used to redefine default variable types. The statement is of the following
form:

IMPLICIT type(range),type(range),...

where type is one of the following:

INTEGER, REAL, LOGICAL, DOUBLE PRECISION, BYTE, INTEGER*1,
INTEGER*2, INTEGER*4, REAL*4, REAL*8, LOGICAL* 1, LOGICAL* 2

and range is a list of alphabetic characters separated by commas or hyphens.

Examples:

IMPLICIT INTEGER(A,W-Z),REAL(B-V)

All variables (not otherwise declared) starting with the letters A, W, X, Y, Z will be type
INTEGER. All variables starting with the letters B through V will be type REAL.

IMPLICIT INTEGER(I-N),REAL(A-H,O-Z)

This is the default definition.

Any IMPLICIT statements must appear in a program grouped with the TYPE and DIMENSION
statements. IMPLICIT statements must appear before any other specification statements. If the
IMPLICIT statement appears after any TYPE or DIMENSION statements, the types of the
variables already declared will not be affected.

9-12
Chapter Nine

INCLUDE Statement

The INCLUDE statement causes the compiler to bring outside FORTRAN source code into the
current program. The included code may be, for example, commonly used subroutines or
declarations such as COMMON statements.

The format of the statement is:

INCLUDE filename

The use of INCLUDE eliminates the need to repeat an often-used sequence of statements
in the current source file.

10-1
Functions and Subprograms

Chapter Ten

Functions and Subprograms

OVERVIEW

The FORTRAN language provides a means for defining and using often needed procedures such
that the statement or statements of the procedures need appear in a program only once. These
procedures may be referenced and brought into the logical execution sequence of the program
whenever and as often as needed. These procedures are as follows:

1. Statement functions.

2. Library functions.

3. FUNCTION subprograms.

4. SUBROUTINE subprograms.

Each of these procedures has its own unique requirements. This chapter will explain the
various requirements for constructing and referencing these procedures.

In the following descriptions of these procedures, the term "calling program" means the
program unit or procedure in which a reference to a procedure is made, and the term "called
program" means the procedure to which a reference is made.

10-2
Chapter Ten

STATEMENT FUNCTIONS

Statement functions are defined by a single arithmetic or logical assignment statement and
are relevant only to the program unit in which they appear.

The general form of a statement function is:

f(a1,a2,...an) = e

where f is the function name, the ai are dummy arguments and e is an arithmetic or logical
expression.

Statement function definitions, if they exist in a program unit, must precede all executable
statements in the unit and follow all specification statements.

The ai are distinct variable names or array elements, but, being dummy variables, they may
have the same names as variables appearing elsewhere in the program unit.

The expression e is constructed according to the rules in Chapter 4, "FORTRAN Expressions". It
may contain only references to the dummy arguments and non-literal constants, variable and
array element references, utility and mathematical function references and references to
previously defined statement functions.

The type of any statement function name or argument that differs from its predefined
convention type must be defined by a type specification statement. (See Chapter 9,
"Specification Statements" for a discussion of type specification statements.)

10-3
Functions and Subprograms

A statement function is called by its name followed by a parenthesized list of arguments. The
expression is evaluated using the arguments specified in the call. The variable used for
the reference is assigned the result.

The i th parameter in every argument list must agree in type with the i th dummy argument in the state-
ment function.

The example below shows a statement function and a statement function call.

C STATEMENT FUNCTION DEFINITION
C

FUNC1(A,B,C,D) = ((A+B)**C)/D
 .
 .
 .

C STATEMENT FUNCTION CALL
C

A12=A1-FUNC1(X,Y,Z7,C7)

10-4
Chapter Ten

LIBRARY FUNCTIONS

Library functions are a group of utility and mathematical functions which are "built-in" to the
FORTRAN system.

The functions are listed in Tables 10-1 and 10-2. In the tables, arguments are denoted as a 1,a2,. .
.,an, if more than one argument is required; or as a if only one is required.

A library function is called when its name is used in an arithmetic expression. Such a reference
takes the following form:

f(a1,a2,...an)

where f is the name of the function and the ai are actual arguments. The arguments must agree
in type, number and order with the specifications indicated in Tables 10-1 and 10-2.

In addition to the functions listed in 10-1 and 10-2, four additional library subprograms are
provided to enable access to the 8080 (or Z80) hardware.

PEEK, POKE, INP, OUT

PEEK and INP are logical functions; POKE and OUT are subroutines. PEEK and POKE allow
access to any memory location. PEEK(a)'returns the contents of the memory location specified by
a.

CALL POKE(a 1,a2) causes the contents of the memory location specified by a1 to be replaced by the
contents of a2. INP and OUT allow access to the I/O ports. INP(a) does an input from port a and
returns the 8-bit value. CALL OUT(aI,a2) outputs the value of a2 to the port specified by al.

Examples:

A1=FLOAT(17)

Convert the integer I7 to real and assign the result to the real variable Al.

POS=ABS(R1)

Assign the absolute value of the real variable R1 to the real variable POS.

S3=SIN(T12)

Calculate the sine of T12 and assign the result to the real variable S3.

10-5
Functions and Subprograms

Function Types
Name Definition Argument Function

ABS Absolute Value Real Real
LABS Integer Integer
DABS Double Double

AINT Sign of a times lar- Real Real
INT gest integer <= I a I Real Integer
IDINT Double Integer

AMOD Returns remainder when first Real Real
MOD argument is divided by second Integer Integer

AMAX0 Returns largest value from Integer Real
AMAX1 elements of argument list Real Real
MAX0 Integer Integer
MAXI Real Integer
DMAX1 Double Double

AMIN0 Returns smallest value from Integer Real
AMIN1 elements of argument list Real Real
MIN0 Integer Integer
MINI Real Integer
DMIN1 Double Double

FLOAT Conversion from Integer Real

Integer to Real

[FIX Conversion from Real Integer

Real to Integer

SIGN Returns the value: Real Real
ISIGN sign of a2* I al I Integer Integer
DSIGN Double Double

DIM a 1 - Min(a l ,a2) Real Real
IDIM Integer Integer

SNGL Double to Real Conversion Double Real

DBLE Real to Double Conversion Real Double

TABLE 10-1

Intrinsic Functions

10-6
Chapter Ten

Number
of Type

Name Arguments Definition Argument Function

EXP 1 e**a Real Real
DEXP 1 Double Double

ALOG 1 In (a) Real Real
DLOG 1 Double Double
ALOG10 1 1og,0(a) Real Real
DLOG10 1 Double Double

SIN 1 sin (a) Real Real
DSIN 1 Double Double

COS 1 cos (a) Real Real
DCOS 1 Double Double

TANH 1 tanh (a Real Real

SQRT 1 (a) ** 1/2; Real Real
DSQRT 1 Double= Double

ATAN 1 arctan (a) Real Real
DATAN 1 Double Double

ATAN2 2 arctan (a 1 /a2) Real Real
DATAN2 2 Double Double

DMOD 2 a1 (mod a2) Double Double

TABLE 10-2

Basic External Functions

10-7
Functions and Subprograms

FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION statement is called a FUNCTION subprogram.

A FUNCTION statement has one of the following forms:

t FUNCTION f(a1,a2,...an) FUNCTION f(a1,a2,...an)

where:

t is either INTEGER, REAL, DOUBLE PRECISION or LOGICAL or is omitted as shown in the
second form.

f is the name of the FUNCTION subprogram.

The ai are dummy arguments of which there must be at least one and which represent
variable names, array names or dummy names of SUBROUTINE or other FUNCTION sub-
programs.

The data type of a FUNCTION name can be established by a type statement, by explicitly stating the
data type in the FUNCTION statement, or by using the predefined data type.

In any case, the data type defined in the FUNCTION statement must agree with the data type used
in the calling program.

The FUNCTION statement must be the first statement of the program unit. It must not contain a
statement label.

The FUNCTION subprogram will return a single value to the calling program. The data type of
this value will be determined by the data type of the FUNCTION name.

10-8
Chapter Ten

Constructing a FUNCTION Subprogram

Within the FUNCTION subprogram, the FUNCTION name must appear at least once on the left
side of the equality sign in an assignment statement. The FUNCTION name can also be an element
in the I/O list of an input statement. This defines the value of the FUNCTION so that it may be
returned to the calling program.

Additional values may be returned to the calling program through assignment of values to dummy
arguments.

The names in the dummy argument list may not appear in EQUIVALENCE, COMMON or
DATA statements in the FUNCTION subprogram.

If a dummy argument is an array name, then an array declarator must appear in the subprogram with
dimensioning information consistent with that in the calling program.

A FUNCTION subprogram may contain any defined FORTRAN statements other than BLOCK
DATA statements, SUBROUTINE statements, or another FUNCTION statement. A FUNCTION
subprogram must also not contain any statement which references either the FUNCTION being
defined or another subprogram that references the FUNCTION being defined.

The logical termination of a FUNCTION subprogram is a RETURN statement and there must be at
least one of them. A FUNCTION subprogram must physically terminate with an END statement.

Example:

FUNCTION SUM(ARRAY,I)
DIMENSION ARRAY(10)
SUM = 0.0
DO 100 K=1,I

100 SUM=SUM+ARRAY (K) RETURN
END

The above program segment is used to construct a FUNCTION subprogram called SUM. The data
type is not stated, so it follows the predefined convention. This subprogram will calculate the sum
of the array named ARRAY.

10-9
Functions and Subprograms

Referencing a FUNCTION Subprogram

FUNCTION subprograms are called whenever the FUNCTION name, accompanied by an
argument list, is used as an operand in an expression. Such references take the following
form:

f(a1,a2,...,an)

where f is a FUNCTION name and the ai are actual arguments. Parentheses must be present in
the form shown.

The arguments ai must agree in type, order and number with the dummy arguments in the
FUNCTION statement of the called FUNCTION subprogram. They may be any of the
following:

1. A variable name.

2. An array element name.

3. An array name

4. An expression.

5. A SUBROUTINE or FUNCTION subprogram name.

6. A Hollerith or literal constant

If an argument is a subprogram name, that name must have previously been distinguished
from ordinary variables by appearing in an EXTERNAL statement. In addition, the corresponding
dummy arguments in the called FUNCTION subprograms must be used in subprogram
references.

If an argument is a Hollerith or literal constant, the corresponding dummy variable should
encompass enough storage units to correspond exactly to the amount of storage needed by the
constant.

When a FUNCTION subprogram is called, program control goes to the first executable
statement following the FUNCTION statement.

10-10
Chapter Ten

The following example shows a reference to a FUNCTION subprogram.

DIMENSION ARRAY(10)
 .
 .
 .
RESULT = SUM(ARRAY,10)

This program will reference the subprogram constructed on the previous page. The single value
returned to the calling program will be assigned to the variable RESULT.

10-11
Functions and Subprograms

SUBROUTINE SUBPROGRAMS

A program unit which begins with a SUBROUTINE statement is called a SUBROUTINE
subprogram. The SUBROUTINE statement has one of the following forms:

SUBROUTINE s (a1,a2,. ..,an)

SUBROUTINE s

where s is the name of the SUBROUTINE subprogram and each ai is a dummy argument which
represents a variable or array name or another SUBROUTINE or FUNCTION name.

The SUBROUTINE statement must be the first statement of the subprogram. The SUBROUTINE
subprogram name must not appear in any statement other than the initial SUBROUTINE statement.
The dummy argument names must not appear in EQUIVALENCE, COMMON or DATA
statements in the subprogram.

If a dummy argument is an array name, an array declarator must appear in the subprogram with
dimensioning information consistent with that in the calling program.

If any of the dummy arguments represent values that are to be determined by the SUBROUTINE
subprogram and returned to the calling program, these dummy arguments must appear within the
subprogram on the left side of the equality sign in an assignment statement, in the I/O list of an
input statement or as a parameter within a subprogram reference.

10-12
Chapter Ten

A SUBROUTINE may contain any FORTRAN statements except the following:

• BLOCK DATA Statements
• FUNCTION Statements
• Another SUBROUTINE Statement
• A PROGRAM Statement

A SUBROUTINE subprogram may contain any number of RETURN statements. It must have at
least one. The RETURN statement is the logical termination point of the subprogram. The physical
termination of a SUBROUTINE subprogram is an END statement.

If an actual argument transmitted to a SUBROUTINE subprogram by the calling program is the name
of a SUBROUTINE or FUNCTION subprogram, the corresponding dummy argument must be used
in the called SUBROUTINE subprogram as a subprogram reference.

Subroutine Subprogram Example:

C SUBROUTINE TO COUNT POSITIVE ELEMENTS
C IN AN ARRAY,

SUBROUTINE COUNTP(ARRAY,I,ICOUNT)
DIMENSION ARRAY(1D)
ICOUNT=O
DO 9 J=1,I
IF(ARRAY(J))9,5.5

9 CONTINUE
RETURN
5 ICOUNT=ICOUNT+1
GO TO 9
END

10-13
Functions and Subprograms

Referencing a SUBROUTINE Subprogram

A SUBROUTINE subprogram may be called by using a CALL statement. A CALL statement has
one of the following forms:

CALL s(a1,a2,...,an) CALL s

where s is a SUBROUTINE subprogram name and the ai are the actual arguments to be
used by the subprogram.

The ai must agree in type, order and number with the corresponding dummy arguments in the
subprogram-defining SUBROUTINE statement. The arguments in a CALL statement must
comply with the following rules:

• FUNCTION and SUBROUTINE names appearing in the argument list must have
previously appeared in an EXTERNAL statement.

• If the called SUBROUTINE subprogram contains a variable array declarator, then the
CALL statement must contain the actual name of the array and the actual dimension
specifications as arguments.

• If an item in the SUBROUTINE subprogram dummy argument list is an array, the

corresponding item in the CALL statement argument list must be an array.

• When a SUBROUTINE subprogram is called, program control goes to the first
executable statement following the SUBROUTINE statement.

Example:

DIMENSION DATA(10)
 .
 .
 .

C THE STATEMENT BELOW CALLS THE
C SUBROUTINE CONSTRUCTED IN THE PREVIOUS SECTION

CALL COUNTP (DATA, 10, CPOS)

10-14
Chapter Ten

RETURN FROM FUNCTION AND SUBROUTINE
SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE subprogram is a RETURN
statement which transfers control back to the calling program.

The general form of the RETURN statement is:

RETURN

These rules govern the use of the RETURN statement.

• There must be at least one RETURN statement in each SUBROUTINE or
FUNCTION subprogram.

• RETURN from a FUNCTION subprogram is to the instruction sequence of the
calling program following the FUNCTION reference.

• RETURN from a SUBROUTINE subprogram is to the next executable statement
in the calling program which would logically follow the CALL statement.

• Upon return from a FUNCTION subprogram the single-valued result of the
subprogram is available for the evaluation of the expression from which the
FUNCTION call was made.

• Upon return from a SUBROUTINE subprogram the values assigned to the
arguments in the SUBROUTINE are available for use by the calling program.

Example:

Calling Program Unit
 .
 .
 .

CALL SUBR(Z9,B7,Ri)
 .
 .
 .
Called Program Unit
SUBROUTINE SUBR(A,B,C)
READ(3,7) B
A = B**C
RETURN

7 FORMAT(F9.2)
END

(In this example, Z9 and B7 are made available to the calling program when the
RETURN occurs.)

10-15
Functions and Subprograms

PROCESSING ARRAYS IN SUBPROGRAMS

If a calling program passes an array name to a subprogram, the subprogram must contain the
dimension information pertinent to the array.

A subprogram must contain array declarators if any of its dummy arguments represent arrays
or array elements.

For example:

Calling Program Unit

DIMENSION Z1(50),Z2(25)

 .

 .

 .

A1 = AVG(Z1,50)

Called Program Unit

FUNCTION AVG(ARG,I)

DIMENSION ARG(50)

SUM = 0.0

DO 20 J=1,I

20 SUM = SUM + ARG(J)

AVG = SUM/FLOAT(I)

RETURN

END

Note that actual arrays to be processed by the FUNCTION subprogram are dimensioned in
the calling program. The array names and their actual dimensions are transmitted to the
FUNCTION subprogram by the FUNCTION subprogram reference. The FUNCTION subprogram
itself contains a dummy array and specifies an array declarator.

10-16
Chapter Ten

Dimensioning information may also be passed to the subprogram in the parameter list. For example:

Calling Program Unit

DIMENSION A(3,4,5)
CALL SUBR(A,3,4,5)
END

Called Program Unit

SUBROUTINE SUBR(X,I,J,K)
DIMENSION X(I,J,K)
RETURN
END

It is valid to use variable dimensions only when the array name and all of the variable dimensions
are dummy arguments. The variable dimensions must be type integer. It is invalid to change the
values of any of the variable dimensions within the called program.

10-17
Functions and Subprograms

BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram has as its only purpose the initialization of data in a COMMON block
during loading of a FORTRAN object program. BLOCK DATA subprograms begin with a
BLOCK DATA statement and are of the following form:

BLOCK DATA [subprogram-name]

and end with an END statement.

The subprogram-name, which is optional, is a symbolic name associated with the BLOCK DATA
subprogram.

Such subprograms may contain only type, EQUIVALENCE, DATA, COMMON and DIMEN-
SION statements and are subject to the following considerations:

• If any element in a COMMON block is to be initialized, all elements of the block must be
listed in the COMMON statement even though they might not all be initialized.

• Initialization of data in more than one COMMON block may be accomplished in
one BLOCK DATA subprogram.

• There may be more than one BLOCK DATA subprogram loaded at any given time.

• Any particular COMMON block item should only be initialized by one program unit.

Example:

BLOCK DATA TEST
LOGICAL Al
COMMON/BETA/B(3,3)/GAM/C (4)
COMMON/ALPHA/A1,C,E,D
DATA B/1.1,2.5,3.8,3*4.96,
+2*0.52,1.1/,C/1.2E0,3*4.0/
DATA Al/.TRUE./,E/-5.6/
END

10-18
Chapter Ten

PROGRAM CHAINING

The Chaining process gives the user the capability of sequentially executing a series of
individual programs. Programs may be loaded and executed (FCHAINed) by a FORTRAN
program through the CALL FCHAIN facility. The general syntax is:

CALL FCHAIN ('filename')

where filename is a valid operating-system-dependent file specification of a machine executable
file.

Program chaining is subject to the following considerations:

• `filename' must be valid according to CP/M's rules.

• The program FCHAINed must be a “MAIN” program. That is, one having an ENTRY
point. FORTRAN, COBOL, and assembly language subroutines do not contain a
“MAIN” entry point.

• Parameters may not be passed` to FCHAINed programs.

• Illegal filename, illegal drive specification, file not found, out of memory, and disk

read errors will result in a fatal **I/O** Error.

11-1
FORTRAN Statements Summary

Chapter Eleven

FORTRAN Statements Summary

OVERVIEW

This Chapter is a summary of the statements implemented in this version of FORTRAN.
A brief description of each statement is also included. The structure of each statement adheres
to the following notation conventions.

1. A notation variable is represented by an italicized sequence of lower case letters.

2. A notation constant or keyword is represented by a sequence of capital letters.

3. A set of brackets ([]) indicates an optional item.

4. The series of three periods, or ellipses, represents an item that can be repeated zero or

more times.

11-2
Chapter Eleven

SUMMARY OF STATEMENTS
ASSIGN j TO i

j is a statement label.
I is an integer variable.

This statement is used with each assigned GO TO statement. When the assigned GO
TO is executed, control will be transferred to the statement labeled j. If a list is
specified within the assigned GO TO, j must be included in this list.

BLOCK DATA [subprogram-name]

["subprogram-name"] is any valid symbolic name.

This statement is used to specify the name of a BLOCK DATA subprogram. A BLOCK
DATA subprogram is used to initialize variables in a COMMON block. BLOCK DATA
subprograms begin with a BLOCK DATA statement and end with an END statement. A
BLOCK DATA subprogram may contain only Type, EQUIVALENCE, DATA , COMMON
and DIMENSION statements.

CALLs[([a} [,a]]. . .)]

s is the subroutine: name.
The ‘a’ are actual arguments to be used by the subprogram.

The CALL statement is used to transfer program control to a subroutine. When a
SUBROUTINE program is called, program control goes to the first executable statement
following the SUBROUTINE statement. The arguments passed to the subroutine must
agree in type, order and number with the corresponding dummy arguments in the
SUBROUTINE statement.

CALL FCHAIN ('filename')

('filename') is any valid machine executable file.

This statement is used to load and execute additional programs from within the original
program. The `filename' is a valid operating-system-dependent file specification of a
machine executable file.

11-3
FORTRAN Statements Summary

COMMON [/ [cb] /] nlist [[,] / [cb] /list] . . .

cb is the COMMON block name.
list is the list of variables.

COMMON statements are storage allocating statements which assign variables and arrays to
a storage area called COMMON storage. This allows for various program units to use the
same storage area. The list of variables must be a sequence of variable names, array
names or constant array declarators. These names must be separated by commas. The
COMMON block name may be omitted. This is referred to as a blank COMMON.

CONTINUE

CONTINUE is used as the terminal statement in a DO loop when the statement which
would normally be the terminal statement is one of those which are not allowed.

DATA list/clist/[[,]list/clist/] . .

list is the list of variables separated by commas.
clist is the constant values to assign the variables.

The DATA statement is used to compile constant data values into the object program and
assign these values to variables and array elements.

DECODE (a,f) k

a is an array name.
f is a FORMAT statement number.
k is an I/O list.

This statement causes the elements in the array a to be translated from character
format to the internal format specified in the FORMAT statement f. The results of this
conversion are placed in the list of I/O elements k. This is analogous to a READ statement,
except the data transfer is from one section of memory to another.

11-4
Chapter Eleven

DIMENSION s(d) [,s(d)] .

s is the name of the array.
d is the array dimension declarator.

This statement reserves storage locations for each of the elements of an array. The elements of
the array are then referred to by using the array name followed by a subscript.

DO k i = m1,m2 [,m3]

k is the statement label of the terminal statement.
i is the index variable.
m1 is the initial value.
m2 is the terminal value.
m3 is the incremental value. (If omitted defaults to 1)

The DO statement provides a method for repetitively executing a series of statements. The
statement labeled k must be an executable statement. The index variable i must be positive and
cannot be modified by any statement in the range of the DO loop. The following steps take
place when executing a DO loop:

1. Set i=m1
2. Execute statements through k
3. i =m1+m3
4. Has the terminal value been reached? (i =m2)

YES – transfer to statement after k
NO – repeat steps 2-4

ENCODE (a,f) k

a is an array name.
f is a FORMAT statement number.
k is an I/O list.

This statement causes the elements in the I/O list k to be translated to character format. The data
is translated according to the specifications of the FORMAT statement f. The translated data
is put into array a. This is analogous to a WRITE statement, except the data transfer is from one
section of memory to another.

11-5
FORTRAN Statements Summary

END

The END statement must physically be the last statement of any FORTRAN program. It causes a
transfer of control to be made to the system exit routine, which exits to CP/M.

ENDFILE u

u is an integer variable or constant.

This closes the file associated with Logical Unit Number u. This statement is only used for
disk files.

EQUIVALENCE (list) [, (list)] .

list is a sequence of two or more variables or array elements, separated by commas.

Use of EQUIVALENCE statements permits the sharing of the same storage area by two or more
entities. Each element in the list is assigned to the same storage area. The order in which the
elements appear is not significant.

EXTERNAL v [,v] .

v is a subprogram name.

This statement allows for external procedure names to be used as arguments to other subprograms.
External procedure names can be a SUBROUTINE, BLOCK DATA or FUNCTION name.
The EXTERNAL statement will allow any name v to be used as an argument when
CALLing a subroutine.

11-6
Chapter Eleven

FORMAT (s [,s] . .)

s is the field descriptor.

FORMAT statements are used in conjunction with formatted READ and WRITE
statements. They specify conversion methods and data editing to be performed as the data is
transmitted between computer memory and external storage devices. FORMAT statements
require statement labels for reference in the READ and WRITE statements.

t FUNCTION f [([a [,a] . . .])]

t is the data type (optional).
f is the subprogram name.
a is the dummy argument names.

This denotes the beginning of a FUNCTION subprogram. The name f is used to reference
this FUNCTION. t is either INTEGER, REAL, DOUBLE PRECISION or LOGICAL. The
FUNCTION statement must be the first statement of the program unit. The program unit is
terminated with a RETURN statement.

GO TO k (Unconditional GO TO)

k is an executable statement label.

Control of the program is transferred to statement k

GO TO (k1,k2,...,kn),j (Computed GO TO)

ki are executable statement labels.
j is an integer variable.

This statement causes transfer of control to the statement label kj. (If j = 1 then control is
transferred to label k1. If j=2 then control is transferred to label k2, etc.) If j<1 or j>n then
control will be passed to the next statement following the computed GO TO.

11-7
FORTRAN Statements Summary

GO TO j, [(k1,k2,...,kn)] (Assigned GO TO)

j is an integer variable.
ki are executable statement labels.

This statement causes transfer of control to the statement whose label is equal to the current
value of j. j is assigned a value via the ASSIGN statement. If the statement labels ki are
present, then j must have been ASSIGNed a value included in this list. The ASSIGN
statement must logically precede the GO TO statement.

IF (e) m1 ,m2 ,m3 (ARITHMETIC IF)

e is an arithmetic expression.
mi are statement labels.

Transfers control based on the results of the evaluation of (e). If the result of the evaluation of (e)
is negative (<0) then control is transferred to the statement labeled mi. If the result of the
evaluation of (e) is zero (= 0), then control is transferred to the statement labeled m2. If the
result of the evaluation of (e) is positive (>0) then control is transferred to the statement labeled
m3.

IF (u) s (Logical IF)

u is a logical expression.
s is any executable expression except a DO statement.

The logical expression u is evaluated as TRUE. or .FALSE.. If u is evaluated as FALSE,
then the statement s is ignored and control goes to the next statement following the logical IF
statement. If u is evaluated as TRUE, then control goes to statement s . Subsequent
program control follows normal conditions. If s is a replacement statement (v = e), the
variable v and the equality sign (=) must be on the same line.

11-8
Chapter Eleven

PAUSE [c]

c is any string up to 6 characters.

When PAUSE is encountered during execution of the object program, the characters c (if
present) are displayed on the terminal device and execution of the program ceases.
Execution may be terminated by typing a "T" and a carriage return at the terminal device.
Typing any other character and a carriage return will cause execution to continue.

PROGRAM name

name specifies the name of the main program.

The PROGRAM statement provides a means of specifying a name for a main program unit. The
name consists of 1-6 alphanumeric characters, the first of which is a letter. If no PROGRAM
statement is present in a main program, the Compiler assigns a name of $MAIN to the
program.

READ (u, f ['ERR=I1] [,END =I2]) k (Formatted Sequential)

u is the logical unit number.
f is the label of the FORMAT statement.
I1 is the label to transfer to if an error is encountered.
I2 is the label to transfer to if EOF is reached.
k is the list of variable names.

This is used to input a number of items, corresponding to the names in the list k. The input is
from the file assigned to logical unit number u. The input is converted according to the
FORMAT statement f .

READ(u [,ERR=I1] [,END=I2]) k (Unformatted Sequential)

u is the logical unit number.
I1 is the label to transfer to if an error is encountered.
I2 is the label to transfer to if EOF is reached.
k is the list of variable names.

This statement is the same as the formatted READ, except this performs a memory image
transmission of data with no data conversion or editing. The amount of data transmitted
corresponds to the number and type of variables in the list k .

11-9
FORTRAN Statements Summary

READ (u, f,REC=i [,ERR=I1]) k (Formatted Random Access)

u is the logical unit number.
f is the label of the FORMAT statement.
i is the record number to read.
I1 is the label to transfer to if an error is encountered
k is an I/O list.

This statement is essentially the same as the formatted READ except any record in the file can
be read by including the REC=i clause.

READ (u,REC=i [,ERR=I1]) k (Unformatted Random Access)

u is the logical unit number.
i is the record number to read.
I1 is the label to transfer to if an error is encountered.
k is an I/O list.

This statement will cause the ith record of the file to be read. The input data will be assigned to the
variables in the list k. The data will be transmitted without any editing or formatting.

READ (u,f [,ERR=I1] [,END=I2]) (H type conversions)

u is the logical unit number.
f is the label of the FORMAT statement.
I1 is the label to transfer to if an error is encountered.
I2 is the label to transfer to if EOF is reached.

(No variable list is needed.)

This statement may be used in conjunction with a FORMAT statement to read H-type
alphanumeric data into an existing H-type field.

RETURN

Returns control to the calling program.

The logical termination of a FUNCTION or subprogram is a RETURN statement. This
statement will return control to the calling program.

11-10
Chapter Eleven

REWIND u

u is an integer variable or constant.

This statement will close and then open the disk file associated with logical unit u. It has no
effect on non-disk files.

STOP [c]

c is any string up to 6 characters.

When STOP is encountered during execution of the object program, the characters c (if
present) are displayed on the terminal device and the execution of the program terminates. The
STOP statement is considered the logical end of the program.

SUBROUTINE s [([a] [,a] .])]

s is the subroutine name
a is the dummy arguments

A program unit which begins with a SUBROUTINE statement is called a SUBROUTINE
subprogram. The subroutine name s must not appear in any other statement within the
subroutine. The subroutine is referenced from the main program by the CALL statement.

type v [,v]

type is a data type specifier
v is a variable name, array name, or function name

Type statements provide for associating a variable name with a data type. This may be used
to confirm or override the predefined convention. In addition, these statements may be
used to declare arrays. The data type specifier may be any of the following:

INTEGER REAL LOGICAL DOUBLE PRECISION
INTEGER* 1 REAL*4 LOGICAL* 1 BYTE
INTEGER* 2 REAL* 8 LOGICAL* 2 INTEGER*4

11-11
FORTRAN Statements Summary

WRITE (u, f [,ERR=I1] [,END=I2]) k (Formatted Sequential)

u is the logical unit number.
f is the label of the FORMAT statement.
I1 is the label to transfer to if an error is encountered.
I2 is the label to transfer to if EOF is reached.
k is the variable list.

This is used to output the data specified in the list k to the output device assigned to
logical unit number u. The output is converted and edited according to the FORMAT
statement f .

WRITE (u, ERR=I1,END=I2) k (Unformatted Sequential)

u is the logical unit number.
I1 is the label to transfer to if an error is encountered.
I2 is the label to transfer to if EOF is reached.
k is the variable list.

This statement is similiar'to the formatted WRITE, except this performs a memory image
transmission of data to the output device with no data conversion or editing. The
amount of data transmitted corresponds to the number and type of variables in the list k.

WRITE (u, f,REC=i [,ERR=I1]) k (Formatted Random Access)

u is the logical unit number.
f is the label of the FORMAT statement.
i is the record number to write.
I1 is the label to transfer to if an error is encountered.
k is the variable list.

This statement is essentially the same as the formatted WRITE except any record in the
file can be written by including the REC=i clause.

11-12
Chapter Eleven

WRITE (u,REC=i [,ERR=I1]) k (Unformatted Random Access)

u is the logical unit number.
i is the record number to write.
I1 is the label to transfer to if an error is encountered.
k is the I/O list.

This statement is the same as the formatted random access, except no format statement is referenced,
thus no formatting or editing takes place during the transmission of data.

WRITE (u, f [,ERR=I1] [,END=I2]) (No variable list)

u is the logical unit number.
f is the label of the FORMAT statement.
I1 is the label to transfer to if an error is encountered.
I2 is the label to tranfer to if EOF is reached.

This is used to write alphanumeric information when the characters to be printed are specified
within the FORMAT statement. In this case a variable list is not required.

12-1
Index

Chapter Twelve

FORTRAN-80 Reference Manual Index

OVERVIEW

This Chapter is an alphabetical listing of the important concepts, phrases, ideas and keywords
contained in this FORTRAN-80 Reference Manual.

The statements contained in Chapter 11, "FORTRAN Statements Summary", are not referenced
by this index. The statements in Chapter 11 are listed alphabetically, so they are easily
referenced without an index.

12-2
Chapter Twelve

A field descriptor, 8-9 Data names, 3-7
Alphanumerics, 1-4 Data representation, 3-1
.AND., 4-6 DATA statement, 1-9, 9-10
ANSI Standard, extensions to, 1-2 Data types, 3-2
ANSI Standard, restrictions upon, 1-3 DECODE, 7-21
Arithmetic assignment, 5-2 Default filename extensions, 2-2
Arithmetic expressions, 4-2 Device drivers, 7-2
Arithmetic expressions evaluation, 4-4 D field descriptor, 8-6
Arithmetic IF, 6-6 Digits, 1-4
Arithmetic operators, 1-5 DIMENSION, 9-2, 9-6
Arithmetic operands, 4-2 DO implied I/O list, 7-5
Array, 3-8 DO statement, 6-7
Array declarators, 9-2
Array element, 3-8 E field descriptor, 8-5
Arrays, FORMAT specifications in, 8-19 END line, 1-6
Arrays in subprograms, 10-15 END statement, 6-12
ASSIGN statement, 5-5 ENDFILE statement, 7-20
Assigned GO TO, 6-3 EQUIVALENCE statement, 9-6
Assignment statements, 1-9, 5-1 Error messages, 2-7
Auxiliary I/O statements, 7-19 Evaluation of arithmetic expressions, 4-4

Examples
Blank COMMON, 9-7 A-input, A output, 8-9, 8-10
BLOCK DATA subprograms, 10-17 Arithmetic IF, 6-6

Carriage control, 8-18
CALL statement, 6-11 Command string, 2-3
Called program, 10-1 COMMON statement, 9-7
Calling program, 10-1 Compilation, 2-6
Carriage control, 8-18 Compilation, switches, 2-5
CHAIN, 10-18 D-input, output, 8-6
Characters, special, 1-5 E-input, output, 8-5
Character set, 1-4 Extended range DO loop, 6-8
Commands, format of, 2-2 F-input, output, 8-4
COMMON statements, 9-6, 10-8 FORMAT specification in arrays, 8-19
Communication with HDOS I/O devices, 7-2 Formatted random input, 7-16
Compiler error messages, 2-7 Formatted random output, 7-17
Compilation switches, 2-4 Formatted random input, 7-10
Compiling FORTRAN programs, 2-1 Formatted sequential output, 7-11
Computed GO TO, 6-3 G-output, 8-7
Constant, 3-7 H-input, output, 8-11
Constructing a function subprogram, 10-8 I-input, output, 8-8
Continuation line, 1-7 Implied DO list, 7-6
Control statement, 1-9, 6-1 L-input, output, 8-12
CONTINUE, 6-10 Logical IF, 6-5

12-3
Index

Nested Do loops, 6-9 Hexadecimal constants, 4-8
Scale Factor, 8-14, 8-15 H field descriptors, 8-10
Simple I/O list, 7-5 Hollerith conversions, 8-9
Unformatted random I/O, 7-13, 7-14 Hollerith data type, 3-6, 4-8
Unformatted sequential I/O, 7-8
Valid subscripts, 3-8 IF, arithmetic, 6-6
X-input, output, 8-13 IF, logical, 6-5

Executable statements, 1-9 I field descriptor, 8-8
Expressions, arithmetic, 4-2 IMPLICIT statement, 9-11
Expressions, logical 4-5 Implied DO list, 7-5
Expressions, relational, 4-5 INCLUDE statement, 9-12
Extended range DO loops, 6-8 Initial line, 1-7
Extensions to ANSI FORTRAN, 1-2 INP, 10-4
External functions, 10-6 Integers, 3-2, 3-9
EXTERNAL statement, 9-5 Intrinsic functions, 10-5

Input/Output, lists, 7.3
Fatal compiler error messages, 2-8 Input/Output, 1.9, 7-1 FCHAIN, 10-18 Random
I/O, 7-12 Field descriptors, 8-2 Sequential I/O, 7-6 Field separators, 8-17
F field descriptors, 8-3
Filename extensions, 2-2 Letters, 1'-4

.........
FORMAT statement, 1-9, 8-1 L field descriptor, 8-12
Formatted random ;I/O, 7-15 Line types 1-6
Formatted sequential I/O, 7.9 Literal constants, 4-8
FORTRAN Logical

character set, 1-4 Conversions, 8-12
compilation switches, 2-4 Data type, 3-5, 3-10
expressions, 4-1 Expressions, 4-1, 4-8
line format, 1-5 IF, 6-5
program form, 1-4 Operators, 4-6

Functions, 10-1 Logical unit number, 7-2
Functions statement, 1-9, 10-7
FUNCTION subprograms, 10-7 Nested DO loops, 6-9

construction of, 10-8 Non-executable statements, 1-9
referencing, 10-9 .NOT., 4-6

Numeric conversions, 8-3
G field descriptor, 8-6
GO TO, assigned, 6-3
GO TO, computed, 6-3
GO TO, unconditional, 6-2

12-4
Chapter Twelve

OPEN subroutine, 7-2, 7-19 Scale factor, 8-14
Operand, arithmetic, 4-2 Separators, field, 8-17
Operator, arithmetic, 4-2 Special characters, 1-5
Operator, logical, 4-6 Specification statements, 1-9, 9-1
Operator, relational, 4-5 Statement functions, 10-2
.OR., 4-6 Statement labels, 1-8
OUT, 10-4 Statements, 1-8
Output to hardcopy devices, 7-3 STOP statement, 6-10

Storage format, 3-1, 3-9
PAUSE statement, 6-11 Subprograms, 1-9, 10-1
PEEK, 10-4 Arrays in, 10-15
POKE, 10-4 FUNCTION, 10-7
PROGRAM statement, 9-3 Subroutine subprograms, 10-11
Random I/O, 7-13 Subscripts, 3-8
Real data type, 3-3, 3-9 Switches, compilation, 2-4
READ statement, 7-1 System variable names, 3-7

Formatted random, 7-16
Formatted sequential, 7-10 Type statement,; 9-4
Unformatted random, 7-13
Unformatted sequential, 7-7 Unconditional GO TO, 6-2

Referencing a FUNCTION subprogram, 10-9 Unformatted random I/O, 7-13
Referencing a SUBROUTINE subprogram, 10-13 Unformatted sequential I/O, 7.7
Relational expressions, 4-5
Relational operators, 4-5 Variable, 3-7
Repeat specifications, 8-16 Valid subscripts, 3-8
Restrictions, ANSI FORTRAN, 1-3
Return from subprograms, 10-14 Warning messages, 2-9
RETURN statement, 6-12 WRITE, 7-1
REWIND, 7-20 Formatted random, 7-18
Rules, Formatted sequential, 7-12

arithmetic expressions, 4-2 Unformatted random, 7-15
subscript construction, 3-8 Unformatted sequential, 7-9

Runtime Error messages, 2-10
X field descriptor, 8-13 XOR., 4-6

Microsoft
MACRO-80

ASSEMBLER
CP/M® Version

Software Reference
Manual

for HEATH/ZENITH 8-bit digital computer systems

Copyright C 1981 HEATH COMPANY Part A of 595-2752
Heath Company Printed in the
AN Rights Reserved BEN TON HARBOR, MICHIGAN 49022 united states of America
 CP/M is a registered trademark of Digital Research

II

Portions of this Manual have been adapted from Microsoft publications or documents.

COPYRIGHT © by Microsoft, 1979, all rights reserved.

III

Table of Contents

Chapter One - Using the MACRO-80 Assembler

Overview .. 1-1

Format of MACRO-80 Source Files ... 1-2
Statements .. 1-3
Symbols .. 1-4
Numeric Constants ... 1-4
Strings ... 1-4

Format of Commands .. 1-5
MACRO-80 Switches ... 1-7
Symbol Table Listing ... 1-10

MACRO-80 Errors ... 1-11
Error Codes ... 1-11
Error Messages .. 1-12

Chapter Two - Expression Evaluation

Overview .. 2-1
Arithmetic and Logical Operators .. 2-2
Modes .. 2-3

Externals ... 2-4
Opcodes as Operands ... 2-4

Chapter Three -- Pseudo-Opcodss/Asaembler Directives

Overview .. 3-1
Pseudo-Opcodes .. 3-2
Conditional Pseudo-Operations .. 3-9
Listing Control Pseudo-Operations .. 3-10
Relocatable Pseudo-Operations .. 3-13

ORG Pseudo-Op .. 3-14
Relocation Before Loading .. 3-15

Chapter Four - Macros and Block Pseudo-Operations

Overview .. 4-1
Macros and Block Pseudo-Operations .. 4-2

Terms ... 4-2
Special Macro Operators and Forms .. 4-7
Using Z80 Pseudo-Ops .. 4-10

Chapter Five – Index

IV

1-1
Using the MACRO-80 Assembler

Chapter One

Using the MACRO-80 Assembler

OVERVIEW

The MACRO-80 Assembler is an 8080/Z80 Assembler with complete facilities for macro
development.

In order to use the Assembler, a source program must first be written using an editor, such as ED.
A MACRO-80 source program is composed of a series of statements. The format of each
statement must follow a predefined format.

After the source program has been written, it must be assembled using the Macro Assembler. The
result of this process will be a relocatable module. This module must then be linked using the
Linking Loader. (See Section 3, "LINK-80", for information on the Linking Loader.) After the
relocatable module has been linked, it can be executed.

In order to provide the Assembler with the information it needs to successfully assemble a
source program, a command string must be input. This command string tells the Assembler
where to find the source program, where to put the relocatable module and where to write the
listing.

There are also several switches which can be set in the command string. Some of these switches are
used to control the format of the listing file. A switch can also be set to allow the Assembler to
assemble Z80 mnemonics.

1-2
Chapter One

FORMAT OF MACRO-80 SOURCE FILES

In general, MACRO-80 accepts a source file that is almost identical to source files for INTEL-
compatible assemblers. Input source lines up to 132 characters in length are allowed.

MACRO-80 preserves lower-case letters in quoted strings and comments. All symbols, opcodes
and pseudo-opcodes typed in as lower-case will be converted to upper-case.

1-3
Using the MACRO-80 Assembler

Statements

Source files input to MACRO-80 consist of statements of the form:

[label: [:]] [operator] [arguments] [;comment]

It is not necessary that statements begin in column one. Multiple blanks or tabs may be used to
improve readability.

If a label is present, it is the first item in the statement and is immediately followed by a
colon (:). If it is followed by two colons, it is declared as PUBLIC. Therefore:

F00:: RET

is equivalent to:

PUBLIC F00

F00: RET

The next item after the label (or the first item on the line-if no label is present) is an operator. An
operator may be an opcode (8080 or Z80 mnenomic), pseudo-op, macro call, or expression.

The evaluation order is as follows:

1. Macro call
2. Opcode/Pseudo-operation
3. Expression

Instead of flagging an expression as an error, the Assembler treats it as if it were a DB statement.
The arguments following the operator will, of course, vary in form according to the operator.

A comment always begins with a semicolon and ends with a carriage return. A comment may be
a line by itself or it may be appended to a line that contains a statement. Extended comments can
be entered using the .COMMENT operation.

1-4
Chapter One

Symbols

MACRO-80 symbols may be of any length. However, only the first six characters are significant.
The following characters are legal in e symbol:

A-Z 0-9 $? @

The underline character is also legal in a symbol. A symbol may not start with a numeric digit.
Lower case symbols are translated to upper case. If a symbol reference is followed by ## it is
declared external.

Numeric Constants

The default base for numeric constants is decimal. This may be changed by the .RADIX pseudo-
op. Any base from 2 (binary) to 16 (hexadecimal) may be selected. When the base is greater
than 10, A-F are the digits following 9. If the first digit of the number is not numeric (i.e. A-F),
the number must be preceded by a zero.

Numbers are 16-bit unsigned quantities. A number is always evaluated in the current radix
unless one of the following special notations is used:

nnnnB Binary
nnnnD Decimal
nnnnO Octal
nnnnQ Octal
nnnnH Hexadecimal
X 'nnnn ' Hexadecimal

Overflow of a number beyond two bytes is ignored and the result is the low order 16-bits.

Strings

A string is comprised of zero or more characters delimited by quotation marks. Either single
or double quotes may be used as string delimiters. The delimiter quotes may be used as
characters if they appear twice for every character occurrence desired. If there are zero
characters between the delimiters, the string is a null string.

1-5
Using the MACRO-80 Assembler

FORMAT OF COMMANDS

To run MACRO-80, type M80 followed by a carriage return. MACRO-80 will return the
prompt "*", indicating it is ready to accept commands. The format of a MACRO-80 command
string is:

objprog-dev:filename.ext,list-dev:filename.ext=source-dev:filename.ext

Where:

objprog-dev: The device on which the object program is to be written.

list-dev: The device on which the program listing is written.

source-dev: The device from which the source-program input to MACRO-80 is obtained. If a

device name is omitted, it defaults to the currently selected drive.

filename.ext The file name and file name extension of the object program file, the listing file,

and the source file. If the file name extensions are omitted, the operating system
will insert the default extensions.

The default file name extensions are:

source file MAC

relocatable object file REL

listing file PRN

cross reference file CRF

1-6
Chapter One

Either the object file or the listing file or both may be omitted. If neither a listing file nor an object file
is desired, place only a comma to the left of the equal sign. If the names of the object file and the listing
file are omitted, the default is the name of the source file.

Examples:

(NOTE: The asterisk represents the prompt from the Assembler.)

*EXP.REL,EXP.PRN=EXP.MAC Assemble the program EXP.MAC and place the
object file in EXP.REL and the list file in EXP.PRN.

*=EXP Assemble the program EXP.MAC, and place the object

file in EXP.REL.

*.LST:=EXP Assemble the program EXP.MAC, place the object
file in EXP.REL and list on the device LST:.

*SMALL,TTY : =TEST Assemble the program TEST. MAC;, place the object

file in SMALL.REL and list on TTY:.

1-7
Using the MACRO-80 Assembler

MACRO-80 Switches

A number of different switches may he given in the MACRO-80 command string that will
affect the format of the listing file. Each switch must be preceded by a slash (/):

Switch Action

O Print all listing addresses, etc. in octal.

H Print all listing addresses, etc. in hexadecimal. (Default)

R Force generation of an object file.

L Force generation of a listing file.

C Force generation of a cross reference file. (See Page 1-11, "Cross Reference
Facility".)

Z Assemble Z80 (Zilog format) mnemo-nics.

1 Assemble 8080 mnemonics. (Default)

P Each /P allocates an extra 256 bytes of stack space for use during assembly.

Use /P if stack overflow errors occur during assembly. Otherwise, it is
not needed.

1-8
Chapter One

Switch Action

/M Initialize Block Data Areas.

If the programmer wants the area that is defined by the DS (Define Space) pseudo-op
initialized to zeros, then the programmer should use the /M switch in the command
line. Otherwise, the space is not guaranteed to contain zeros. That is, DS does
not automatically initialize the space to zeros.

/X The presence or absence of /X in the command line sets the initial current mode and

the initial value of the default for listing or suppressing lines in false conditional
blocks. /X sets the current mode and initial value of default to not-to-list. No /X
sets current mode and initial value of default to list. Current mode determines
whether false conditionals will be listed or suppressed.

The initial value of the default is used with the .TFCOND pseudo-op so that
.TFCOND is independent of .SFCOND and .LFCOND. If the program contains
.SFCOND or .LFCOND, /X has no effect after .SFCOND or .LFCOND is
encountered until a .TFCOND is encountered in the file. So /X has an effect only
when used with a file that contains no conditional listing pseudo-ops or when used
with .TFCOND.

1-9
Using the MACRO-80 Assembler

The following chart illustrates the effects of the three pseudo-ops when encountered under /X and
under no /X.

PSEUDO-OP NO /X /X

(none) ON OFF
 .
 .
 .
.SFCOND OFF OFF
 .
 .
 .
.LFCOND ON ON
 .
 .
 .
.TFCOND OFF ON
 .
 .
 .
.TFCOND ON OFF
 .
 .
 .
SFCOND OFF OFF
 .
 .
 .
.TFCOND OFF ON
 .
 .
 .
.TFCOND ON OFF
 .
 .
 .
.TFCOND OFF ON

Examples:

(NOTE: The asterisk represents the prompt from the Assembler.)

*=TEST/L Compile TEST.MAC with object file TEST.REL and listing
file TEST.PRN

*LAST, LAST/C=MOD1 Compile MOD1.MAC with object file LAST.REL and cross
reference file LAST.CRF for use with CREF-80)

1-10
Chapter One

Symbol Table Listing

In the symbol table listing, all the macro names in the program are listed alphabetically,
followed by all the symbols in the program, listed alphabetically. After each symbol, a tab is
printed, followed by the value of the symbol. If the symbol is Public, an I is printed immediately
after the value. The next character printed will be one of the following:

Character Definition

U Undefined symbol.

C COMMON block name. (The "value" of the COMMON block is its length
(number of bytes) in hexadecimal or octal.)

* External symbol.

<space> Absolute value.

‘ Program Relative value.

“ Data Relative value.

! COMMON Relative value.

1-11
Using the MACRO-80 Assembler

MACRO-80 ERROR MESSAGES

MACRO-80 errors are indicated by a one-character flag in column one of the listing file. If a
listing file is not being printed on the terminal, each erroneous line is also printed or displayed on
the terminal.

Error Codes

A Argument error -
Argument to pseudo-op is not in correct format or is out of range (.PAGE 1;
RADIX 1; PUBLIC 1; STAX H; MOV M,N; INX C).

C Conditional nesting error -

ELSE without IF, ENDIF without IF, two ELSEs on one IF.

D Double Defined symbol -
Reference to a symbol which is multiply defined.

E External error -

Use of an external illegal in context (e.g., FOO SET NAME ; MVI A,2-
NAME).

M Multiply Defined symbol -

Definition of a symbol which is multiply defined.

N Number error -
Error in a number, usually a bad digit (e.g., 8Q).

O Bad opcode or objectionable syntax -

ENDM, LOCAL outside a block; SET, EQU or MACRO without a name; bad
syntax in an opcode (MOV A:); or bad syntax in an expression (mismatched
parenthesis, quotes, consecutive operators, etc.).

P Phase error -

Value of a label or EQU name is different on pass 2.

Q Questionable -
Usually means a line is not terminated properly. This is a warning error (e.g. MOV
A.B.).

1-12
Chapter One

R Relocation -
Illegal use of relocation in expression, such as abs-rel. Data, code and COMMON
areas are relocatable.

U Undefined symbol -

A symbol referenced in an expression is not defined. (For certain pseudo-ops, a V
error is printed on pass 1 and a U on pass 2.)

V Value error -

On pass 1 a pseudo-op which must have its value known on pass 1 (e.g., RADIX,
PAGE, DS, IF, IFE, etc.), has a value which is undefined later in the program,
a U error will not appear on the pass 2 listing.

Error Messages:

'No end statement encountered on input file'
No END statement: either it is missing or it is not parsed due to being in a false conditional,
unterminated IRP/IRPC/REPT block or terminated macro.

'Unterminated conditional'

At least one conditional is unterminated at the end of the file.

'Unterminated REPT/IRP/IRPC/MACRO'
At least one block is unterminated,

[xx] [No] Fatal error(s) [,xx warnings]

The number of fatal errors and warnings. The message is listed on the console and in the
list file.

2-1
Expression Evaluation

Chapter Two

Expression Evaluation

OVERVIEW

In most cases, the operand field of a given opcode may be coded as an operand expression. Such
expression is a string of integers, symbols and characters.' This character string is combined using
certain operators.

The symbols used in the expression can be expressed in several modes. A symbol can also he
classified as either external or not external.

Additionally, 8080 opcodes can be used as valid one-byte operands.

2-2
Chapter Two

ARITHMETIC AND LOGICAL OPERATORS

The following operators are allowed in expressions and are listed in descending order of
precedence.

NUL

LOW, HIGH

*, l , MOD, SHR, SHL

Unary Minus

+,

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

Parentheses are used to change the order of precedence. During evaluation of an expression, as soon as
a new operator is encountered that has precedence less than or equal to the last operator encountered,
all operations up to the new operator are performed. That is, subexpressions involving operators
of higher precedence are computed first.

All operators except "+", ”-“, “*”, “/”must be separated from their operands by at least one space.

The byte isolation operators (HIGH, LOW) isolate the high- or low-order eight bits of an
Absolute 16-bit value. If a relocatable value is supplied as an operand, HIGH and LOW will treat
it as if it were relative to location zero.

2-3
Expression Evaluation

MODES

All symbols used as operands in expressions are in one of the following modes:

Absolute
Data Relative
Program (Code) Relative
COMMON

Symbols assembled under the ASEG, CSEG (default), or DSEG pseudo-ops are in Absolute, Code
Relative or Data Relative mode respectively.

The number of COMMON modes in a program is determined by the number of COMMON blocks
that have been named with the COMMON pseudo-op. Two COMMON symbols are not in
the same mode unless they are in the same COMMON block.

In any operation other than addition or subtraction, the mode of both operands must be Absolute.

If the operation is addition, the following rules apply:

1. At least one of the operands must be Absolute.

2. Absolute + <mode> = <mode>

If the operation is subtraction, the following rules apply:

1. <mode> - Absolute = <mode>

2. <mode> - <mode> = Absolute

where the two <mode>s are the same.

Each intermediate step in the evaluation of an expression must conform to the above rules for
modes, or an error will be generated. For example, if FOO, BAZ and ZAZ are three Program
Relative symbols, the expression:

F00 = BAZ - ZAZ

will generate an R error because the first step (FOO + BAZ) adds two relocatable values. (One of the
values must be Absolute.)

2-4
Chapter Two

This problem can always be fixed by inserting parentheses.

FOO =(BAZ - ZAZ)

is legal because the first step (BAZ - ZAZ) generated an Absolute value that is then added to the
Program Relative value, FOO.

Externals

Aside from its classification by mode, a symbol is either External or not External. An External
value must be assembles into a two-byte field. (Single-byte Externals are not supported.)

The following rules apply to the use of Externals in expressions:

1. Externals are legal only in addition and subtraction.

2. If an External symbol is uses in an expression, the result of the expression is
always External.

3. When the operation is addition, either operand (but not both) may be External.

4. When the operation is subtraction, only the first operand may be External.

Opcodes as Operands

8080 opcodes are valid one-byte operands. Note that only the first byte is a valid operand.

For example:

MVI A,(JMP)
MVI B,(RNZ)
MVI C,MOV A.B

Errors will he generated if more than one byte is included in the operand – such as (CPI 5), (LXI
B.LABEL1) or (JMP LABELS).

Opposed used as one-byte operands need not be enclosed in parentheses. NOTE: Opcodes are
not valid operands in Z80 mode.

3-1
Pseudo-Opcodes/Assembler Directives

Chapter Three

Pseudo-Op codes/Assembler Directives

Overview

Within the Macro-80 Assembler there exists a set of instructions known as pseudo-opcodes or
assembler directives. These instructions represent commands to the Assembler. They are called
pseudo because although they are coded into the source program, they are not translated as
instructions.

The following chapter explains the form and usage of the available pseudo-opcodes.

3-2
Chapter Three

PSEUDO-OPCODES
ASEG

ASEG

ASEG sets the location counter to an absolute segment of memory. The location of the absolute
counter will be that of the last ASEG (default is 0), unless an ORG is done after the ASEG to change the
location. The effect of ASEG is also achieved by using the code segment (CSEG) pseudo operation
and the /P switch in LINK-80.

COMMON

COMMON /<block name>/

COMMON sets the location counter to the selected common block in memory. The location is
always the initial address of the common area so that compatibility with the FORTRAN COMMON
statement is maintained. If <block name> is omitted or consists of spaces, it is considered to be
blank common.

CSEG

CSEG

CSEG sets the location counter to the code relative segment of memory. The location will be that
of the last CSEG (default is 0), unless an ORG is done after the CSEG to change the location. CSEG is
the default condition of the assembler.

3-3
Pseudo-Opcodes/Assembler Directives

Define Byte

DB <exp> [, <exp . . .]

DB <string> [<string> . . .

The arguments to DB are either expressions or strings. DB stores the values of the
expressions or the characters of the strings in successive memory locations beginning
with the current location counter.

Expressions must evaluate to one byte. (If the high byte of the result is 0 or 255, no error is
given; otherwise, an A error results.)

Strings of three or more characters may not be used in expressions (i.e., they must be
immediately followed by a comma or the end of the line). The characters in a string are
stored in the order of appearance, each as a one-byte value with the high order bit set to
zero.

Example:

0000' 41 42 DB 'AB'
0002' 42 DB 'AB' AND 0FFH
0003' 41 42 43 DB 'ABC'

Define Character

DC <string>

DC stores the characters in <string> in successive memory locations beginning with the
current location counter. As with DB, characters are stored in order of appearance, each
as a one-byte value with the high order bit set to zero. However, DC stores the last
character of the string with the high order bit set to one.

An error will result if the argument to DC is a null string.

Define Space

DS <exp>

DS reserves an area of memory. The value of <exp> gives the number of bytes to be
allocated. All names used in <exp> must be previously defined (i.e., all names known at
that point on pass 1).

Otherwise, a V error is generated during pass 1 and a U error may be generated during
pass 2. If a U error is not generated during pass 2, a phase error will probably be
generated because the DS generated no code on pass 1.

3-4
Chapter Three

DSEG

DSEG

DSEG sets the location counter to the Data Relative segment of memory. The
location of the data relative counter will be that of the last DSEG (default is 0), unless an ORG is
done after the DSEG to change the location.

Define Word

DW <exp>[,<exp>. . .J

DW stores the values of the expressions in successive memory locations beginning with the current
location counter. Expressions are evaluated as 2-byte (word) values.

END

END [<exp>)

The END statement specifies the end of the program. If <exp> is present, it is the start address of the
program. If <exp> is not present, then no start address is passed to LINK-80 for that program.

ENTRY/PUBLIC

ENTRY <name> [, <name> . . .]

PUBLIC <name> [, <name> . . .]

ENTRY or PUBLIC declares each name in the list as internal and therefore available for use
by this program and other programs to be loaded concurrently. All of the names in the list must be
defined in the current program or a U error results. An M error is generated if the name is
an external name or common-blockname.

EQU

<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp> is external, an error is generated. If
<name> already has a value other than <exp>, an M error is generated.

3-5
Pseudo-Opcodes/Assembler Directives

EXT/EXTRN

EXT <name> [, <name> . . .]

EXTRN <name> [, <name> . . .]

EXT or EXTRN declares that the name(s) in the list are external (i.e., defined in a different program).
If any item in the list references a name that is defined in the current program, an M error results. A
reference to a name where the name is followed immediately by two pound signs (e.g.,
NAME##) also declares the name as external.

INCLUDE

INCLUDE <filename>

The INCLUDE pseudo-op assembles source statements from an alternate source file into the current
source file. Use of INCLUDE eliminates the need to repeat an often-used sequence of statements in
the current source file. The pseudo-ops INCLUDE, $INCLUDE and MACLIB are synonymous.

<filename> is any valid specification, as determined by the operating system. Defaults for
filename extensions and device names are the same as those in a MACRO-RU command line,

The INCLUDE file is opened and assembled into the current source file immediately following
the INCLUDE statement. When end-of-file is reached, assembly resumes with the statement
following INCLUDE.

On a MACRO-RD listing, a plus sign is printed between the assembled code and the source line
on each line assembled from an INCLUDE file.

Nested INCLUDEs are not allowed. If encountered, they will result in an objectionable syntax
error 'O'.

The file specified in the operand field must exist. If the file is not found, the error 'V' (value error) is
given and the INCLUDE is ignored!

3-6
Chapter Three

NAME

NAME ('modname')

NAME defines a name for the module. Only the first six characters are significant in a module name.
A module name may also be defined with the TITLE pseudo-op. In the absence of both the NAME
and TITLE pseudo-ops, the module name is created from the source file name.

Define Origin

ORG <exp>

The location counter is set to the value of <exp> and the Assembler assigns generated code
starting with that value. All names used in <exp> must be known on pass 1, and the value must either be
absolute or in the same area as the location counter.

PAGE

PAGE [<exp>)

PAGE causes the Assembler to start a new output page. The value of <exp>, if included, becomes
the new page size (measured in lines per page) and must be in the range 10 to 255. The default page
size is 50 lines per page. The Assembler puts a form feed character in the listing file at the end of a
page.

SET

<name> SET <exp>

SET is the same as EQU, except no error is generated if <name> is already defined.

SUBTTL

SUBTTL <text>

SUBTTL specifies a subtitle to be listed on the line after the title on each page heading. <text> is
truncated after 60 characters. Any number of SUBTTLs may be given in a program.

3-7
Pseudo-Opcodes/Assembler Directives

TITLE

TITLE <text>

TITLE specifies a title to be listed on the first line of each page. If more than one TITLE is given, a Q
error results. The first six characters of the title are used as the module name unless a NAME pseudo
operation is used. If neither a NAME or TITLE pseudo-op is used, the module name is created from
the source file name.

.COMMENT

.COMMENT <delim><text><delim>

The first non-blank character encountered after COMMENT is the delimiter. The following <text>
comprises a comment block which continues until the next occurrence of <delimiter> is encountered.
For example, using an asterisk as the delimiter, the format of the comment block would be:

.COMMENT *
any amount of text entered here as the comment block
 .
 .
 .*
;return to normal mode

.PRINTX

.PRINTX <delim><text><delim>

The first non-blank character encountered after PRINTX is the delimiter. The following text is
listed on the terminal during assembly until another occurrence of the delimiter is encountered.

.PRINTX is useful for displaying progress through a long assembly or for displaying the value
of conditional assembly switches.

For example:

IF CP/M
.PRINTX /CP/M version
ENDIF

.PRINTX will output on both passes. If only one printout is desired, use the IF1 or IF2 pseudo-op.

3-8
Chapter Three

.RADIX

.RADIX <exp>

The default base (or radix) for all constants is decimal. The RADIX statement allows the
default radix to be changed to any base in the range 2 to 16.

For example:

LXI H,0FFH
.RADIX 16
LXI H,0FF

The two LXIs in the example are identical. The <exp> in a RADIX statement is always in decimal
radix, regardless of the current radix.

.REQUEST

.REQUEST <filename> [, <filename>. . .]

.REQUEST sends a request to the LINK-80 Loader to search the file names in the list for undefined
globals before searching the FORTRAN library. The file names in the list should be in the form of
legal MACRO-80 symbols. They should not include file name extensions or disk specifications.
The LINK-80 loader will supply the default extension REL and will assume the default drive.

.Z80

.Z80 enables the Assembler to accept Z80 opcodes. Z80 mode may also be set by appending the /Z
switch to the MACRO-80 command string.

.8080

.8080 enables the Assembler to accept 8080 opcodes. This is the default condition. 8080 mode
may also be set by appending the /I switch to the MACRO-80 command string.

3-9
Pseudo-Opcodes/Assembler Directives

CONDITIONAL PSEUDO-OPERATIONS

The conditional pseudo-operations are:

IF/IFT <exp> True if <exp> is not 0.

IFE/IFF < exp> True if <exp> is 0.

IF1 True if pass 1.

IF2 True if pass 2.

IFDEF <symbol> True if <symbol> is defined or has been declared External.

IFNDEF <symbol> True if <symbol> is undefined or not declared External.

IFB <arg> True if <arg> is blank. The angle brackets around <,arg> are

required.

IFNB <arg> True if <arg> is not blank. Used for testing when dummy

parameters are supplied. The angle brackets around <arg>
are required.

IFIDN <arg1>, <arg2> True if the string <arg1> is IDeNtical to the string <arg2>.

The angle brackets around <arg1> and <<arg2> are required.

IFDIF <arg1>,<arg2> True if the string <arg1> is DIFferent from the string

<arg2>. The angle brackets around <arg1> and <arg2> are
required.

All conditionals use the following format:

IFxx [argument]
 .
 .
 .
[ELSE
 .
 .
 .]
END IF

Conditionals may be nested to any level.

3-10
Chapter Three

Any argument to a conditional must be known on pass 1 to avoid V errors and incorrect evaluation.
For IF, IFT, IFF, and IFE the expression must involve values which were previously defined and the
expression must be absolute. If the name is defined after an IFDEF or IFNDEF, pass 1 considers the
name to be undefined, but it will be defined on pass 2.

ELSE

Each conditional pseudo-operation may optionally be used with the ELSE pseudo-opcode which
allows alternate code to be generated when the opposite condition exists. Only one ELSE is
permitted for a given IF, and an ELSE is always bound to the most recently opened IF. A
conditional with more than one ELSE or an ELSE without a conditional will cause a C error.

ENDIF

Each IF must have a matching ENDIF to terminate the conditional. Otherwise, an 'Unterminated
conditional' message is generated at the end of each pass. An ENDIF without a matching IF causes
a C error.

Listing Control Pseudo-Operations

There are five listing control pseudo-ops. Output to the listing file can he controlled by the
following pseudo-ops:

.LIST,.XLIST, .SFCOND, .LFCOND, .TFCONI)

If a listing is not being made, these pseudo-ops have no effect.

.LIST is the default condition. When a XLIST is encountered, source and object code will not be
listed until a LIST is encountered.

The latter three pseudo-ops control the listing of conditional pseudo-op blocks which evaluate as
false. These pseudo-ops give the programmer control over four cases.

1. Normally list false conditionals – For this case, the programmer simply allows the default
mode to control the listing. The default mode is list false conditionals. If the programmer
decides to suppress false conditionals, the /X switch can be issued in the command line
instead of editing the source file.

3-11
Pseudo-Opcodes/Assembler Directives

2. Normally suppress false conditionals – For this case, the programmer issues the .TFCOND
pseudo-op in the program file. .TFCOND reverses (toggles) the default, causing false
conditionals to be suppressed. If the programmer decides to list false conditionals, the /X
switch can be issued in the command line instead of editing the source file.

3. Always suppress/list false conditionals – For these cases, the programmer issues either

the .SFCOND pseudo-op to suppress false conditionals, or the .LFCOND pseudo-op
to list all false conditionals.

4. Suppress/list some false conditionals – For this case, the programmer has decided for most false

conditionals whether to list or suppress; but for some false conditionals, the programmer has not
yet decided. For the false conditionals decided about, use .SFCOND or .LFCOND. For those
not yet decided, use .TFCOND. .TFCOND sets the current and default settings to the opposite
of the default. Initially, the default is set by giving /X or no /X in the command line. Two
subcases exist:

A. The programmer wants some false conditionals not to list unless /X is given. The
programmer uses the .SFCOND and .LFCOND pseudo-ops to control which areas always
suppress or list false conditionals. To selectively suppress some false conditionals, the
programmer issues .TFCOND at the beginning of the conditional block and again at the
end of the conditional block. (NOTE: The second .TFCOND should be so that the
default setting will be the same as the initial setting. Leaving the default equal to the
initial setting makes it easier to keep track of the default mode if there are many such areas.)
If the conditional block evaluates as false, the lines will be suppressed. In this sub case,
issuing the /X switch in the command line causes the conditional block affected by
.TFCOND to list even if it evaluates as false.

B. The programmer wants some false conditionals to list unless /X is given of the file.
Two consecutive TFCONDs place the conditional listing setting in an initial state which
is determined by the presence or absence of the /X switch (the first .TFCOND sets the
default to not initial; the second to initial). The selected conditional block then responds
to the /X switch: if a /X switch is issued in the command line, the conditional block is
suppressed if false; if no /X switch is issued in the command line, the conditional
block is listed even if false.

3-12
Chapter Three

The programmer then must reissue the .SFCOND or .LFCOND conditional listing pseudo-op to
restore the suppress or list mode. Simply issuing another .TFCOND will not restore the prior
mode, but will toggle the default setting. Since in this sub case, the next area of code is supposed
to list or suppress false conditionals always, the programmer must issue .SFCOND or
.LFCOND.

The three conditional listing pseudo-ops are summarized below.

PSEUDO-OP DEFINITION

.SFCOND Suppresses the listing of conditional blocks that evaluate as false.

.LFCOND Restores the listing of conditional blocks that evaluate as false.

.TFCOND Toggles the current setting which controls the listing of false conditionals.
.TFCOND sets the current and default setting to not default. If a /X switch is
given in the MACRO-80 run command line for a file which contains .TFCOND,
/X reverses the effect of .TFCOND.

The output of MACRO/REPT/IRP/IRPC expansions is controlled by three pseudo-ops:

LALL,.SALL, and .XALL.

Where:

.LALL lists the complete macro text for all expansions.

.SALL lists only the object code produced by a macro and not its text.

.XALL is the default condition; it is similar to .SALL, except a source line is

listed only if it generates object code.

3-13
Pseudo-Opcodes/Assembler Directives

RELOCATION PSEUDO-OPERATIONS

The ability to create relocatable modules is one of the major features of MACRO80. Relocatable
modules offer the advantages of easier coding and faster testing, debugging and modifying. In
addition, it is possible to specify segments of assembled code that will later be loaded into
RAM (the Data Relative segment) and ROM/PROM (the Code Relative segment).

The pseudo-operations that select relocatable areas are CSEG and DSEG. The ASEG pseudo-op
is used to generate non-relocatable (absolute) code. The COMMON pseudo-op creates a
common data area for every COMMON block that is named in the program.

The default mode for the Assembler is Code Relative. That is, assembly begins with a CSEG
automatically executed and the location counter in the Code Relative mode, pointing to
location 0 in the Code Relative segment of memory. All subsequent instructions will be assembled
into the Code Relative segment of memory until an ASEG or DSEG or COMMON pseudo-
op is executed.

For example, the first DSEG encountered sets the location counter to location zero in the Data
Relative segment of memory. The following code is assembled in the Data Relative mode,
where, it is assigned to the Data Relative segment of memory. If a subsequent CSEG is
encountered, the location counter will return to the next free location in the Code Relative
segment and so on.

The ASEG, DSEG, CSEG pseudo-ops never have operands. If you wish to alter the current value of the
location counter, use the ORG pseudo-op.

3-14
Chapter Three

ORG Pseudo-Op

At any time, the value of the location counter may be changed by use of the ORG pseudo-op.

The form of the ORG statement is:

ORG <exp>

where the value of <exp> will be the new value of the location counter in the current mode. All
names used in <exp> must be known on pass 1 and the value of 'exp> must be either Absolute or in
the current mode of the location counter.

For example, the statements

DSEG
ORG 50

set the Data Relative location counter to 50, relative to the start of the Data Relative segment
of memory.

LINK-80

The LINK-80 Linking Loader (see Section C) combines the segments and creates each relocatable
module in memory when the program is loaded. The origins of the relocatable segments are not
fixed until the program is loaded and the origins are assigned by LINK-80. The command to
LINK-80 may contain user-specified origins through the use of the /P (for Code Relative) and
/D (for Data and COMMON segments) switches.

For example, a program that begins with the statements:

ASEG
ORG 800H

and is assembled entirely in Absolute mode will always load beginning at 800 unless the ORG
statement is changed in the source file. However, the same program, assembled in Code Relative
mode with no ORG statement, may be loaded at any specified address by appending the
/P:<address> switch to the LINK-80 command string.

3-15
Pseudo-Opcodes/Assembler Directives

Relocation Before Loading

Two pseudo-ops, PHASE and .DEPHASE, allow code to be located in one area, but executed
only at a different, specified area.

For example:

.PHASE 100H
0100 CD 0106 F00: CALL BAZ
0103 C3 0007' JMP ZOO
0106 C9 BAZ: RET

 .DEPHASE
0007' C3 0005 ZOO: JMP 5

All labels within a PHASE block are defined as the absolute value from the origin of the phase
area. The code, however, is loaded in the current area (i.e., from 0' in this example). The code
within the block can later be moved to 100H and executed.

3-16
Chapter Three

4-1
Macros and Block Pseudo-Operations

Chapter Four

Macros and Block

Pseudo- Operations

OVERVIEW
The Macro-80 Assembler provides complete facilities for constructing macros within the
source program. Three repeat pseudo-operations as well as the macro definition operation are
included. The following chapter explains the construction and use of the macro facilities.

4-2
Chapter Four

MACROS AND BLOCK PSEUDO OPERATIONS

The macro facilities provided by MACRO-80 include three repeat pseudo-operations: repeat
(REPT), indefinite repeat (IRP), and indefinite repeat character (IRPC). A macro definition
operation (MACRO) is also provided. Each of these four macro operations is terminated by the
ENDM pseudo-operation.

Terms

For the purposes of discussion of macros and block operations, the following terms will be used:

1. <dummy> is used to represent a dummy parameter. All dummy parameters are
legal symbols that appear in the body of a macro expansion.

2. <dummylist> is a list of <dummy>s separated by commas.

3. <arglist> is a list of arguments separated by commas. <arglist> must be delimited by

angle brackets. Two angle brackets with no intervening characters (< >) or two
commas with no intervening characters (, ,) enter a null argument in the list.
Otherwise an argument is a character or series of characters terminated by a comma
or >.

With angle brackets that are nested inside an <arglist>, one level of brackets is
removed each time the bracketed argument is used in an <arglist>.

A "quoted string" is an acceptable argument and is passed as such. Unless enclosed
in <brackets> or a "quoted string", leading and trailing spaces are deleted from
arguments.

4. <paramlist> is used to represent a list of actual parameters separated by commas. No

delimiters are required (the list is terminated by the end of line or a comment), but
the rules for entering null parameters and nesting brackets are the same as described
for <arglist>.

4-3
Macros and Block Pseudo-Operations

Block Pseudo Op-Codes

REPT-ENDM

REPT <exp>
 .
 .
 .
ENDM

The block of statements between REPT and ENDM is repeated <exp> times. <exp> is
evaluated as a 16-bit unsigned number. If <exp> contains any external or undefined terms, an error
is generated.

Example:

X SET 0
REPT 10 ;generates bytes 01-0A

X SET X+1
DB X
ENDM

IRP-ENDM

IRP <dummy>,<arglist>
 .
 .
 .
ENDM

The <arglist> must be enclosed in angle brackets. The number of arguments in the <arglist>
determines the number of times the block of statements is repeated. Each repetition substitutes the next
item in the <arglist> for every occurrence of <dummy> in the block. If the <arglist> is null (i.e., <
>), the block is processed once with each occurrence of <dummy> removed.

For example:

IRP X,<1,2,3,4,5,6,7,8.9,10>
DB X
ENDM

generates the same bytes as the REPT example.

4-4
Chapter Four

IRPC-ENDM

IRPC <dummy>,string (or <string>)
 .
 .
 .
ENDM

IRPC is similar to IRP but the arglist is replaced by a string of text and the angle brackets around
the string are optional. The statements in the block are repeated once for each character in the
string. Each repetition substitutes the next character in the string for every occurrence of
<dummy> in the block.

For example:

IRPC X,0123456789
DB X+1
ENDM

generates the same code as the two previous examples.

MACRO

Often it is convenient to be able to generate a given sequence of statements from various places in a
program, even though different parameters may be required each time the sequence is used.

This capability is provided by the MACRO statement:

<name> MACRO <dummylist>
 .
 .
 .

ENDM

where <name> conforms to the rules for forming symbols. <name> is the name that will be used
to invoke the macro. The <dummy>s in <dummylist> are the parameters that will be changed
(replaced) each time the MACRO is invoked. The statements before the ENDM comprise the
body of the macro.

During assembly, the macro is expanded everytime it is invoked but, unlike
REPT/IRP/IRPC, the macro is not expanded when it is encountered.

In the listing, the expansion of the macro will be marked with a plus (+).

4-5
Macros and Block Pseudo-Operations

The form of a macro call is:

<name> <paramlist>

where <name> is the name supplied in the MACRO definition, and the parameters in <paramlist>
will replace the <dummy>s in the MACRO <dummylist> on a one-to-one basis. The number of
items in <dummylist> and <paramlist> is limited only by the length of a line.

The number of parameters used when the macro is called need not be the same as the number of
<dummy>s in <dummylist>. If there are more parameters than <dummy>s, the extras are
ignored. If there are fewer, the extra <dummy>s will be made null. The assembled code will
contain the macro expansion code after each macro call.

NOTE: A dummy parameter in a MACRO/REPT/IRP/IRPC is always recognized exclusively as a
dummy parameter. Register names such as A and B will be changed in the expansion if they
were used as dummy parameters.

Here is an example of a MACRO definition that defines a macro called FOO:

FOO MACRO X
Y SET 0

REPT X
Y SET Y+1

DS Y
ENDM
ENDM

This macro generates the same code as the previous three examples when the call:

FOO 10

is executed.

4-6
Chapter Four

Another example, which generates the same code, illustrates the removal of one level of brackets
when an argument is used as an arglist:

FOO MACRO X
IRP Y,<X>
DB Y
ENDM
ENDM

When the call

FOO <1,2,3,4,5,6,7,8,9,10>

is made, the macro expansion looks like this:

IRP Y,<1,2,3,4,5,6,7,8,9,10>
DB Y
ENDM

ENDM

Every REPT, IRP, IRPC and MACRO pseudo-op must be terminated with the ENDM pseudo-
op. Otherwise, the 'Unterminated REPT/IRP/IRPC/MACRO' message is generated at the end of each
pass. An unmatched ENDM causes an 0 error.

EXITM

The EXITM pseudo-op is used to terminate a REPT/IRP/IRPC or MACRO call. When an EXITM
is executed, the expansion is exited immediately and any remaining expansion or repetition is
not generated. If the block containing the EXITM is nested within another block, the outer level
continues to be expanded.

LOCAL

LOCAL <dummylist>

The LOCAL pseudo-op is allowed only inside a MACRO definition.

When LOCAL is executed, the Assembler creates a unique symbol for each <dummy> in
<dummylist> and substitutes that symbol for each occurrence of the <dummy> in the expansion.
These unique symbols are usually used to define a label within a macro, thus eliminating multiply-
defined labels on successive expansions of the macro. The symbols created by the Assembler range
from ..0001 to ..FFFF. Users will therefore want to avoid the form..nnnn for their own symbols. If
LOCAL statements are used, they must be the first statements in the macro definition.

4-7
Macros and Block Pseudo-Operations

Special Macro Operators and Forms

& The ampersand "&" is used in a macro expansion to concatenate text or symbols. A dummy
parameter that is in a quoted string will not be substituted in the expansion unless it is
immediately preceded by an ampersand. To form a symbol from text and a dummy, put an
"&" between them.

For example:

ERRGEN MACRO X

ERROR&X PUSH B

MVI B,'&X'

JMP ERROR

ENDM

In this example, the call ERRGEN A will generate:

ERROR&A: PUSH B

MVI B.'A'

JMP ERROR

In a block operation, a comment preceded by two semicolons is not saved as part of the
expansion (i.e., it will not appear on the listing even under .LALL). A comment preceded
by one semicolon, however, will be preserved and appear in the expansion.

! When an exclamation point is used in an argument, the next character is entered literally (i.e.,

!; and <;> are equivalent).

NUL NUL is an operator that returns true if its argument (a parameter) is null. The remainder of a
line after NUL is considered to be the argument to NUL.

The conditional:

IF NUL argument

is false if, during the expansion, the first character of the argument is anything other than
a semicolon or carriage return. It is recommended that testing for null parameters be done
using the IFB and IFNB conditionals

4-8
Chapter Four

The percent sign is used only in a macro argument. % converts the expression that
follows it (usually a symbol) to a number in the current radix. During macro expansion,
the number derived from converting the expression is substituted for the dummy. Using
the % special operator allows a macro call by value. (Usually, a macro call is a call by
reference with the text of the macro argument substituting exactly for the dummy.)

The expression following the % must conform to the same rules as the DS (Define Space)
pseudo-op. A valid expression returning a nonrelocatable constant is required.

For Example:

Normally, LB, the argument to MAKLAB, would be substituted for Y, the argument to
MACRO, as a string. The % causes LB to be converted to a nonrelocatable constant which
is then substituted for Y. Without the special operator, the result of assembly would be
'Error LB' rather than `Error 1', etc.

MAKLAB MACRO Y

ERR&Y: DB 'Error &Y',0

ENDM

MAKERR MACRO X

LB SET 0

REPT X

LB SET LB+1

MAKLAB %LB

ENDM

ENDM

When called by MAKERR 3, the assembler will generate:

ERR&1: DB 'Error 1'.0

ERR&2: DB 'Error 2',0

ERR&3: DB 'Error 3'.0

4-9
Macros and Block Pseudo-Operations

TYPE The TYPE operator returns a byte that describes two characteristics of its argument: 1) the
mode, and 2) whether it is External or not. The argument to TYPE may be any expression
(string, numeric, logical). If the expression is invalid, TYPE returns zero.

The byte that is returned is configured as follows:

The lower two bits are the mode. If the lower two bits are:

0 the mode is Absolute
1 the mode is Program Relative
2 the mode is Data Relative
3 the mode is Common Relative

The high bit (80H) is the External bit. If the high bit is on, the expression contains an
External. If the high bit is off, the expression is local (not External).

The Defined bit is 20H. This bit is on if the expression is locally defined, and it is off if the
expression is undefined or external. If neither bit is on, the expression is invalid.

TYPE is usually used inside macros, where an argument type may need to be tested to make a
decision regarding program flow.

4-10
Chapter Four

Using Z80 Pseudo-Ops

When using the 8080/Z80 assembler, the following Z80 pseudo-ops are valid. The function
of each pseudo-op is equivalent to that of its 8080 counterpart.

Z80 pseudo-op Equivalent 8080 pseudo-op

COND IFT
ENDC ENDIF
* EJECT PAGE
DEFB DB
DEFS DS
DEFW DW
DEFM DB
DEFL SET
GLOBAL PUBLIC
EXTERNAL EXTRN

The formats, where different, conform to the 8080 format. That is, DEFB and
DEFW are permitted a list of arguments (as are DB and DW), and DEFM is
permitted a string or numeric argument (as is DB).

4-11
Macros and Block Pseudo-Operations

MACRO-80 Reference Manual Index

Absolute mode, 2-3 Format of Commands, 1-5
Arithmetic operators, 2-2 Format of MACRO-80 source files, 1-2
ASEG, 3-2
Assembler directives, 3-1 IRP-ENDM, 4-3 IRPC-ENDM, 4-4
Block Psuedo-Opcodes, 4-3

.I.ALL, 3-12
.COMMENT, 3-6 LINK-80, 3-12
COMMON, 3-2 Listing control pseudo opcodes, 3-10
COMMON mode, 2-3 Listing, symbol table, 1-8
Conditional pseudo-opcodes, 3-10 Loading, relocation before, 3-13
Constants, 1-4 LOCAL, 4-6
Cross reference facility, 1-10 Logical operators, 2-2 CSEG, 3-2

Macros, 4-1, 4-5
Data relative mode, 2-3 MAGRO-80 switches, 1-7
Data storage, 3-8 Macro operators, special, 4-7
DB, 3-3 Messages, error, 1-9, 1-10
Default filename extensions, 1-5 Modes, 2-3 Directives, assembler, 3-1
DS, 3-3 Name, 3-5
DSEG, 3-4 Numeric Constants, 1-4 DW, 3-4

ELSE, 3-10 Opcodes as operands, 2-4
END, 3-4 Opcodes, pseudo-, 3-1
ENDIF, 3-10 Operators, special Macro, 4-7
ENDM, 4-6 ORG, 3-5, 3-12 ENTRY, 3-4
EQU, 3-4 PAGE, 3-5

PRINTX
Error messages, 1-11, 1-12 , 3-7

Program relative mode, 2-3
Examples, 1-6, 1-9
EXITM, 4-6 Pseudo-opcodes, 3-1
Expression evaluation, 2-1 Block, 4-2
EXT, 3-5 Conditional, 3-9
Extensions, filename, 1-5 Listing control, 3-10
Externals, 2-4 Relocation, 3-11
EXTRN, 3-5 Z80, 4-8

Public, 3-4

4-12
Chapter Four

.RADIX, 3-7 Terms, Macro, 4-2
Reference, cross, 1-11 TITLE, 3-6
Relocation before loading, 3-13
Relocation, pseudo opcodes, 3-11 XALL, 3-12
REPT-ENDM, 4-3
REQUEST, 3-8 .Z80, 3-8

Z80 pseudo-opcodes, 4-8
.SALL, 3-12
SET, 3-6
Special operators, 4-7 Statements, 1-4
Strings, 1-4
SUBTTL, 3-6
Switches, MACRO-80, 1-6
Symbols, 1-4

Microsoft
LINK-80
LOADER

CP/M® Version

Software Reference
Manual

for HEATH/ZENITH 8-bit digital computer systems

Copyright C 1981 HEATH COMPANY Part A of 595-2752
Heath Company Printed in the
AN Rights Reserved BEN TON HARBOR, MICHIGAN 49022 united states of America
 CP/M is a registered trademark of Digital Research

II

III

Table of Contents

LINK-80, Linking Loader

Overview .. 1-1
LINK-80 Command Strings .. 1-2

LINK-80 Switches .. 1-3
LINK-80 Error Messages .. 1-5

Format of LINK-80 Compatible Object Files ... 1-7

IV

1-1
LINK-80, Linking Loader

LINK-80 Linking Loader

OVERVIEW

The following Section contains reference information about the LINK-80 Linking Loader. The
Linking Loader is used to load the relocatable modules produced by the FORTRAN-80 compiler
and the Macro-80 Assembler. The Linking Loader also links these modules to any internal routines
that may be needed for execution of the relocatable module.

For example, to perform formatted random I/O several routines are referenced in the FORTRAN-80
library. These routines contain the actual machine language code needed in order to access the disk
drive. The linker is used to link the main program to these routines.

The linker can also be used to create an absolute file that can be executed under CP/M. This file
has the default extension .COM and is completely compatible with CP/M.

NOTE: Be sure to use only 8080 op-codes if the absolute file is intended to run on an H8 without

the HA-8-6 Z80 CPU board.

1-2
Chapter One

LINK-80 COMMAND STRINGS

To run LINK-80, type L80 followed by a carriage return. LINK-80 will return the prompt "*". Each
command to LINK-80 consists of a string of file names and switches separated by commas:

objdevl:filename.ext/switch1,objdev2:filename.ext,...

If the input device for a file is omitted, the default drive is used. If the extension of an input file is
omitted, the default is.REL. After each line is typed, LINK-80 will load or search (see /S below)
the specified files. After LINK-80 finishes this process, it will list all symbols that remained
undefined followed by an asterisk.

Before execution begins, LINK-80 will always search the system library (FORLIB.REL) to satisfy
any unresolved external references. The system library must reside on the default drive.

If the user wishes to first search non-standard libraries, the file names that arc followed by /S should
be appended to the end of the loader command string.

The following examples illustrate a typical use of the Linking Loader.

*TEST

This will load the file TEST.REL.

*TEST/N/E

This command string tells the linker to output the results of the linking and loading process in a file
called TEST.COM. The /E will cause the linker to first search the system library to clear up any
unresolved references, then exit to CP/M.

1-3
LINK-80, Linking Loader

LINK-80 Switches

A number of switches may be given in the LINK-80 command string to specify actions
affecting the loading process. Each switch must be preceded by a slash (/).

These switches are:

/R

Reset. Put loader back in its initial state. Use /R if the wrong file is accessed and it is
necessary to re-start. /R takes effect as soon as it is encountered in a command string.

/E or /E:Name

Exit LINK-80 and return to CP/M. The system library will be searched en the default drive
to satisfy any existing undefined globals.

The optional form /E:Name (where Name is a global symbol previously defined in one of
the modules) uses Name for the start address of the program.

/G or /G:Name

Start execution of the program as soon as the current command line has been
interpreted. The system library will be searched on the default disk to satisfy any existing
undefined globals if they exist.

Before execution actually begins, LINK-80 prints two numbers and a BEGIN EXECUTION
message. The two numbers are the start address, and the address of the next available byte.

The optional form /G:Name (where Name is a global symbol previously defined in one of
the modules) uses Name for the start address of the program.

/N

If a <filename>/N is specified, the program will be saved on disk under the selected
name (with a default extension of COM when a /E or /G is done. A jump to the start of the
program is inserted so the program will run properly.

1-4
Chapter One

/P and /D

/P and /D allow the origin(s) to be set for the next program loaded. /P and /D take effect when
seen and they have no effect on programs already loaded. The form is /P:<address> or
/D:<address>, where <address> is the desired origin in the current radix. (Default
radix is hex. /0 sets radix to octal; /H to hex.)

Do not use /P or /D to load programs or data into the locations of the loader's jump to the start
address (100H to 102H) unless it is to load the start of the program there. If programs or
data are loaded into these locations, the jump will not be generated.

If no /D is given, data areas are loaded before program areas for each module. If a /D is given,
all Data and Common areas are loaded starting at the data origin and the program area at the
program origin.

/U

List the origin and end of the program and data area and all undefined globals as soon as the
current command line has been interpreted. The program information is only printed if a
/D has been done.

/M

List the origin and end of the program and data area, all defined globals and their values, and
all undefined globals followed by an asterisk. The program information is only printed if a
/D has been done.

/S
Search the filename immediately preceding the /S in the command string to satisfy any
undefined globals.

/X

If a filename/N was specified, /X will cause the file to be saved in Intel ASCII HEX format
with an extension of HEX.

EXAMPLE: FOO/N/X/E will create an Intel ASCII HEX formatted load module
named FOO.HEX.

/Y

If a filename/N was specified, /Y will create a filename.SYM file when /E is entered.
This file contains the names and addresses of all Globals for use with Digital Research's
Symbolic Debugger, SID and ZSID.

EXAMPLE: FOO/N/Y/E Creates FOO.COM and FOO.SYM.
MYPROG/N/X/Y/E creates MYPROG.HEX and MYPROG.SYM.

1-5
LINK-80, Linking Loader

LINK-80 Error Messages

LINK-80 has the following error messages.

?No Start Address

A /G switch was issued, but no main program had been loaded.

?Loading Error

'The last file given for input was not a properly formatted LINK-80 object file.

?Out of Memory

Not enough memory to load program. (A minimum of 40K RAM is required.)

?Command Error

Unrecognizable LINK-80 command string.

?<file> Not Found

<file>, as given in the command string, did not exist.

%2nd COMMON Larger /XXXXXX/

The first definition of COMMON block /XXXXXX/ was not the largest definition. Re-order
module loading sequence or change COMMON block definitions. (See Chapter 9 in the
FORTRAN Reference Manual for more information on the COMMON statement.)

%Mutt. Def. Global YYYYYY

More than one definition for the global (internal) symbol YYYYYY was encountered during
the loading process.

%Overlaying Program Area

A /D or /P will cause already loaded data to be destroyed.

1-6
Chapter One

?Intersecting Program Area
Data

The program and data area intersect and an address or external chain entry is in this
intersection. The final value cannot be converted to a current value since it is in the area
intersection.

?Start Symbol - <name> - Undefined

After a /E: or /G: is given, the symbol specified was not defined.

Origin Above Loader Memory, Move Anyway (Y or N)? Below

After a /E or /G was given, either the data or program area has an origin or top which lies
outside loader memory. If a Y <cr> is given, LINK-80 will move the area and continue. If
anything else is given, LINK-80 will exit.

In either case, if a /N was given, the image will already have been saved.

?Can't Save Object File

A disk error occurred when the file was being saved. Usually this occurs when there is no
more room left on the disk.

?Nothing Loaded

A <filename>/S or /E or /G was given but no object file was loaded. That is, an attempt was
made to search a library, exit the Linker, or execute a program, when in fact nothing had been
loaded. For example:

TEST/N/E Results in '?Nothing Loaded' because TEST/N names TEST.COM, but does not

load TEST.REL.

1-7
LINK-80, Linking Loader

FORMAT OF LINK-80 COMPATIBLE OBJECT FILES

The following information is reference material for users who wish to know the load format of
LINK-80 relocatable object files.

LINK-compatible object files consist of a bit stream. Individual fields within the bit stream are not
aligned on byte boundaries, except as noted below. Use of a bit stream for relocatable object files
keeps the size of object files to a minimum, thereby decreasing the number of disk reads/writes.

There are two basic types of load items: Absolute and Relocatable. The first bit of an item indicates
one of these two types. If the first bit is a 0, the following 8 bits are loaded as an absolute byte. If
the first bit is a 1, the next 2 bits are used to indicate one of four types of relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16 bits after adding the current Program

base.

10 Data Relative. Load the following 16 bits after adding the current Data base.

11 Common Relative. Load the following 16 bits after adding the current

Common base.

Special LINK items consist of the bit stream 100 followed by:

A four-bit control field.

An optional A field consisting of a two-bit address type that is the same as the two-bit field
above except 00 specifies absolute address.

An optional B field consisting of 3 bits that give a symbol length and up to 8 bits for each
character of the symbol.

A general representation of a special LINK item is:

1 00 xxxx yy nn zzz + characters of symbol name
A field B field

xxxx Four-bit control field (0-15 below)
yy Two-bit address type field
nn Sixteen-bit value
zzz Three-bit symbol length field

1-8
Chapter One

The following special types have a B-field only:

0 Entry symbol (name for search)
1 Select COMMON block
2 Program name
3 Request library search
4 Reserved for future expansion

The following special LINK items have both an A field and a B field:

5 Define COMMON size
6 Chain external (A is head of address chain, B is name of external symbol)
7 Define entry point (A is address, B is name)
8 External-offset. Used for JMP and CALL to externals.

The following special LINK items have an A field only:

9 External + offset. The A value will be added to the two bytes starting at the current

location counter immediately before execution.
10 Define size of Data area (A is size) 11 Set

loading location counter to A
12 Chain address. A is head of chain, replace all entries in chain with current

location counter. The last entry in the chain has an address field of absolute zero.
13 Define program size (A is size)
14 End program (forces to byte boundary)

The following special Link item has neither an A nor a B field:

15 End File

1-9
LINK-80, Linking Loader

LINK-80 Linking Loader Index

Bit stream, 1-7 Multiple Defined Globals, 1-5

Can't Save Object File, 1-6 No Start Address, 1-5
Command Error, 1-5
Command Strings, 1-2 Object files, format of, 1-7, 1-8
COMMON Larger, 1-5 Origin Above Loader Area, 1-6

Origin Below Loader Area, 1-6
Exit LINK-80, 1-2 Out of Memory, 1-5

Overlaying Data Area, 1-5
Format of object file, 1-7, 1-8 Overlaying Program Area, 1-5

Intersecting Data Area, 1-6 Reset, 1-3
Intersecting Program Area, 1-6

Save file on disk, 1-3
Linking loader, 1-1 Start execution of program, 1-3
LINK-80, 1-1 Start Symbol Undefined, 1-6

Command string. 1-2
Error messages, 1-5
Switches, 1-3, 1-4

Loading Error, 1-5

1-10
Chapter One

Microsoft
LIB-80

Library Manager
CP/M® Version

Software Reference
Manual

for HEATH/ZENITH 8-bit digital computer systems

Copyright C 1981 HEATH COMPANY Part C of 595-2699
Heath Company Printed in the
AN Rights Reserved BEN TON HARBOR, MICHIGAN 49022 united states of America
 CP/M is a registered trademark of Digital Research

II

Portions of this Manual have been adapted from Microsoft publications or documents.

COPYRIGHT © by Microsoft, 1979, all rights reserved.

III
LIB-80, Library Manager

Table of Contents

LIB-80, Library Manager

Overview ... 1-1
LIB-80 Command Strings .. 1-2
Modules .. 1-3
LIB-80 Switches .. 1-4
LIB-80 Listings ..1-5
Sample LIB Session ... 1-6

IV

1-1
LIB-80, Library Manager

LIB-80 LIBRARY MANAGER

OVERVIEW

LIB-80 is the object time library manager for the CP/M version of FORTRAN-80, COBOL-80
and the BASIC Compiler. It is used to create and modify libraries which are then linked with
compiled programs.

WARNING

Read this document carefully and make a back-up
copy of your libraries before using LIB. It
is not difficult to destroy a library with LIB-80.

1-2
Chapter One

LIB-80 COMMAND STRINGS

To run LIB-80, type LIB and press RETURN. The LIB-80 Library manager will be loaded into
memory and executed. LIB-80 will return the prompt "*” indicating it is ready to accept
commands. Each command in LIB-80 either lists information about a library or adds new
modules to the library under construction.

Commands to LIB-80 consist of an optional designation file name which sets the name of the
library being created, followed by an equal sign, followed by module names separated by
commas. The default designation file name is FORLIB.REL.

Examples:

*NEWLIB=FILE1<MOD2>,FILE3,TEST

*SIN,COS,TAN,ATAN

Any command specifying a set of modules concatenates the modules selected onto the
end of the last destination file name given. Therefore,

*FILE1,FILE2<BIGSUB>,TEST

is equivalent to:

*FILE1
*FILE2< BIGSUB>
*TEST

1-3
LIB-80, Library Manager

MODULES

A module is typically a FORTRAN or COBOL. subprogram or main program, or a
MACRO-80 assembly program that contains ENTRY statements.

The primary function of LIB-80 is to concatenate modules in .REL files to form a new
library. In order to extract modules from previous libraries or .REL files, a powerful
syntax has been devised to specify ranges of modules within a .REL file.

The simplest way to specify a module within a file is simply to use the name of the
module. For example:

SIN

But a relative quantity plus or minus 255 may also be used. For example:

SIN+1

specifies the module after SIN and:

SIN-1

specifies the one before it.

You may also specify ranges of modules by using two dots:

SIN.. means all modules from and including SIN to the end of the file. SIN..COS
means SIN and COS and all modules in between.

Ranges of modules and relative offsets may also be used in combination:

SIN+1..COS-1

To select a given module from a file, use the name of the file followed by the module(s)
specified enclosed in angle brackets and separated by commas.

Examples:

FORLIB<SIN..COS>
MYLIB. REL<TEST>
BIGLIB.REL<FIRST, MIDDLE, LAST>

If (no modules are selected from a file, then all the modules in the file are selected.

1-4
Chapter One

LIB-80 SWITCHES

NOTE

/E will destroy the current library if there is no new
library under construction. Exit LIB-80 using

Control-C if the library is not being revised.

A number of switches are used to control the operation of LIB-80. These switches are always
preceded by a slash:

/O Octal - Set octal typeout mode for /L command.

/H Hex - Set hex typeout mode for /L command (default).

/U List the, symbols which would remain undefined on a search through the file

specified.

/L List the modules in the files specified and the symbol definitions they contain.

/C (Create) Throw away the library under construction and start over.

/E Exit to CP/M. The library under construction (.LIB) is revised to REL and any

previous copy is deleted.

/R Rename - same as /E but does not exit to CP/M on completion.

1-5
LIB-80, Library Manager

LIB-80 LISTINGS

To list the contents of a file in cross reference format, use /L.

*FORLIB/L

When you are building libraries, it is important to order the modules such that any
intermodule references are "forward". The module containing the global reference should
physically appear ahead of the module containing the entry point. Otherwise, LINK-80 may
not satisfy all global references on a single pass through the library.

Use /U to list the symbols which could be defined in a single pass through a library. If a module
in the library makes a backward reference to a symbol in another module, /U will list that
symbol.

Example:

SYSLIB/U

NOTE: Since certain modules in the standard FORTRAN and COBOL systems are always
force-loaded, they will be listed as undefined by /U but will not cause a problem when loading
FORTRAN or COBOL programs.

Listings are currently always sent to the terminal; use control-P to send the listing to the printer.

1-6
Chapter One

SAMPLE LIB SESSION

Building a library:

A>LIB
*TRANLIB=SIN,COS,TAN,ATAN,ALOG
*EX P
*/E
A>

Listing a library:

A>LIB

*TRANLIB.LIB/U

*TRANLIB.LIB/L

(list of symbols in TRANLIB.LIB)

*Cont.rol-C
A>

Microsoft
CREF-80
CROSS

REFERENCE
FACILITY

CP/M® Version

Software Reference
Manual

for HEATH/ZENITH 8-bit digital computer systems

Copyright C 1981 HEATH COMPANY Part D of 595-2752
Heath Company Printed in the
AN Rights Reserved BEN TON HARBOR, MICHIGAN 49022 United states of America
 CP/M is a registered trademark of Digital Research

II

Portions of this Manual have been adapted from Microsoft publications or documents.

COPYRIGHT © by Microsoft, 1979, all rights reserved.

III

Table of Contents

CREF-80, Cross Reference Facility

Overview .. 1-1
Using the Cross Reference Facility ... 1-2
Example .. 1-3

IV

1-1
CREF-80, Cross Reference Facility

CREF-80

CROSS REFERENCE FACILITY

OVERVIEW

The following section contains reference information about the CREF-80 Cross Reference Facility.
The cross reference facility will generate a special listing that can be an important diagnostic tool.
Assume, for example, that a program uses a field called FIELD) t, and that program testing reveals
an error in the manipulate ing of this field. The cross reference listing can be used to check every
instruction that references this field.

1-2
Chapter One

USING THE CROSS REFERENCE FACILITY

The Cross Reference Facility is invoked by typing CREF80. To generate a cross reference listing,
the Assembler must output a special listing file with embedded control characters. The MACRO-80
command string tells the assembler to output this special listing file. /C is the cross reference switch.
When the /C switch is encountered in a MACRO-80 command string, the Assembler opens a .CRF
file instead of a .PRN file.

Example:

(NOTE: The asterisk represents the prompt from the Assembler.)

*=TEST/C Assemble file TEST.MAC and create object file TEST.REL and
cross reference file TEST.CRF.

*T,U='TEST/C Assemble,fileTEST.MAC and create object file T.REL and
cross reference file U.CRF. _

When the Assembler is finished, exit to CP/M with CTRL-C. Then call the Cross Reference..
Facility by typing CREF.

The command string is:

*listing file=source file

The default extension for the source file is.CRF. The /L switch is ignored, and any other switch will
cause an error message to be sent to the terminal.

Possible command strings are:

*=TEST Examine file TEST.CRF and generate a cross reference listing file
TEST.PRN.

*T=TEST Examine file TEST.CRF and generate a cross reference listing file

T.PRN.

Cross Reference listing files differ from ordinary listing files in that:

1. Each source statement is numbered with a Cross Reference number.

2. At the end of the listing, variable names appear in alphabetic order along with the
numbers of the lines on which they are referenced or defined. Line numbers on which
the symbol is defined are flagged with '#'.

1-3
CREF-80, Cross Reference Facility

The following example uses the macro assembler, M80, with the cross reference ,witch. A
printout of the cross reference listing is also shown.

A>TYPE TEST.MAC
ORG 100H

ABLE EQU 10
BAKER EQU 20

XRA A
LXI H,STORE
MVI B,5

LOOP: ADD M
CPI ABLE
JNC LOOP
HLT

STORE: DB 1,2,3,4,5
END

A>M80

*=TEST/C

No Fatal error(s)

*^C
A>CREF

*=TEST

*^C

A>TYPE TEST.PRN

MACRO-80 3.4 26-Nov-80 PAGE 1

1 ORG 100H
2 000A ABLE EQU 10
3 0014 BAKER EQU 20
4 0100' AF XRA A
5 0101' 21 010D' LXI H,STORE
6 0104' 06 05 MVI B,5
7 0106' 86 LOOP: ADD M
8 0107' FE OA CPI ABLE
9 0109' D2 0106' JNC LOOP
10 010C' 76 HLT
11 010D' 01 02 03 04 STORE: DB 1,2,3,4,5
12 0111' 05
13 END

1-4
Chapter One

MACRO-80 3.4 26-Nov-80 PAGE S

Macros:

Symbols:
ABLE 000A BAKER 0014 LOOP 0106' STORE 010D'

No Fatal errors)

ABLE 2# 8
BAKER 3#
LOOP 7# 9
STORE 5 11#

A-1
 Appendix A

Appendix A

8080 Op-Codes

INSTRUCTION SET

Mnemonic Description Mnemonic Description

ACI Add immediate to A with carry DAA Decimal adjust A
ADC M Add memory to A with carry DAD B Add B & C to H & L
ADC r Add register to A with carry DAD D Add D & E to H & L
ADD M Add memory to A DAD H Add H & to L to H & L
ADD r Add register to A DAD SP Add stack pointer to H & L
ADI Add immediate to A DCR M Decrement memory
ANA M And memory with A DCR r Decrement register
ANA r And register with A DCX B Decrement B & C
ANI And immediate with A DCX D Decrement D & E
CALL Call unconditional DCX H Decrement H & L
CC Call on carry DCX SP Decrement stack pointer
CM Call on minus DI Disable Interrupt
CMA Complement A El Enable Interrupts
CMC Complement carry HLT Halt
CMP M Compare memory with A IN Input
CMP r Compare register with A INR M Increment memory
CNC Call on no carry INR r Increment register
CNZ Call on no zero INX B Increment B & C registers
CP Call on positive INX D Increment D & E registers
CPE Call on parity. even INX H Increment H & L registers
CPI Compare immediate with A INX SP Increment stack pointer
CPO Call on parity odd JC Jump on carry
CZ Call on zero JM Jump on minus

A-2
Appendix A

Mnemonic Description Mnemonic Description

JMP Jump unconditional RAL Rotate A left through carry
JNC Jump on no carry RAR Rotate A right through carry
JNZ Jump on no zero RC Return on carry
JP Jump on positive RET Return
JPE Jump on parity even RLC Rotate A left
JPO Jump on parity odd RM Return on minus
JZ Jump on zero RNC Return on no carry
LDA Load A direct RNZ Return on no zero
LDAX B Load A indirect RP Return on positive
LHLD Load H & L direct RPE Return on parity even
LXI B Load immediate register Pair B & C RPO Return on parity odd
LXI D Load immediate register Pair D & E RRC Rotate A right
LXI H Load immediate register Pair H & L RST Restart
LXI SP Load immediate stack pointer RZ Return on zero
MVI M Move immediate memory SBB M Subtract memory from A with borrow
MVI r Move immediate register SBB r Subtract register from A with borrow

MOV M, r Move register to memory SBI Subtract immediate from A with borrow

MOV r,M Move memory to register SHLD Store H & L direct
MOV r1, r2 Move register to register SPHL H & L to stack pointer
NOP No-operation STA Store A direct
ORA M Or memory with A STAX B Store A indirect
ORA r Or register with A STAX D Store A indirect
ORI Or immediate with A STC Set carry
OUT Output SUB M Subtract memory from A
PCHL H & L to program counter SUB r Subtract register from A
POP B Pop register pair B & C off stack SUI Subtract immediate from A
POP D Pop register pair D & E off stack XCHG Exchange D & E, H & L Registers

POP H Pop register pair H & L off stack XRA M Exclusive Or memory with A
POP PSW Pop A and Flags off stack XRA r Exclusive Or register with A
PUSH B Push register B & C on stack XRI Exclusive Or immediate with A
PUSH D Push register pair D & E on stack XTHL Exchange top of stack, H & L

PUSH H Push register pair H & L on stack
PUSH PSW Push A and Flags on stack

B-1
 Z80 Op-Codes

A p p e n d i x B

Z80 Op-Codes
INSTRUCTION SET

Mnemonic Description

ADC HL, ss Add with Carry Reg. pair ss to HL
ADC A, s Add with carry operand s to Acc.

ADD A, n Add value n to Acc.

ADD A, r Add Reg. r to Acc.

ADD A, (HL) Add location (HL) to Acc.

ADD A, (IX+d) Add location (IX+d) to Acc.

ADD A, (IY+d) Add location (IY+d) to Acc.

ADD HL, ss Add Reg. pair ss to HL

ADD IX, pp Add Reg. pair pp to IX

ADD IY, rr Add Reg. pair rr to IY

AND s Logical `AND' of operand s and

Acc.

BIT b, (HL) Test BIT b of location (HL)

BIT b, (IX+d) Test BIT b of location (IX+d)

BIT b, (IY+d) Test BIT b of location (IY+d)

BIT b, r Test BIT b of Reg. r

CALL cc, nn Call subroutine at location nn if
condition cc is true

CALL nn Unconditional call subroutine at
location nn

CCF Complement carry flag

CP s Compare operand s with Acc.

CPD Compare location (HL) and Acc.
decrement HL and BC

CPDR Compare location (HL) and Acc.
decrement HL and BC, repeat until
BC=0

Mnemonic Description

CPI Compare location (HL) and
Acc. increment HL and
decrement BC

CPIR Compare location (HL) and
Acc. increment HL,
decrement BC repeat until
BC=O

CPL Complement Acc. (1's comp)

DAA Decimal adjust Acc. .

DEC m Decrement operand m

DEC IX Decrement IX

DEC IY Decrement IY

DEC ss Decrement Reg. pair ss

DI Disable interrupts
DJNZ e Decrement B and

jump relative if
B=0

El Enable interrupts

EX (SP), HL Exchange the location (SP) and

HL

EX (SP), IX Exchange the location (SP) and

IX

EX (SP) IY Exchange the location (SP) and

IY

EX AF, AF Exchange the contents of AF

and AF
EX DE, HL Exchange the contents of DE and

HL
EXX Exchange the contents of BC,

DE, HL with contents of BC',
DE', HL'
respectively

HALT HALT (wait for interrupt or
reset)

B-2
Appendix B

Mnemonic Description

IM 0 Set interrupt mode 0
IM 1 Set interrupt mode 1
IM 2 Set interrupt mode 2
IN A, (n) Load the Acc. with input from

device n
IN r, (C) Load the Reg. r with input from

device (C)
INC (HL) Increment location (HL)
INC IX Increment IX
INC (IX+d) Increment location (IX+d)
INC IY Increment IY
INC (IY+d) Increment location (IY+d)
INC r Increment Reg. r
INC ss Increment Reg. pair ss
IND Load location (HL) with input

from port (C), decrement HL
and B

INDR Load location (HL) with input
from port (C), decrement HL
and decrement B, repeat until
B=0

INI Load location (HL) with input
from port (C), and increment HL
and decrement B.

INIR Load location (HL) with input
from port (C), increment HL
and decrement B, repeat until

B=0
JP (HL) Unconditional jump to (HL)
JP (IX) Unconditional jump to (IX)
JP (IY) Unconditional, jump to (IY)
JP cc, nn jump to location nn if condition

cc is true
JP nn Unconditional jump to location
nn
JP C, e jump relative to PC+e if
carry=1
JR e Unconditional jump relative to

PC+e
JP NC, e jump relative to PC+e if carry=0

Mnemonic Description
JR NZ, e jump relative to PC+e if non

zero (Z=0)
JR Z, e jump relative to PC+e if zero

(Z=1)
LD A, (BC) Load Acc. with location (BC)
LD A, (DE) Load Acc. with location (DE)
LD A, I Load Acc. with I
LD A, (nn) Load Acc. with location nn
LD A, R Load Acc. with Reg. R
LD (BC), A Load location (BC) with Acc.
LD (DE), A Load location (DE) with Acc.
LD (HL), n Load location (HL) with value n
LD dd, nn Load Reg. pair dd with value nn
LD HL, (nn) Load HL with location (nn)
LD (HL), r Load location (HL) with Reg. r
LD I, A Load I with Acc.
LF IX, on Load IX with value nn
LD IX, (nn) Load IX with location (nn)
LD (IX+d), n Load location (IX+d) with value
n
LD (IX+d), r Load location (LX+d) with Reg. r
LD IY, no Load IY with value nn
LD IY, (nn) Load IY with location (nn)
LD (IY+d), n Load location (IY+d) with value
n
LD (IY+d), r Load location (IY+d) with Reg. r
LD (nn), A Load location (nn) with Acc.
LD (nn), dd Load location (nn) with Reg. pair
dd
LD (nn), HL Load location (nn) with HL
LD (nn), IX Load location (nn) with IX
LD (nn), IY Load location (nn) with IY
LD R, A Load R with Acc.
LD r, (HL) Load Reg. r with location (HL)
LD r, (IX+d) Load Reg. r with location (IX+d)
LD r, (IY+d) Load Reg. r with location (IY+d)
LD r, n Load Reg. r with value n
LD r, r' Load Reg, r with Reg. r'
LD SP, HL Load SP with HL
LD SP, IX Load SP with IX
LD SP, IY Load SP with IY

B-3
 Z80 Op-Codes

Mnemonic Description

LDD Load location (DE) with location (HL),

decrement DE, HL and BC
LDDR Load location (DE) with location (HL),

decrement DE, HL and BC, repeat
until BC=0

LDI Load location (DE) with location (HL),
increment DE, HL, decrement BC

LDIR Load location (DE) with location (HL),
increment DE, HL, decrement BC
and repeat until BC=O

NEG Negate Acc. (2's complement)

NOP No operation

OR s Logical 'OR' or operand s and Acc.

OTDR Load output port (C) with location
(HL) decrement HL and B, repeat
until B=0

OTIR Load output port (C) with location
(HL), increment HL, decrement B,
repeat until B=0

OUT (C), r Load output port (C) with Reg. r

OUT (n), A Load output port (n) with Acc.

OUTD Load output port (C) with location
(HL), decrement HL and B

OUTI Load output port (C) with location
(HL), increment HL and decrement B

POP IX Load IX with top of stack

POP IY Load IY with top of stack

POP qq Load Reg. pair qq with top of stack

PUSH IX Load IX onto stack

PUSH IY Load IY onto stack

PUSH qq Load Reg. pair qq onto stack

RES b, m Reset Bit b of operand m

RET Return from subroutine

Mnemonic Description

RET cc Return from subroutine if condition cc
is true

RETI Return from interrupt

RETN Return from non maskable interrupt

RL m Rotate left through carry operand m

RLA Rotate left Acc. through carry

RLC (HL) Rotate location (HL) left circular

RLC (IX+d) Rotate location (IX+d) left circular

RLC (IY+d) Rotate location (IY+d) left circular

RLC r Rotate Reg. r left circular

RLCA Rotate left circular Acc.

RLD Rotate digit left and right between
Acc. and location (HL)

RR m Rotate right through carry operand m

RRA Rotate right Acc. through carry

RRC m Rotate operand m right circular

RRCA Rotate right circular Acc.

RRD Rotate digit right and left between
Acc. and location (HL)

RST p Restart to location p

SBC A, s Subtract operand s from Acc. with
carry

SBC HL, ss Subtract Reg. pair ss from HL with
carry

SCF Set carry flag (C=1)

SET b, (HL) Set Bit b of location (HL)

SET b, (IX+d) Set Bit b of location (IX+d)

SET b, (IY+d) Set Bit b of location (IY+d)

SET b, r Set Bit b of Reg. r

SLA m Shift operand m left arithmetic

SRA m Shift operand m right arithmetic

SRL m Shift operand m right logical

SUB s Subtract operand s from Acc.

XOR s Exclusive 'OR' operands and Acc

B-4
Appendix B

C-1
 ASCII Codes

Appendix C

ASCII Codes
DECIMAL TO OCTAL TO HEX

TO ASCII CONVERSION

 DEC OCT HEX ASCII DEC OCT HEX ASCII

 0 000 00 NUL 32 040 20 SPACE
 1 001 01 SOH 33 041 21 !
 2 002 02 STX 34 042 22 "
 3 003 03 ETX 35 043 23 #
 4 004 04 EOT 36 044 24 $
 5 005 05 ENQ 37 045 25 %
 6 006 06 ACK 38 046 26 &
 7 007 07 BEL 39 047 27 ‘

 8 010 08 BS 40 050 28 (
 9 011 09 HT 41 051 29)
 10 012 OA LF 42 052 2A *
 11 013 OB VT 43 053 2B +
 12 014 OC FF 44 054 2C ,
 13 015 OD CR 45 055 2D -
 14 016 OE SO 46 056 2E Period
 15 017 OF SI 47 057 2F /

 16 020 10 DLE 48 060 30 0
 17 021 11 DC1 49 061 31 1
 18 722 12 DC2 50 062 32 2
 19 023 13 DC3 51 063 33 3
 20 024 14 DC4 52 064 34 4
 21 025 15 NAK 53 065 35 5
 22 026 16 SYN 54 066 36 6
 23 027 17 ETB 55 067 37 7

 24 030 18 CAN 56 070 38 8
 25 031 19 EM 57 071 39 9
 26 032 1A SUB 58 072 3A :
 27 033 1B ESC 59 073 3B ;
 28 034 1C FS 60 074 3C <
 29 035 1D GS 61 075 3D =
 30 036 1E RS 62 076 3E >
 31 037 1F US 63 077 3F ?

 DEC OCT HEX ASCII DEC OCT HEX ASCII

 64 100 40 @ 96 140 60 `
 65 101 41 A 97 141 61 a
 66 102 42 B 98 142 62 b
 67 103 43 C 99 143 63 c
 68 104 44 D 100 144 64 d
 69 105 45 E 101 145 65 e
 70 106 46 F 102 146 66 f
 71 107 47 G 103 147 67 g

 72 110 48 H 104 150 68 h
 73 111 49 1 105 151 69 i
 74 112 4A J 106 152 6A j
 75 113 4B K 107 153 6B k
 76 114 4C L 108 154 6C 1
 77 115 4D M 109 155 6D m
 78 116 4E N 110 156 6E n
 79 117 4F O 111 157 6F o

 80 120 50 P 112 160 70 p
 81 121 51 Q 113 161 71 q
 82 122 52 R 114 162 72 r
 83 123 53 S 115 163 73 s
 84 124 54 T 116 164 74 t
 85 125 55 U 117 165 75 u
 86 126 56 V 118 166 76 v
 87 127 57 W 119 167 77 w

 88 130 58 X 120 170 78 x
 89 131 59 Y 121 171 79 y
 90 132 5A Z 122 172 7A z
 91 133 5B [123 173 7B {
 92 134 5C \ 124 174 7C 1
 93 135 5D] 125 175 7D }
 94 136 5E ^ 126 176 7E ~
 95 137 5F _ 127 177 7F DELETE

C-2
Appendix C

NUL Null; Tape Feed,
SOH Start of Heading; Start of Message
STX Start of Text; End of Address
ETX End of Text; End of Message
EOT End of Transmission; Shuts off TWX machines
ENQ Enquiry; WRU
ACK Acknowledge; RU
BEL Rings Bell
BS Backspace; For at Effector
HT Horizontal TAB
LF Line Feed or Space (New Line)
VT Vertical TAB
FF Form Feed (PAGE)
CR Carriage Return
SO Shift Out
SI Shift In
DLE Data Link Escape
DC1 Device Control 1; Reader on
DC2 Device Control 2; Punch on
DC3 Device Control 3; Reader off
DC4 Device Control 4; Punch off
NAK Negative Acknowledge; Error
SYN Synchronous Idle (SYNC)
ETB End of Transmission Block; Logical End of Medium
CAN Cancel (CANCL)
EM End of Medium
SUB Substitute
ESC Escape
FS File Separator
GS Group Separator
RS Record Separator
US Unit Separator

Note that these characters (Octal 000 through 037), can be generated from the combination
CTRL and the character in the same row, but in the third or fourth column (Octal 100
through 137 or 140 through 177).
That is, BEL is Control/G or /g, and CAN is Control/X or /x.

D-1
 Appendix D

Appendix D

Microsoft Errors

FORTRAN-80 COMPILER FATAL ERROR MESSAGES

100 Illegal Statement Number

There is an illegal statement number in the source program. A statement number must be integer
constant in the range 1-99999. Locate the number that does not conform to this rule and correct
it.

101 Statement Unrecognizable or Misspelled

There is a statement that does not conform to the proper format. Check the general format
of the statement in error and correct the statement.

102 Illegal Statement Completion

A statement does not conform to the proper format. Check the general format of the statement in
error and correct the statement.

103 Illegal DO Nesting

A DO loop has been nested improperly. The range of each DO loop must be completely within
the range of the next outer loop. Correct the illegally nested DO.

104 Illegal Data Constant

An illegal data constant has been discovered. Check the statement in error and change the
constant to conform to the rules for constant construction.

D-2
Appendix D

105 Missing Name

A valid symbolic name was expected in the source program. Check the statement in error and
supply the proper name.

106 Illegal Procedure Name

A procedure has been assigned an illegal name. The name must begin with an alphabetic
character and be no more than six characters in length. Change the statement in error so it
conforms to this requirement.

107 Invalid DATA Constant or Repeat Factor

A DATA statement has an invalid constant or repeat factor. Literal data must be enclosed in
single quotes. The repeat factor must not attempt to assign more data than is valid. Change
the DATA statement to conform to these requirements.

108 Incorrect Number of DATA Constants

A DATA statement has too many or too few constants. A valid DATA statement must have
the same number of variables as constants. Change the DATA statement in error so that
is conforms to this requirement.

109 Incorrect Integer Constant

An incorrect integer constant has been discovered. An integer constant must be in the
range -32768 to +32767 inclusive. The integer constant must also not contain any
decimal points, commas, or alphabetic characters. Correct the statement in error so it
conforms to these requirements.

110 Invalid Statement Number

A statement number is invalid. The statement label must be in the range 1-99999. Correct the
statement label.

111 Not a Variable Name

A variable name was expected. The variable name must begin with an alphabetic character and
be no more than six characters in length. Correct the variable name so that it conforms to
these requirements.

D-3
 Appendix D

112 Illegal Logical Form Operator

An illegal logical operator has been discovered. The logical operators must be of the form:
.NOT., .AND., .OR. and .XOR.. It is also invalid to have two contiguous logical operators
except when the second operator is .NOT.. Verify that the operator is constructed
properly. Correct the statement in error.

113 Data Pool Overflow

Too much memory has been requested for data storage. Large arrays are usually responsible
for exceeding the storage capabilities. The amount of memory needed to store an array is
a function of the data type of the array and the number of elements in the array. Change either
the number of elements in the array or the data type of the array.

114 Literal String Too Large

There is a literal string that is too large. The number of characters in a literal string
should be no greater than the number of bytes required by the corresponding variable; i.e.: one
character for a logical variable, up to two characters for an integer variable, up to four
characters for a real variable, and up to eight characters for a double-precision variable.
Correct the literal string so that it conforms to these requirements.

115 Invalid Data List Element in I/O

There is an invalid element in an I/O list. A valid element in an I/O list must be a variable, an
array element or array name. Correct the I/O list so that the elements of the I/O list are valid
elements.

116 Unbalanced DO Nest

An unbalanced DO nest has been discovered. Each DO loop must have a valid terminal
statement. Correct the loop with the invalid terminal statement.

117 Identifier Too Long

An identifier is too long. The identifier must be no more than six characters in length.
Correct the illegal identifier.

D-4
Appendix D

118 Illegal Operator

An illegal operator has been discovered. The valid arithmetic operators are: ** , * , / , + , -. The
valid relational operators are: .LT., .LE., .EQ., .NE., .GT., .GE.. The valid logical
operators are: .NOT., .AND., .OR., .XOR.. Correct the illegal operator so it will conform
to the proper format.

119 Mismatched Parenthesis

There is a mismatched parenthesis. Correct the statement so each parenthesis is matched.

120 Consecutive Operators

Consecutive operators were encountered in the source program. Each operator must have a
valid operand. Correct the statement so that each operator has an operand.

121 Improper Subscript Syntax

A improper subscript has been discovered. Subscripts must be written in one of the following
forms:

K C*V V-K

V C*V+K C*V-K

V+K

where C and K are integer constants and V is an integer variable name. Verify that each
subscript follows this format. Correct the improper subscript.

122 Illegal Integer Quantity

An integer constant or expression value is outside the range -32768 to +32767. Correct the
value of the integer or expression so that it falls within the legal range (-32768 to +32767).

123 Illegal Hollerith Construction

An illegal Hollerith string has been encountered. The Hollerith string is constructed by
enclosing the entire string of characters in a set of single quote marks. Two quotation marks in
succession may be used to represent the quotation mark character within the string.
Correct the Hollerith string so that is conforms to these requirements.

D-5
 Appendix D

124 Backwards DO reference

A backward DO reference has been discovered. The terminal statement of a DO loop must
physically follow its associated DO. Verify that the terminal statement physically follows the
associated DO. Correct the backward DO reference.

125 Illegal Statement Function Name

A statement function has been assigned an illegal symbolic name. The name must begin
with a alphabetic character and be no more than six characters in length. The statement
function name must also be a unique name. Correct the statement so that the function name
adheres to these requirements.

126 Illegal Character for Syntax

A character has been encountered that is illegal in the contex it is used. Correct the illegal
character.

127 Statement Out of Sequence

One of the statements is out of sequence. The statements within a program unit must be in the
following order:

1. PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA
2. Type, EXTERNAL, DIMENSION
3. COMMON
4. EQUIVALENCE
5. DATA
6. Statement Functions
7. Executable Statements

Verify that the statements adhere to the above requirement. Correct the out of sequence
statement.

128 Missing Integer Quantity

An integer quantity was expected but not found. Several statements require that an integer
quantity be present. For example, the DIMENSION statement requires an integer quantity be
present. Correct the statement by providing the proper integer quantity.

D-6
Appendix D

129 Invalid Logical Operator

An invalid Logical operator was discovered. The valid Logical operators are .NOT.,
.AND., .OR., .XOR.. Verify that the operators conform to this format. Correct the invalid
operator.

130 Illegal Item in Type Declaration

An illegal item was encountered after a type statement. Only an array declarator, an array, a
variable or a FUNCTION name can follow a type specification statement. Verify that the
type statement is correctly structured. Correct the illegal statement.

131 Premature End Of File on Input Device

The FORTRAN-80 Compiler has reached an end of file before it was anticipated. This
happens when the END statement is omitted. Verify that the last physical statement in the
program unit is an END statement.

132 Illegal Mixed Mode Operation

The logical, relational, and arithmetic operators have been used together in a manner that
is not appropriate. Correct the illegal usage.

133 Function Call with No Parameters

A Function has been referenced and no parameters were provided in the reference. There
must be at least one parameter passed to the Function. Verify that this condition has been
met. Correct the reference to the Function.

134 Stack Overflow

The FORTRAN-80 Compiler has overflowed the stack. This occurs when a very large
program is compiled. To correct it, use the /P switch during the compilation process. The
/P switch will allocate 100 extra bytes of stack space.

135 Illegal Statement Following Logical IF

The statement contained in a logical IF was not valid. Verify that this statement is not a DO or
another logic IF. Correct the illegal statement.

D-7
 Appendix D

FORTRAN-80 COMPILER WARNING MESSAGES

0 Duplicate Statement Label

There is a duplicate statement label in the source program. Each statement label must be
unique within the program unit. Change the duplicate label so it has a unique value.

1 Illegal DO Termination

A DO loop is terminated by an illegal statement. The terminal statement may not be an
Arithmetic IF, GO TO, RETURN, STOP, PAUSE or another DO. Correct the illegal terminal
statement.

2 Block Name = Procedure Name

A COMMON block has been assigned the same symbolic name as the main program. The
COMMON block name must be different than any procedure names used throughout the
program. Correct the illegal statement.

3 Array Name Misuse

An array name has been used where it is not appropriate. Correct the illegal reference
to an array name.

4 COMMON Name Usage

A COMMON block name has been used as a variable. The name of a COMMON block may
appear more than once in the same COMMON statement, or in more than one COMMON
statement. The COMMON block name must be different than any variable names used
throughout the program. Correct the illegal statement.

5 Wrong Number of Subscripts

An element of an array has been referenced with the wrong number of subscripts. The number
of subscript expressions must be the same as the specified dimensionality of the array. (An
exception to this rule is the EQUIVALENCE statement.) Correct the illegal subscript.

D-8
Appendix D

6 Array Multiply EQUIVALENCED within a Group

Two elements of the same array have been EQUIVALENCED. It is invalid to
EQUIVALANCE two elements of the same array or two elements belonging to the same or
different COMMON blocks. Correct the illegal statement.

7 Multiple EQUIVALENCE of COMMON

An attempt was made to EQUIVALENCE two elements belonging to the same or different
COMMON blocks. It is invalid to EQUIVALENCE two elements of the same array or two
elements belonging to the same or different COMMON blocks. Correct the illegal statement.

8 COMMON Base Lowered

While attempting to EQUIVALENCE elements in COMMON, an attempt was made to
extend the COMMON past the recognized beginning of COMMON storage.
COMMON block size may be increased only from the last element established by the
COMMON statement forward. Correct the illegal statement.

9 Non-COMMON Variable in BLOCK DATA

There is a non-COMMON variable in a BLOCK DATA subprogram. If any element in a
COMMON block is to be initialized by a BLOCK DATA subprogram, all elements of the
block must be listed in the COMMON statement. Include the variable in a COMMON
statement.

10 Empty List for Unformatted WRITE

There is an unformatted WRITE statement without an I/O list. The unformatted WRITE
statement must have an I/O list. Correct the illegal statement.

11 Non-Integer Expression

An integer expression was expected but not found. Verify that the integer expression
conforms to the rules for construction of expressions. Correct the illegal expression.

12 Operand Mode Not Compatible with Operator

An arithmetic, logical or relational operand was not compatible with the associated
operator. Verify that the expression conforms to the rules for expression construction. Correct
the invalid expression.

D-9
 Appendix D

13 Mixing of Operand Modes Not Allowed

The arithmetic, logical, or relational operands have been used together in a manner that is not
appropriate. Correct the illegal usage.

14 Missing Integer Variable

An integer variable was expected but not found. For example, ASSIGN 100 TO 4 is illegal, an
integer variable name should follow the `TO' but does not. Correct the statement so that a
valid integer name is included.

15 Missing Statement Number on FORMAT

There is a FORMAT statement without a statement number. The FORMAT statement must
be labeled with a valid statement number. Correct the illegal statement.

16 Zero Repeat Factor

A FORMAT statement has a zero repeat factor preceding a field descriptor. The repeat factor
must be a non-zero, positive integer. Correct the illegal repeat factor.

18 Format Nest Too Deep

A FORMAT statement has more than two levels of parentheses. Up to two levels of
parentheses, including the parentheses required by the FORMAT statement, are permitted.
Correct the illegal FORMAT statement.

19 Statement Number Not FORMAT Associated

A formatted I/O or ENCODE/DECODE statement referenced a statement number which was not
FORMAT associated. A formatted I/O or ENCODE/DECODE statement must reference a
FORMAT statement. Correct the illegal statement.

20 Invalid Statement Number Usage

A statement number has been used in a context that is invalid. Correct the invalid statement number
reference.

D-10
Appendix D

21 No Path to this Statement

There is a statement with no path to it. A statement with no path to it will never be executed.
Correct the program logic so that the statement will be included in the logical flow.

22 Missing Do Termination

There is a DO loop without a terminal statement. Each DO loop must have a valid terminal
statement. Insert a valid terminal statement in the source program.

23 Code Output in BLOCK DATA

A BLOCK DATA subprogram contains an executable statement. A BLOCK DATA
subprogram must contain only type, EQUIVALENCE, DATA, COMMON, and
DIMENSION statements. Correct the illegal BLOCK DATA subprogram.

24 Undefined Labels Have Occurred

A reference was made to an undefined statement label. All labels referenced must be valid
statement numbers. Correct the undefined label.

25 RETURN in a Main Program

There is a RETURN statement in a main program. The RETURN statement is used to mark the
logical end of a subprogram. It must not appear in a main program. Remove the RETURN
statement from the main program.

27 Invalid Operand Usage

An arithmetic, relational, or logical operand has been used in a manner that is not appropriate.
Correct the illegal statement so that it conforms to the rules for expression construction.

28 Function with no Parameter

A function has been constructed or referenced and no parameters were listed. The function
definition must include at least one dummy parameter. The reference to a function must
provide a list of parameters for use by the function. Correct the illegal statement.

D-11
 Appendix D

29 Hex Constant Overflow

A hex constant is too large. The number of hex characters that can be stored should be
no greater than the number of bytes required by the corresponding variable; one
character for a Logical variable, up to two characters for an Integer variable, up to four
characters for a Real variable, and up to eight characters for a Double-Precision variable.

30 Division by Zero

An attempt was made to divide by zero. Correct the statement in error.

32 Array Name Expected

An array name was expected but not found. For example, the ENCODE/DECODE statements
require that an array name be referenced. Correct the statement to include an array name.

33 Illegal Argument to ENCODE/DECODE

There is an illegal argument in either an ENCODE or a DECODE statement. The proper
formats for the ENCODE/DECODE statements are:

ENCODE(A,F) K DECODE(A,F) K

where:

A is an array name
F is a FORMAT statement number K is an I/O list

Correct the illegal ENCODE/DECODE statement.

D-12
Appendix D

RUNTIME ERRORS
Fatal Errors

ID Illegal FORMAT Descriptor

A FORMAT statement has an illegal descriptor. The legal descriptors are F, E, D, G, I, A, H,
L, and X. Correct the illegal descriptor.

FO FORMAT Field Width is Zero

The width of a FORMAT field is zero. The field width is a non-zero, positive constant
used to define the number of digits in the external data representation. Correct the illegal
field width.

MP Missing Period in FORMAT

A period was expected but not found. The field descriptors E, F, G, and D require the use of a
period between the field width specifier and the fractional digit specifier. Correct the
illegal FORMAT statement.

FW FORMAT Field Width is Too Small

An attempt was made to transfer data larger than the field width specifier. The field width
specifier defines the total width of the field (including digits, decimal points, algebraic
signs). Increase the size of the field width specifier.

I/O Transmission Error

An error occurred while communication was being established with an I/O device. This
error usually occurs when output is attempted to a hard copy device without the proper device
driver being LOADed into memory. This error can also occur when an attempt is made to
perform I/O to a disk drive that has not been MOUNTed, or this error will also occur if
output is attempted to a disk with no room left on it. Take the appropriate action to correct
this problem. (LOAD the device driver, MOUNT the disk drive, etc.)

ML Missing Left Parentheses in FORMAT

A FORMAT statement has been discovered without a left parentheses. The FORMAT
statement requires the use of a left parentheses. Correct the illegal FORMAT statement.

D-13
 Appendix D

DZ Division by Zero

An attempt was made to divide by zero. Correct the illegal statement.

LG Illegal Argument to LOG Function

The library function LOG was passed an argument that was negative or zero. The LOG function
is undefined when the argument is negative or zero. Correct the illegal statement.

SQ Illegal Argument to SQRT Function

The library function SQRT was passed an argument that was negative. The SQRT function is
undefined when the argument is negative. Correct the illegal statement.

DT Data Type Does Not Agree with FORMAT

An attempt was made to use an integer field descriptor with a real variable or to use a real field
descriptor with an integer variable. Correct the FORMAT statement associated with the READ
or WRITE, ENCODE or DECODE.

EF EOF Encountered on READ

An attempt was made to READ beyond the last record of the file. Use the END= option to
avoid this error.

D-14
Appendix D

RUNTIME ERROR MESSAGES
Warning Errors

TL To Many Left Parentheses in FORMAT

There were too many left parentheses in a FORMAT statement during execution of the program.
This error is usually a result of incorrectly modifying a FORMAT statement during runtime.
Correct any FORMAT statement that is invalid.

DE Decimal Exponent Overflow

A number in the input stream had an exponent larger than 99. Correct the invalid exponent.

IS Integer Size Too Large

An integer constant or expression value is outside the range -32768 to +32767. Correct the
value of the integer constant so that it is within the legal range (-32768 to +32767).

IN Input Record Too Long

A formatted READ statement has attempted to input more than 255 bytes. Correct the program
logic to avoid this condition.

OV Arithmetic Overflow

An arithmetic operation has resulted in a data value that is too large. Correct the statement so that
the magnitude of the data is within the legal range for the data type.

CN Conversion Overflow on REAL to INTEGER Conversion

An attempt was made to convert a number outside the legal range for integer numbers to the
integer data type. The legal range for integer numbers is -32768 to +32767. Correct the value
of the integer so that it is within the legal range (-32768 to +32767).

SN Argument to SIN Too Large

The argument to the SIN function is too large. The SIN function is undefined for unusually
large numbers. Correct the program.

D-15
 Appendix D

A2 Both Arguments of ATAN2 are 0

The library function ATAN2 has been referenced and both arguments to the function
are zero. The library function is undefined when both arguments are zero.

IO Illegal I/O Operation

An illegal I/O operation was attempted. For example, input from a hard copy device
would be an illegal operation. An attempt to randomly access a device not capable of random
access would also be an illegal operation. Assigning a nonvalid logical unit number would
also be an illegal operation. Correct the illegal statement.

RC Negative Repeat Count in FORMAT

A FORMAT statement has been found to contain a negative repeat factor preceding a field
descriptor. The repeat factor must be a positive integer. Correct the invalid FORMAT
statement.

D-16
Appendix D

MACRO-80 ERROR MESSAGES

MACRO-80 errors are indicated by a one-character flag in column one of the listing file. If a
listing file is not being printed on the terminal, each erroneous line is also printed or displayed on
the terminal. Below is a list of the MACRO-80 Error Codes:

Error Codes

A Argument error -
Argument to pseudo-op is not in correct format or is out of range (.PAGE 1;
RADIX 1; PUBLIC 1; STAX H; MOV M,N; INX C).

C Conditional nesting error -

ELSE without IF, ENDIF without IF, two ELSEs on one IF.

D Double Defined symbol -
Reference to a symbol which is multiply defined.

E External error -

Use of an external illegal in context (e.g., FOO SET NAME ; MVI A,2-NAME).

M Multiply Defined symbol -
Definition of a symbol which is multiply defined.

N Number error -

Error in a number, usually a bad digit (e.g., 8Q).

O Bad opcode or objectionable syntax -
ENDM, LOCAL outside a block; SET, EQU or MACRO without a name; bad
syntax in an opcode (MOV A:); or bad syntax in an expression (mismatched
parenthesis, quotes, consecutive operators, etc.).

P Phase error -

Value of a label or EQU name is different on pass 2.

Q Questionable -
Usually means a line is not terminated properly. This is a warning error (e.g., MOV
A,B,).

D-17
 Appendix D

R Relocation -
Illegal use of relocation in expression, such as abs-rel. Data, code and COMMON areas
are relocatable.

U Undefined symbol -

A symbol referenced in an expression is not defined. (For certain pseudo-ops, a V
error is printed on pass 1 and a U on pass 2.)

V Value error -

On pass 1 a pseudo-op which must have its value known on pass 1 (e.g., RADIX,
.PAGE, DS, IF, IFE, etc.), has a value which is undefined later in the program, a
U error will not appear on the pass 2 listing.

Error Messages:

`No end statement encountered on input file'
No END statement: either it is missing or it is not parsed due to being in a false
conditional, unterminated IRP/IRPC/REPT block or terminated macro.

'Unterminated conditional'

At least one conditional is unterminated at the end of the file.

'Unterminated REPT/IRP/IRPC/MACRO'
At least one block is unterminated.

[xx] [No] Fatal error(s) [,xx warnings]

The number of fatal errors and warnings. The message is listed on the console and in
the list file.

D-18
Appendix D

LINK-80 ERROR MESSAGES

?No Start Address

A /G switch was issued, but no main program had been loaded.

?Loading Error

The last file given for input was not a properly formatted LINK-80 object file.

?Out of Memory

Not enough memory to load program.

(A minimum of 40K RAM is required.)

?Command Error

Unrecognizable LINK-80 command string.

?<file> Not Found

<file>, as given in the command string, did not exist.

%2nd COMMON Larger /XXXXXX/

The first definition of COMMON block /XXXXXX/ was not the largest definition. Re-order
module loading sequence or change COMMON block definitions. (See Chapter 9 in the
FORTRAN Reference Manual for more information on the COMMON statement.)

%Mult. Def. Global YYYYYY

More than one definition for the global (internal) symbol YYYYYY was encountered
during the loading process.

%Overlaying Program Area

Data

A /D or /P will cause already loaded data to be destroyed.

?Intersecting Program Area

Data

D-19
 Appendix D

The program and data area intersect and an address or external chain entry is in this
intersection. The final value cannot be converted to a current value since it is in the area
intersection.

?Start Symbol - <name> - Undefined

After a /E: or /G: is given, the symbol specified was not defined.

Origin Above Loader Memory, Move Anyway (Y or N)?

Below

After a /E or /G was given, either the data or program area has an origin or top which lies
outside loader memory. If a Y <cr> is given, LINK-80 will move the area and continue. If
anything else is given, LINK-80 will exit.

In either case, if a /N was given, the image will already have been saved.

?Can't Save Object File
A disk error occurred when the file was being saved. Usually this occurs when there is no
more room left on the disk.

A <filename>/S or /E or /G was given but no object file was loaded. That is, an attempt was
made to search a library, exit the Linker, or execute a program, when in fact nothing had
been loaded.

