2011

H8-Z67-DISK CONTROLLER

Revision History and Disclaimer

Revision History							
Revision	Date	Comments					
1.0	03/01/2011	Initial draft by Norberto Collado					
1.1	04/10/2011	Update document. Added assembly instructions and FP labels by Carroll.					

Although we have not obtained written permission to reproduce the information from the Heathkit WH-8-37 Manual, every effort will be made to ensure that credits are posted accurately. The purpose of this document is to "SUPPORT" those who still use these great Heathkit machines and to preserve the information of those who made a difference.

Another purpose of this document is to allow the surviving classic computers to continue to function. Without the proper software support, the hardware cannot be seen in action, and a piece of our digital history is lost. I have not included any material in this document which I believe has current commercial value. Most of the material in this document is the intellectual property of other companies or individuals. However many of the companies are no longer in existence, and I do not have current contact information to obtained permission to include them.

Please don't use any of this material for any purpose other than personal hobby/interest without checking with the owner of the material.

Thank you for your understanding and consideration.

Table of Contents

Revision History and Disclaimer2
Table of Contents
Introduction4
H8-Z67 DISK CONTROLLER
CONTROLLER CARD PORTS CONFIGURATION
H8-Z67 Jumper Configuration5
Front Panel Modifications7
Operation
Primary Operation10
Secondary Operation10
Universal Operation11
Auto Operation12
H8-Z67 SASI Bus Pin Assignment13
H8-Z67 Interface Register Definition14
H8-Z67 DS1 Switch Definition
DSI Boot Partitions Assignments17
Drive 0 Partitions
Drive 1 Partitions
Menu Selectable Boot Partitions20
H8-Z67 Board Assembly21

Introduction

This document provides an overview on the H8-Z67 disk controller board design by Norberto Collado for the Heathkit H8 Computer.

H8-Z67 DISK CONTROLLER

The H8-Z67 controller contains a standard SASI interface bus to boot from the Z67-IDE storage board. The H8-Z67 controller is operable at any CPU speed up to 4 MHz, and it supports two bootable IDE hard drives via the H8 front panel. The H8-Z67 SASI DISK CONTROLLER mounts inside the H8 computer cabinet while attached to the Z67-IDE controller allowing IDE boot support.

CONTROLLER CARD PORTS CONFIGURATION

The following is a table summary of the controller ports configuration. Please refer to the PAM-37 ROM documentation for switch definition for proper port settings. Documentation can be obtained at the following website; http://www.lesbird.com/sebhc/index.html

CONTROLLER CARD	PORT	WH-8-Z67 PORT
H17	7CH (174Q)	78H (170Q)
H8-Z67	78H (170Q)	7CH (174Q)
H47	78H (170Q)	7CH (174Q)

H8-Z67 Jumper Configuration

- () Z-37 Disabled (solder bare wire across pin 2 and 3)
- () Z-67 Enabled (solder bare wire across pin 1 and 2)

() Jumper across pin 1 and 1 and jumper across pin 2 and 2 (default address 170Q)

Front Panel Modifications

The PAM-37 EPROM allows one step booting from the H8-Z67 Disk Controller and their respectively hard drives. Refer to the Pictorial below for the new Front Panel Labels.

Before:

After:

Operation

The PAM-37 EPROM contains the code necessary to boot an operating system from the H-17, H/Z-37, H/Z-47, Z67 and the new H8-Z67 controllers.

There are four methods you can boot your system:

- 1. Primary
- 2. Secondary
- 3. Universal
- 4. Auto

Primary and Secondary Boot allow you to boot from a primary or secondary drive system with one keystroke. The Universal Boot allows you to boot your system from any drive in any device. Auto Boot allows "**turnkey**" operation from drive 0 of the primary device when you turn the power-on.

Primary Operation

Select the primary device by setting switch **SW1** on the HA-8-6 Z80 CPU or on the H8-Z80-64 CPU/GIDE Circuit Board. To boot from this device, Press the "**1**" key. The display will show;

Pri xxx

The **xxx** will display the device name: H17, H37, H47 or H67. To cancel this boot command, press the "**C**" key (Cancel).

Secondary Operation

Select the secondary device by setting switch **SW1** on the HA-8-6 Z80 CPU or on the H8-Z80-64 CPU/GIDE Circuit Board. To boot from this device, Press the "**2**" key. The display will show;

Sec xxx

The **xxx** will display the device name: H17, H37, H47 or H67. To cancel this boot command, press the "**C**" key (Cancel).

Universal Operation

Primary and secondary operation provides one-key-boot operations from IDE drive 0 or 1 of a device. To boot from another drive on a device when it is configured according to the HA-8-6 Configuration (as shown on next page). To Boot follow the steps;

() Press the "**0**" key (boot). The display will show;

dEU ("Device")

() Press one of the following keys to indicate the device: **0** for H-17, **1** for H-47, **2** for H-67, or **3** for H-37. The display will show;

xxx Por ("Port")

The **xxx** will be the device name (H17, H37, H47, or H67).

() Press the key which corresponds to the port address: **0** is for port 170, **1** is for port 174, **2** is for port 270 and **3** is for port 274. The display will show:

xxx pp Uni ("Unit")

The **xxx** is the device name (as stated in step 2) and the **ppp** is the port address in Octal (170 for 0, 174 for 1, 270 for 2, and 274 for 3).

() Press the key which corresponds to the hardware unit number of the disk drive (0, 1, 2, or 3). The display will show:

Uni xxx

The **xxx** will be the device name (H17, H37, H47, and H67).

The disk unit will be activated, and the initial boot routine will be read from disk into memory. If an error occurs, the Computer will beep and the display will show:

Err or xxx

Again, the xxx will be the device name. To cancel the error or stop the operation, press the "**C**" key (Cancel).

Note: By using ports 270 and 274, up to **four** mass storage devices may be used by a single H-8 computer. As distributed, both HDOS and CP/M do not support such use. The QSBIOS will support one H8-Z67, one H17 and two H8-Z37 boards. The QSBIOS will also support two H8-Z67, and one H17 controller. Also it will support two H8-Z67 and two H8-Z37 boards.

4/10/2011 8:30:02 PM

Auto Operation

If section 7 of switch SW1 on the Z80 CPU board is set to **1**, the system will automatically boot from hardware unit **0** on the primary device when you turn the power on or perform a master clear (by pressing both the **0** and the **D** keys.

Note: This feature is only to boot from Hard Drives. On floppy drives, the diskette could be accidentally erased during the power-on sequence inside the Computer.

1 - Auto boot on power up.

Z-67 Interface Bus Pin Assignment

The Z-67 interface is connected to the Z-67 controller through a 40-pin connector.

The pin assignments are as follows:

Signal	Pin No.
DATA0	2
DATA1	4
DATA2	6
DATA3	8
DATA4	10
DATA5	12
DATA6	14
DATA7	16
PARITY	18
	20 (spare)
	22 (key)
	24 (spare)
BUSY	26
ACK	28
RST	30
MSG	32
SEL	34
C/D	36
REQ	38
I/O	40

NOTE: All signals are active low and all odd pins are connected to ground. The signal lines are terminated with 220 ohms to 5 volts and 330 ohms to ground.

H8-Z67 Interface Register Definition

The registers on the H8-Z67 Disk Controller Board are listed below. The address given assumes that the board is setup at addresses 170Q - 172Q or 0x78 - 0x7A. If the board is jumpered for Port 270, add 100 octal to the address given. If the H8-Z67 is addressed at 174 (or 274), add 4 (or 104) to the address given.

170Q + 4Q = 174Q = 0x7C

171Q + 4Q = 175Q = 0x7D

172Q + 4Q = 176Q = 0x7E

The bit definition for each register is described below:

HEX Address	Octal Address	Register	Operation
0x78	170Q	Data In/Out	Read and Write
0x79	171Q	Control Register	Write Only
0x79	171Q	Status Register	Read Only
0x7A	172Q	DIP SWITCHES (DS1)	Read Only

Control Register	Output Address (0x79, 171Q)
bit 7	Data Enable
bit 6	SASI SEL - Assert Select and Data. Bit 0 is hard wire to access the controller.
bit 5	Interrupt Enable - causes interrupt if SASI REQ is present.
bit 4	SASI Reset
bit 3	Not Used
bit 2	Not Used
bit 1	Not Used
bit 0	Not Used

Bus Status	Input Address (0x79, 1710)
bit 7	SASI REQ - Indicates the Z67-IDE controller either request data or has data for the H89-Z67 Disk Controller.
bit 6	SASI IN/OUT (referenced to controller) - Low indicates data to Interface board. High indicates data to controller.
bit 5	SASI MSG – Indicates last byte in data or command string.
	SASI COMMAND/DATA - Is high when a command is being sent to the controller, and it is low when data is being
bit 4	sent.
bit 3	SASI BUSY - Indicates that the SASI Bus is busy, no other device can access the SASI Bus.
bit 2	PARITY ERROR - Indicates BAD parity.
bit 1	INTERRUPT IN PROGRESS - Verifies that interrupt has been activated. Reading status port resets interrupt.
bit 0	SASI ACK - Acknowledges request for data.

H8-Z67 DS1 Switch Definition

The DIP 8 Switch that is on the H8-Z67 controller is used to define the boot partition from Hard Disk 0 or Hard Disk 1. The QSBIOS supports 15 partitions per drive and all of them are bootable if the QSPUTSYS.COM file was used to enable them. Below are the 15 partitions for Drive 0 and 1, and its assignment per Switch DS1 definition.

DSI Boot Partitions Assignments

DS1:									
SW 8	SW 7	SW 6	SW 5	SW 4	SW 3	SW 2	SW 1	Boot Partition Drive 0	Boot Partition Drive 1
OFF	DRIVE0 1	DRIVE1 1							
OFF	ON	DRIVE0 2	DRIVE1 1						
OFF	OFF	OFF	OFF	OFF	OFF	ON	OFF	DRIVE0 3	DRIVE1 1
OFF	OFF	OFF	OFF	OFF	OFF	ON	ON	DRIVE0 4	DRIVE1 1
OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF	DRIVE0 5	DRIVE1 1
OFF	OFF	OFF	OFF	OFF	ON	OFF	ON	DRIVE0 6	DRIVE1 1
OFF	OFF	OFF	OFF	OFF	ON	ON	OFF	DRIVE0 7	DRIVE1 1
OFF	OFF	OFF	OFF	OFF	ON	ON	ON	DRIVE0 8	DRIVE1 1
OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	DRIVE0 9	DRIVE1 1
OFF	OFF	OFF	OFF	ON	OFF	OFF	ON	DRIVE0 10	DRIVE1 1
OFF	OFF	OFF	OFF	ON	OFF	ON	OFF	DRIVE0 11	DRIVE1 1
OFF	OFF	OFF	OFF	ON	OFF	ON	ON	DRIVE0 12	DRIVE1 1
OFF	OFF	OFF	OFF	ON	ON	OFF	OFF	DRIVE0 13	DRIVE1 1
OFF	OFF	OFF	OFF	ON	ON	OFF	ON	DRIVE0 14	DRIVE1 1
OFF	OFF	OFF	0FF	ON	ON	ON	OFF	DRIVE0 15	DRIVE1 1
OFF	OFF	OFF	OFF	ON	ON	ON	ON	MENU SELECTABLE	DRIVE1 1
OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 2
OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 3
OFF	OFF	ON	ON	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 4
OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 5
OFF	ON	OFF	ON	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 6
OFF	ON	ON	OFF	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 7
OFF	ON	ON	ON	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 8
ON	OFF	DRIVE0 1	DRIVE1 9						
ON	OFF	OFF	ON	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 10
ON	OFF	ON	OFF	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 11
ON	OFF	ON	ON	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 12
ON	ON	OFF	OFF	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 13
ON	ON	OFF	ON	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 14
ON	ON	ON	OFF	OFF	OFF	OFF	OFF	DRIVE0 1	DRIVE1 15
ON	ON	ON	ON	OFF	OFF	OFF	OFF	DRIVE0 1	MENU SELECTABLE

4/10/2011 8:30:02 PM

Drive 0 Partitions

🔡 H19 Emulator Output		
SASI∕X Har <u>d</u> Disk	Partitioning Ut	Jtility - Copyright 1983 UltiMeth Corporation 👘
Function: 0		V5504.2222/CC[00] (ANSI:Y)
Port: 7CH	Drive: 0 Con	ontroller: 0
Error-len: 2	Heads: <mark>8</mark> Cyl	ylinders: <mark>2002</mark>
Seek-type: 4	Weomp: 2002	Wreduc: 2002 (SASI function successful)
# Name	Cat WP Origin	n Size Category codes: 0 = Unused 1 = Spare
Ø DRIVEØ 1	2 0 2	125 2 = Heath CP/M 3 = MMS CP/M 4-7 = HDO
1 DRIVEØ 2	2 0 127	125 WP codes: 0 = Read/Write 1 = Read onlu
2 DRIVE0 3	2 0 252	125
3 DRIVE0 4	0 377	125 Cursor/Editing Key Functions:
4 DRIVE0 5	2 0 502	125 Cursor keus: Unshifted: [Shifted:]
5 DRIVE0 6	2 0 627	125 (- Prev char(BS) [Prev field]
6 DRIVE0 7	2 0 752	125 -> Next char [Next field(CR)]
7 DRIVE0 8	2 0 877	125 ^ Up same field [Prev line]
8 DRIVE0 9	2 0 1002	125 v Down same field [Next line(LF)]
9 DRIVE0 10	2 0 1127	125 HOME First field [Last field]
10 DRIVE0 11	2 0 1252	125 TAB Alternate begin/end field
11 DRIVE0 12	2 0 1377	125 Editing keus:
12 DRIVE0 13	2 0 1502	125 ERASE (to field end) IC Insert char
13 DRIVER 14	2 0 1627	125 DEL Clear previchar DC Delete char
14 DRIVER 15	2 8 1752	125
Il⊎rite 2Eor	rmat ⊠Gen _4Check	rk 🗐 Check 🛛 🕅 Read 🕅 Exit 🖓 Start

Drive 1 Partitions

🔡 H19	Emulator Output											_ 🗆 🖂
SAS	∶I∕X Hard	Disk	Partit:	ioning Uf	tility -	Copyr	ight 19:	83 U1	ltiMe	th Co	rporation	1
Fun	ction: 🛛					V550	4.2222/	CC E00	3] (A	NSI:Y)	
	Port	7 C H	Drive	1 Cor	ntroller	: 0	Sei	nse/B	500 d	ata: I	00 000000	00 (
E	rror-len	: 2	Heads	🛛 🕄 🛛 Cul	linders:	2002						
- 9	eek-tupe	: 4	Weomp	2002	Wreduc:	2002	(SAS	I fur	netio	n sue	cessful)	
#	Name	r (at MP	Origin	Size	Catedo	ru code:	s: P	a = 11	nused	$1 = Sn_2$	ere -
ä	DRIVET	1	0 0	2	125	2 = 4	asth CP	ZM 3	ζ = M	MS CP	/M 4-7 =	
1	DDTVE1	÷	2 0	127	125	UP and	each Cry Act 0 :	- Do-	od Zilio	ita ita	1 - Dood	anlu
- 5	DRIVE1	4	2 0	252	125	wr cou	es. o .	- Nee	adv wr	108	I - Keau	oning
4	DRIVEI	3 4	2 0	232	125							
10	DRIVEI	4	2 0	<u> </u>	120	U	ursor/E	0111F	ng ke	y nuni 	Ctions:	
4	DRIVEI	2	2 0	002	120	Lursor	кеузі і	unsņi	Ittea	: LSN	itted:j	
5	DRIVET	6	2 И	627	125	< <u>-</u>	Pre	vjeha	an(BS) LPri	ev field.	
6	DRIVE1	7	2 0	752	125	\rightarrow		Next	; eha	n [Ne:	xt field((CR)]
7	DRIVE1	8	2 0	877	125	A	Up ·	same	fiel	d [Pri	ev linel	
8	DRIVE1	9	2 0	1002	125	V	Down -	same	fiel	d [Ne:	xt line(L	.F)]
- 9	DRIVE1	10	2 0	1127	125	HOME	F	inst.	fiel	d [La	st field]	
10	DRIVE1	11	2 0	1252	125	TAB	Alteri	nate	bedi	n∕end	field	
11	DRIVE1	12	2 0	1377	125	Editin	a keus:					
12	DRIVE1	13	2 й	1502	125	FRASE	(to fi	eld e	(bae	1.C	Insert (han
13	DRIVET	14	2 Ø	1627	125	DEL	Clear	nreu	char	ĎČ.	Delete d	han
14	DRIVET	15	2 Ø	1752	125		orea. 1	p, c .	e nar		001000 0	
1 4	UNITEI	10	- U	1102	120							
	N Most too	SEaso	st RCs	MC Bool	BCBook		R Pool	a 🗖 🗖		Ret an	+	
	1 write	Zroni	nat <mark>o</mark> der	n <mark>H</mark> eneer	a poneck		akea tabl			obuar	6	
	track	optic	ns nn	o arive	e chtir		capi	e p	urog	over		

Menu Selectable Boot Partitions

H8-Z67 Board Assembly

() – All the soldering equipment can be found at Radio Shack. A soldering iron drawing 15W is plenty powerful for this job. Don't go any higher or else you'll risk damage to the board and/or components. Make sure you have a narrow tip.

() - Latest BOM is at the following website; <u>H8-Z67 Controller parts list Rev 1_3_BOM.xls</u>

() – Solder C7, C8, C9, C10, C14, C12, C11, C16, C13, C15, C23, C18, C21, C22, C20, C17, C19, C24, C25, and C26 - 0.01uF caps.

() – Solder C1, C2, C3, C4, C5, and C6 - 2.2uF caps (observed polarity)

- () Solder a Green LED LED1 (POWER)
- () Solder a Red or a Blue LED LED2 (I/O)

	Resistor Band Color Reference						
Color	Band 1	Band 2	Multiplier	Tolerance			
Black	0	0	x 1	not used			
Brown	1	1	x 10	not used			
Red	2	2	x 100	not used			
Orange	3	3	x 1000 = 1K	not used			
Yellow	4	4	x 10000 = 10K	not used			
Green	5	5	x 100000 = 100K	not used			
Blue	6	6	x 1000000 = 1M	not use			
Violet	7	7	not used	not used			
Gray	8	8	not used	not used			
White	9	9	not used	not used			
Gold	not used	not used	divide by 10	±5%			
Silver	not used	not used	divide by 100	±10%			
None	not used	not used	not used	±20%			

- () Solder RP1, RP2, RP3 RESISTOR NET, 10PIN, 10K OHM
- () Solder R2, R4, R7 330 OHM resistors
- () Solder R6 220 OHM resistor
- () Solder R3, R12, R8, R9, R10, R11, R12, R13, R5, R1 1K OHM resistors
- () Solder RP4, RP5 RES NET DUAL 220/330 OHM 10-SIP (Dual Terminator)
- () Solder DS1 SWITCH, DIP, SPST, 8-POS, 16-PIN
- () Solder U1, U8, U2, U10, U5, U7, U3, U13, U25, U14 IC SOCKET, 14PIN
- () Solder U27, U28, U16 IC SOCKET, 16PIN
- () Solder U19, U9, U21, U5, U26, U35, U36, U20, U11 IC SOCKET, 20PIN

() – Solder the 7805 Voltage Regulators – REG1 and REG2. Add the heat-sinks, and thermal compound under each heat-sink and under each voltage regulator. These regulators get hot, but they work fine at such temperatures.

() - Solder SASI 40 pin male connector (J2) - HEADER, LP, SHROUDED, 40PIN, MALE

4/10/2011 8:30:02 PM

() – Solder 2 pin header at the following locations; PORT 270 and PORT 170

() – Solder P1 and P2 25 pin female connectors (SAM1009-25-ND)

() – Glue a 2 pin jumper SHORT BLK (Jameco – 19141 – BOM Line 32) to protect the board from shorting the -18V and the +18V to the +8 Volt rail and to the Ground rail as shown below. If the +-18Volts rails get shorted to ground then the four diodes on the motherboard will burn-out and will also destroy the +-12 Volts regulators on the Serial Communications board. Please use Gorilla Glue that expands 3 to 4 times; from RADIO SHACK. Please use proper orientation as shown on the picture.

() – Straighten any bend pins on the IC's. The pins should be parallel to each other and at right angles to the case. Some IC's may have their pins spread out slight as shown below. If so, align the pins by gently pressing against a table top and bending as shown below.

STRAIGHTEN THE LEADS

() – When installing the IC's, align the notch and/or dot with the index mark on the board as shown below. Be sure all the pins enter the holes of the socket, and then press the IC into its socket.

- () Install U11 74LS640N
- () Install U2 7416
- () Install U1 74LS14
- () Install U5, U8, U13 74LS74
- () Install U27, U28 74LS161
- () Install U10 74180
- () Install U16 74LS175
- () Install U7 74LS08
- () Install U3, U25 74LS04
- () Install U14 74LS30
- () Install U5, U19, U20, U35, U36 74LS540
- () Install U9 74LS574

() – Install U21 – 74LS373 (Note: apply rework at the following location; <u>http://koyado.com/Heathkit/H8-Z67 files/H8-Z67%20Rework.pdf</u>)

- () Install U26 (GAL-Z67) GAL-16V8-15
- () Carefully plug the H8-Z67 into the H-8 motherboard

() – Carefully plug the H8-Z67-IDE into the H-8 motherboard - <u>http://koyado.com/Heathkit/Z67-IDE.html</u>

- () Connect the 40 pin conductor cable from the H8-Z67 board to the H8-Z67-IDE board.
- () Apply power to the H-8

() – Boot from you CP/M floppy media and configure the IDE drives to boot from the H8-Z67 controller.

4/10/2011 8:30:02 PM

