
APU-H

ARITHMETIC PROCESSOR CARD

CCM,INC. P.O. BOX 23OB RESTON, VA. 22091

I ntroduct'i on

The APU-H is a high performance math processor card that adds a wide
range of 16 and 32 bjt fixed point and 32 bit floating point operat'ions to
the H8 system capabilities. The APU-H 'is well suited for virtually any
app'lication, scient'ific or bus'iness, where a computational capab'i1ity is
requ'ired.

Specifications

Fixed point operations

Floating point operations

Fixed po'int range (i0 U'it)

Fixed point range (32 bit)

Floating point range

Card size

Cl ock frequency

Power requ'i remen ts

16 and 32 bit

32 bit

-32768 to +32767

-2147483648 to +2147483647

! (2.7 x Lo-20 to 9.2 x ro18)

6.25" x 12" (standard)

2 l4hz but will accept up to 8 Mhz

100 ma at 18v DC

250 ma at 8v DC

Circuit operation

The APU-H is built around the Advanced Micro Devices AM9511A. Th'is
processor handles 16 and 32 bit fixed po'int and 32 bit floating point num-
bers in the basic arithmetic operations of addjtion, subtract'ion, multi-
plication and division as well as trigolrometric, logarithmic and other com-
plex operations.

The APU-H is viewed as 2 I/0 ports by the H8. The operands for an
operation (e.g., 2 addends in an addjtion) are first placed on a data stack
addressable as one of the I/0 ports. The command (additjon, multipf ication,
etc) 'is p'laced on the other port, the operation js performed by the 9511
and the result in placed on the data stack. The result may be read jn
or left on the stack to be used in another operation.

Two methods are possible for determining when an operation js complete.
The program may query a status bit on the APU-H and read r'n the result
when completion of the operation is'indicated. 0r the end indicatjon in
the 9511 may be tied to one of the interrupt lines on the H8 and an interrupt
service routjne may jnput the result.

0peration of the APU-H is now descrjbed.

The APU-H is configured to appear as port 200 (octal) for data and port
201 for commands and status. U1 functions as an address decoder, activating
the chip select (CS pin on the 9511) on I/0 operations to address 200
or 201. The A0, or least significant address bit is not decoded, but tied
directly to the command/data (C/D) pin on the 95i1. Thjs allows the 9511
to distinguish between commands and data. U2, along with U4 and U5 also
serves an address decoding functfon for the invertjng buffers U6 and U7
allowing data to be passed from the H8 bus to the 951i.

The PAUSE signal (pin 17 on the 9511) is tied to the READY line on
the H8 bus and allows the 9511 to place the 8080A in a wajt state while
the data from the 9511 is placed on the data bus. This occurs after
comp'letion of a 9511 operation, an event which is marked by the END signa'l
(pin 24 on the 9511) going from high to 1ow. The RD and I,JR signals for
the 9511 are taken (after inversion) from the IOR and I0tJ signals. The
clock signal for the 9511 is taken from the HB A2 signal.

A typical operation, such as an add'ition, begins by outputting the
operands (2 addends) to port 200. For each operand the data should be
output in the order of least significant to most s'ignificant byte. The
operands will then sit on the data stack of the 9511. The addition
conrnand is then output to port 201. It'is now necessary to determ'ine when
the operation is comp'lete. Status from an operation'is available by in-
putting the status byte on port 201 and completion may be tested by
inspecting the high order bit. When this bjt is 0 the operation is com-
plete and the result may be input or another operation 'initiated. The
result may be input by executing the appropriate number of IN 200
commands. The most s'ignificant byte of the result will be the top
byte available in the data stack of the 9511 on 200. As'indicated earlier
the END signal may be used to generate an interrupt on one of the H8
interrupt lines. However, an interrupt service routine such as the
sample in Appendix B must be provided.

Data considerations

Three data formats are supported on the APU-H: 32 bit floating point,
32 bit fixed point and 16 bit fixed point. Operands, consisting of
data in these formats, for an operation must be placed in the data stack
(port 200) in the order least signjficant byte first, most significant
byte 1ast. After an operation, data may be retrieved from the stack in
the order most significant byte first, least significant byte 1ast. The
size of the stack is such that it will accornmodate 8 of the 2 byte openands
and 4 of the 4 byte operands.

The fjxed point data operands are signed'integers in binary 2's
complement notation. The most signifjcant or high order bit is the sign
and 0 represents a posjt'ive number and L represents negative.

For floating point operands, the 32 bit operand js broken up into
a 24 bit mantissa and 8 bits for exponent and sign bits. The mantissa is
normalized which means that the most sign'ificant bit of the mantissa must
be a 1 except in the spec'ial case of a 0 value, where all 32 bits are 0.
The least significant (right most) i bits of the remaining 8 bits are de-
voted to the exponent and its sign. The exponent is an unbiased 2's comple-
ment number having a value between -64 and +63. The sign of the mantjssa
occupies the remaining and most significant bit and 0 jndjcates positive
and 1 represents negative.

Command set

The 9511 IC on the APU-H has an extensive command set. These commands
can genera'l1y be broken into arithmetic (add, subtract, sine, cosine, etc)
and manipu'lat'ion (housekeeping such as push or pop stack, sign change, etc).
We strongly reconuirend the programmer become familiar with the commands as
expiained in pages 9-2L of the enclosed 9511 manual. All cornmands use
data previously piaced in the operand (data) stack, in the top of stack
(and next on stack position). The result wil'l always be placed on the top
of stack position and will have the same precisjon and format as the data
used as the operands.

Addressing the APU-H

As indjcated previously, the APU-H responds to port addresses 200/201
for data and commands, respectively. Hourever, the address decoding logic
includes jumpers to alter the port addresses if necessary.

The least significant bit of the 8 bit port address is directly connected
to the C/D pin on the 9511 and, of course, is not subject to alterat'ion or
jumpering. The 7 most significant bits of the port address may be altered
through the use of jumper pads below U10 and U11.

l,lhen rejumpering to make the APU-H respond to an address other than
the 2001201., keep in mind that for any address, dlf inputs to Ul must
be high for a select signal to be generated and enable the 9511 data lines.
Also, remember that because of inverted buffering on the address lines
of the H8 CPU board, all address s'ignals are presented to the APU-H
in an inverted state.

The jumper pads are in groups of 3 and each group of 3 is in a triangular
pattern. The left most group represents the 47 line and the right most
group represents the Al. I 'ine . W'ith in each group of pads the pad at the
top of the triangle will always be jumpered to i of the 2 pads forming
the base of this triang'le. Connectjng to the lefthand pad passes the
signal to Ul without inversion. Connecting the top pad of any group to
the right hand bottom pad inverts the signal before before jt reaches U1

The address furnished, 200/20I, is configured as shown below:

.\

A7

/.

A3

/.

A1

To make the APU-H respond, for exarnple, to the 202/203 address range,
change the right most group of pads to . and leave the others the same.

.\
Basic interface

The source listings to assembly language code that allours two
different interfaces with the APU-H for BASIC are provided at Appendix A.

The first interface method involves replacement of the Heath prov'ided
math rout'ines jn the Extended BASIC. This method of APU-H usage involves
no differences in operation or programming aside from entering a high
memory lim'it at BASIC jn'itjalization time. The second method ut'ilizes
the USR function of BASIC and any (not just the BASIC arithmetic operations)
APU-H operation may be executed through USR. The USR method is substantially
slower than the replacement method 'in terms of execution time.

The use of the 2 interfaces is described below. The d'iscussion assumes
a 16K memory configuration with the BASIC interface code near the top of
available memory.

Repl acernent

This methoo simpl-v "front ends" all calls to the Heath BASIC arjth-
metic rout'ines and transfers control to APU-H based routines. The code
at Appendix A should be keyed in or loaded. Th'is code takes approx'imately
530 bytes of memory. The "patches" listed'in Appendix A1 should 5e entered
after BASIC is loaded in. Three bytes of the exjst'ing code for BASIC are
included under the "Existing Code" column as a check to ensure the proper
code is being overlaid.

The "patches" are provided for version 10.C5.00 of the Extended BASIC.
CCM will assist users jn determining the appropriate locations for patches
for other versions of Extended BASIC and the regular BASIC. CCM wjll re-
quire a cassette of the versjon of BASIC in question as well as a list of
the utility routine entry points as genera'l1y provided jn the BASIC manual.
All material lvill be returned. Users r^rishing to develop their or^/n patch
lists can do so with l'ittle djfficulty by using the BASIC source'l ist'ing
now ava'i I abl e f rom liea th .

Once the patches are correctly implemented and the APU-H routines
are in p1ace, the operat'ion of the APU-H should be transparent except for

/.

A2

/

4,4

/. /

46 A5

faster execution.
the same as in the

A h'igh memory
16K of memory.

USR interface

Error codes, though taken from the 9511, rernain essent'ia11y
BASIC math routines.

limit of 23839 (dec'imal) is appropriate for an H8 with

This jnterface accommodates floating point operations and 'is executed
through the USR and POKE functions. As before, this discussion also assurnes
a 16K configuration with the BASIC jnterface code near the top of available
memory. Usage of this method requires the UIi'lT routjnes as wel I as the other
code required for the replacement method.

Floating point numbers are transm'itted to the APU-H data stack as
arguments to the USR function. 0n1y 1 value can be transmitted per function
execution. Commands to the APU-H are transm'itted by "P0KE"ing them into
location 23840 (decimal) or 135040 (octal) prior to the USR execution.

There are basically 2 types of operations rvh'ich are callable from
BASIC: those which use 1 data operand, such as square root and exponential;
and those which require 2 data operands such as add'ition, subtract'ion,
etc. (Note that all succeeding examples will assume that the service
request bit in the command is off).

For thosecommand operations involvjng 1 data element the BASIC
program should P0KE the decjrnal value of the appropriate command
(e.g., 1 for square root and 9 for natural log) into 23840. (See the 9511
manual, page 4, for a command summary.) Then execute the IJSR function in the
form X=USR(ARG) where ARG is the data (c.9., ARG rlould oe a 2 rvhen the
square root of 2 was desjred). I,Jhen control r's returned to SASIC from USR, X

will contain the square root of 2. ARG may be a variable or the actual
val ue of the number to be passed. The sequence

PoKE 23840 ,1
X=USR(2.00)

will perform the previously mentioned square root operation.

For those operations 'involving 2 data elements the BASIC orogram
should PCKE a 0 into location 2384C and then execute X=USR(ARG)
where ARG contains the appropriate variable or data value. (tttote that
for certain oper:atjons a specific operand such as the djvidend or
m'inuend must be passed f i rst. The 9511 manual contai ns the deta'il s on
th'is.) With a 0 in location 23840 the 'interface wilI simoly place the
data jn the argument on the 9511 stack. l^lhen control returns to BASiC
from USR, P0KE the appropriate command'into 2384C and olace the other
data value in ARG and execute X=USR(ARG). When control returns this t'ime

from BASIC, X will conta'in the desired result. For example, to execute
a 32 bit floating point add of 5.22 and 6.86 perform the follow'ing sequence
of instructions:

PoKE 23840,0
X=USR(5.22)
POKE 2384C,16
X=USR(6.86)

After the second USR call is executed X should contain the value 12.08.

To use the BASIC USR interface, key or load in the Apoendix A
subroutines. BASIC requires that the location of the routine to be
called by execution of USR be placed in USRFC|\. In version 10.C5.00
of Extended BASIC, USRFCN is at 111303, but will be different for
other versions of BASIC. The address of the first instruction in the
BASIC interface is 135052. Place this value in 1113C3, least significant
byte first. Therefore, the contents of 111303 will be 052135. Loading
in the Appendix A rout'ines and plac'ing the address at USRFCN should take place
after loading in BASIC but before start'ing it. Care should be taken to
place the high memory lirnit for BASIC (at BASIC in'itial'ization time) belorv
the address of the interface routines (below 135040 octal).

The BASIC interfaces were written specifical'ly for the Heath imp'le-
mentations and are highly dependent on thejr method of representing
floating point numbers. Their representation jncludes a mantissa that
uses 2's complement notation and has 24 bits with the most significant
bit be'ing the sign b'it. 0ther imp'lementations of the BASIC language for
the H8 may not use thjs structure and the furnished BASIC interfaces may
not function correctly with them.

Assembly language usage

Unl'ike the BArIC usage of the APU-H, assembly language usage js not
'limited to just 32 bit floating point operations; fixed point 16 and 32
bit operations are also available.

Developing the code to use the APU-H is relatively straightforward.
The numbers, or operands, must be placed on the data stack of the 9511 on
the APU-H using the OUT instruction. 0nce the data (1 or 2 operands) has
been placed on the stack the command may then be output, aga'in using the
0UT 'ins tructi on.

As sold, the APU-H comes wjth the data stack configured as I/O
port 200 and the comrrnnd stack as port 201.

The following sequence of instructions illustrates assemoler usaqe
of the APU-H. Assume the address of the least significant byte of the
second operand is in register pair BC. Th'is sequence multiplies 2 16 bit

f i xed po'i nt numbers :

LDAX B LSB of mul ti p1 i er
OUT 200Q to 9511
DCX B MSB of mul tj pl i er
LDAX B

OUT 200Q to 9511
DCX B LSB of mul t'i pl i ca nd
LDAX B

OUT 200Q to 9511
DCX B MSB of mul ti p1 icand
LDAX B

OUT 200Q to 9511
MVI A,156Q SI4UL CMD

ouT 201Q

The next step is to determine when the operation js complete. The 9511
contains a status register, accessible through port 201. The high order
bit of the register indicates if the 9511 is busy (l=busy). The follorving
code determjnes when the results may be read off the stack:

IN IN
ANI
JNZ

201Q read in status
200Q busy?
IN jmp to IN if not thru

The data is now ready to be rernoved from the stack, most significant byte
first. Assume reg'ister pair BC points to the locat'ion where the most sig-
nificant byte of the result 'is to be placed.

IN 200Q read MSB

STAX B store it
INX 3 bump to next store place
IN 2C0Q read LSB

STAX B

Appendix C contains a listing of a subroutine for performing a muitiply.

I nterrupts

When the 9511 has completed an operation a high to low trans'it'ion occurs
on one of its p'ins, ENII (p'in 24). This pin rnay be tied to one of the'in-
terrupt lines on the H8 thus generating an interrupt every t'ime an operation
cOrnpletes. In thjs case, the interrupt js cleared by any read or wrjte
operat i on.

As sold, the APU-H has all interrupt logjc djsabled. To provide for
i ntemupt usage, the fol l owi ng s teps shoul d be ta ken .

Jumper pad W to EVD
Jumper pad Y to X

Jumper pad INT to the desired interrupt line (1 to 7)

Jumper pad Z is provided to'invert the interrupt transition if necessary.
Jumper pad Y to pad Z to have a low to high transjt'ion generate an interrupt.
Use of the serv'ice request facility (expla'ined below) of the 9511 may re-
quire the use of the inverter.

An 'interrupt service routine must be furnished and a JMP instruction
to'it p'laced'in the proper UIVEC location (see the H8 manual for the description
and listing of the panel monitor code and UIVEC). For example, to use the
interrupt number 7 rvith a service routine at 42300, place a 303,300,042 at
I ocation 040061.

An interrupt service routine which begins at 042300 is listed in
Appendix B.

Another use of interrupts which can control operat'ion of the APU-H
involves the use of the service request and acknowledge facilities. The
high order bit in the command issued to the APU-H, if turned on, causes
a low to high transition to occur on the SVREC p'in at the complerion of
an operation. The SVREC pad'is ava'ilable for connection to pad l.l to allow
it to generate an interrupt. The SVREC can be cleared by driving the SVACK
line low orissuing another command where the high order bit is 0.

Interrupts should on'ly be used where the input of the resu'lts must truly
be asynchronous. For those applications where the program must have the
results of an operat'ion to continue, the routines of the Assembly language
section are faster. Consult the HB manuals for further discussions of
i nterrupts .

0ther selectable features

U8, the 9511, operates at a clock frequency of 2l4hz. The source
for this signaf is the 02 clock on the system bus. The APU-H as sold
is set for Z[lhz systems. However, should an H8 CPU upgrade occur r^rhich
includes higher frequencies, the jumpers in the vicinity of U9 should be
reconfigured as follows :

4 l4hz jumper E to C

jumper D to A

8 ltlhz jurnper E to C

jumper D to B
jumper F to A

8

0ther APU-H operat'ing consjderatjgns

The APU-H has a floating point range less than that supported by the
Heath BASIC (see Specificat'ions). In most applications this will not be
a cons'ideration, but'it will impact computations involving very large
numbers.

Slightly di'fferent results from those returned by the Heath BASIC
may be noted when raising numbers to a pou/er or using the LOG or EXP

functjons. Discussion of the accuracy of Pt^lR (used by APU-H for ex-
ponentiation) L00 and EXP may be found in the 951.1 manual under the
respecti ve headings.

References

A number of interesting and informative references exist on the
AMD9511. Included are artjcles appearing in the April 24, 1980 issue
of Electronjcs, the May 1978 issue of Kilobaud, and the September 1980
issue of Interface Age.

9

Integrated Ci rcuits

U1

u2
U3-U5
U6,U7
U8
U9

u10
u11

Capaci tors

c1,c3
c2,c4
c5-c 14

Res i s tors

R1
R2

Mi scel I aneous

(4)

(?)
(?)

(1)

COMPONENTS

74LS 30
74LSC0
741S04
7 4L5240
AMD9 5 1 14
7 474
7805
7Btz

?.2 ufd 35v tantalum
10 ufd 35v electrolyt'ic
.1 ufd 25v disc ceramic

3. 3K hratt
10K lartatt

Printed circuit board 6.25"x12"
Mol ex edge connectors (2) 22-15-2251
Bracket
6-32 % screw
6-32 nut (2)
#6 lockwasher
4-',0 '4 Scretv
4-40 nut (2)
Connector key

1C

The following code of Appendix A performs both the USR functions as rvell
as repl aci ng the BAS I C math rout'i nes .

The tasks of each rout'ine (or group of routines) are nor^, described.

Rout'ines UiNT to loc 135167 are branched to by a USR call jn BASIC and
and set things up for the 9511 operation.

P.outine STUP takes a 4 byte floating point number, loads it into ACCX and
cal ls APU.

Routine SAVE saves and restores register contents upon entry/exit to
the APU based rout'ines (not used by USR).

Rout'ine PUSHA saves 4 bytes in a specified work area.

Routines PWR through FPADD are APU based routines that take the place of
the original BASIC routines.

Routine Ci'4DIt{ reads the result from a 9511 operation and checks err status.

Routines APU through PLS perform the jnterfacing rvith the 9511 as r^rell as

reformatting data between 951i and BASIC formats. APU through 1oc

137030 is the driver for th'is section of code.

Routine R0UND rounds the 9511 answer to the Heath BASIC precision.

Appendi x A q-1

* BASIC USR interface routine
135040 00C FLG D3 000Q 9511 CMD area
135041 000 FLGB DB 000Q 1st time f1g
135042 000,00C,000 DATAA DB 0,C,0,0 Store 1st oprnd
135046 C00,000,0C0 DATAB D3 C,0,0,0 Store 2nd oprnd
135052 072,040,135 UINT LDA FLG See i f cr:rd there
135055 376,000 CPi CoCQ
135057 302 ,076 ,135 .ll,lz SEC ClaD, take branch
135062 076,1C0 !\1VI A,100Q Set flag to indicate
135064 062,041,135 STA FLGB 1st oprnd there
135067 001,042,135 LXI B,DATAA Store oprnd
L35072 315,236,135 CALL PUS[{

135075 311 RET

135076 072,041,135 SEC LDA FLGB lst or sec pass
135101 376,100 CPI 1C0Q
135103 312 ,125 ,135 JE T1,'J0 2nd, take brnch
135106 072 ,040,135 LDA FLG

135111 C62,00C,137 STA 137000A Single op cmd (SQRT)
135114 315,001,137 CALL APU

135117 076,000 l'lVI A,C00Q Clr flg before leave
135121 062,041, i35 STA FLGS

L35L24 311 RET

135125 001,046,135 T",10 LXI B,DATA3 Save 2nd oprnd
13513C 315,236,135 CALL PUSH

135133 076,000 l'iVI A,000Q Set APU routine
135135 062,000,137 STA 137000A for operation
135140 041 ,042 , 135 LXI ll , DATAA Cet 1s t oprnd
135143 315,172,135 CALL STUP Put oprnd on 9511 stck
135146 072,040,135 LDA FLG Do second oprnd
135151 062,000,137 STA 137000A
135154 041,046,135 LXI H,DATAB
135157 315,772,135 CALL STUP Do cmd
135162 076 ,000 l'1VI A ,C00Q C'l r f 1 9
135164 062,041 ,135 STA FLG3

135167 311 RET Leave

A-2

* l'love
L35t72
135 173
135 176
135200
135201
135202
1 3520 3
7352C4
1 3520 5

1352 10
i35213
1 352 16
135217
735220
135??L
t35?22
135225
t35226
135227
1 352 3C
135231
735232* Save
135233
135236
I 3524 I
t35243
135244
1 35 245
135246
t35247
135250
1 3525 3

an operand to ACCX

353
001,066,c40
046,004
032
002
003
0?3
045
302 ,200 ,135
00 1 ,066 ,04c
315,001,137
311
343
325
305
x}L,227 ,L35
305
351
301
32t
341
311

4 bytes of data in
c?L,210 ,137
021,C66,040
046,004
032
002
c03
023
045
302,243,135
311

and cal I APU

STUP XCHG

LXI
MOV

LDA LDAX
STAX
I IiX
II,IX
DCP.

Ji{ Z

LXI
CALL
RET

SAVE XTHL
PUSH

PUSH

LXI
PUSH

PCIJ L
LVA POP

POP

PCP

RET

a work area
PUSHA LXI
PUSH LXI

110\/

LDAA LDAX
STAX
INX
INX
DCR

JNZ
RET

B,ACCX
H,CO4Q
D

ts

3
D

H

LDA
B,ACCX
APU

D

3
LVA
B

B,!^JCRK

D,ACCX
H,004Q
D

B

B

D

H

LDAA

3
D

H

i{toD
t,{ork area

Thru?
llo
Repoi nt to wk area

Thru
Save reg status

Set for future exit

Status saved
Restore exit addr

Status restd for BASIC

Get 'vork addr
Get accx addr
4 bytes

A-3

135254
1 3s2 55
1 35260
1 3526 1

1 3526 3
735265
13527 1

135274
135276
1 353C 1

1 35304
1 35305
135 310
135312
135315
13s320
1 3532 1

135324
1 3s326
1 3533 i
135334
1 35335
1 35340
135342
135345
135350
13535 1

135354
I 35356
13536i
135364
1 35365
1 35370
t35372
1 3537 5
1 36000
1360C1
136004
136006
136011
136014

3?5
315,233,135
341
076,000
062,C00,137
315,172,135
04L,2L0,137
076,013
062,000,i37
315,17: ,135
311
001 ,066 ,040
076,004
062,000,137
315,001 ,137
311
001,066,040
076,003
062,000,137
315,001,137
311
001 ,066,o4o
07 6 ,C02
062 ,000 ,137
315,001,137
311
001,066,o4o
076,011
062,000,i37
315,001 ,137
311
001 ,066,040
07 6 ,01?
062,000,137
315,001,137
311
001,066,040
076 ,00 1

062,000,137
315,001,137
311

PIJR PUSH D

CALL PUSHA
POP H

MOv A,000Q
STA 137OCOA
CALL STUP

LX I H,I.JORK

l40v A ,013Q
STA 137OOOA
CALL STUP
RET

LXI B,ACCX
Mov A,004Q
STA FLAG

CALL APU

RET
LXI B,ACCX
MO\/ A,c03Q
STA FLAG
CALL APU
RET

LXI B,ACCX
MOV A,OO2Q
STA FLAG

CALL APU

RET
LX I B ,ACCX
MOV A,O11Q
STA FLAG
CALL APU

RET
LXI B,ACCX
t\,10V A,012Q
STA FLAG

CALL APU

RET
LXI B,ACCX
MOV A,OO1Q
STA FLAG
CALL APU

RET

Save D

Save curr ACCX

Bring D to H

Put op on stck

Get prev ACCX

Store cmd
Do P',^!R

Bk to BASIC
Accx addr
Tan cmd

Dc tan
Bk to tsASIC
Accx addr
Cos cmd

Do cos
Bk to BASIC
Accx addr
Sin cmd

Do sin
Bk to BASIC
Accx addr
Ln cmd

Do ln
Bk to BASIC
Accx addr
Exp cmd

Do exp
Bk to BASIC
Accx addr
Sqr cmd

TAN

COS

S]N

SQRT

LOG

EXP

Do sqr
Bk to

A-4

BAS IC

136015 345 FPSU3 PUSH H

136016 315,233,135 CALL PUSHA Put current ACCX on wk
136021 341 PCP H

I36J22 076,000 t40V A,0C0Q Indic operand on stck
736024 062,000,137 STA FLAG
L36C27 315,172,135 CALL STUP Plac op on stck
136032 C41,210,137 LXI H,i{ORK Get orig ACCX

136035 076,021 MOV A,021Q Su!: cmd

136037 062,C00,137 STA FLAG

l36C4Z 315 ,172 ,135 CALL STUP Do sub
136045 311 RET

i36C46 0C1,066,040 ATN LXI B,ACCX Accum Addr
136051 C75,0C7 MVI A,007Q Atan cmd

136053 062,000,137 STA FLAG Store cmd
136056 315,C01,137 CALL APU Do atan
136061 311 RET Leave
136062 C00 I'IOP

i36063 001,C66,040 FPI1UL LXI B,ACCX Accx addr
136066 345 PUSH H Save H

136067 C76,00C l'!0V A,00CQ r{ul tipl icand
136071 C62,000,137 STA FLAG on 9511
t36074 315,001,137 CALL APU

136077 076 ,C22 M. V A,022Q l'!ul cmd

13610 1 C62,000,137 STA FLAG

136104 34i PCP H

1361C5 315,172,135 CALL STUP Do mul
136110 311 RET Bk to BASIC
13611i 345 FPDIV PUSH H Save H

136112 001,C66,C4C LXI B,ACCX Get Accx addr
1361i5 076 ,000 !4cV A,0C0Q
136117 062,C00,137 STA FLAG Put operand on 9511
t36122 315,CC 1,137 CALL APU

136125 341 POP H Restore H

136126 076,A23 MOV A,023Q Di v cmd

135130 062,00C,1.37 STA FLAG

136133 375,172,135 CALL STUP Do d'i v
136136 31i
136137 001,066,040 FPADD LXI B,ACCX Accx addr
L36142 345 PUSH H Save !{

136143 076,000 M()V A,CC0Q Put
136145 062,000,137 STA FLAG Addend on
136150 315,001,t37 CALL APU 9511
135153 A76 ,C?C M()V A,020Q Add crnd

136155 062,000,137 STA FLAG

136160 341 PoP H

136161 315,L72,!35 CALL STUP Do add
136164 311 RET Bk to BASIC

Atr

* This code rounds 9511 ansrver before passing it back to BASIC
136165 346,001 RCUND ANI 001Q Need round?
136167 312,235,136 JZ N0RD No

L3617? 140 MOV H,B Set
136173 151 MOV L,C to use H and L

136174 006,0C2 MVI 8,002Q Set to
136176 076,001 MVI A,001Q Add C01
136200 206 ADD !v1 I n I sb
136201 167 RN l,lo\/ l,!,A
13620? C43 INX H

136203 076,000 MOV A,CC0Q Propogate
136205 ?16 ADC M Cary
136206 005 DCR B If there
136207 302,201,136 JNZ Ri\l Thru 3 bytes
t362t2 167 t/iov M,A
136213 334,243,136 CC S0 Leave if carry on
136216 104 MOV B,H Sack to BC rp
t362t7 115 llCV C , L

L36220 067 SHF STC Clear carry
736221 077 CMC

136?22 037 RAR Back to 23 bits
136223 00? STAX B Save first bYte
136224 013 DCX B

136225 072 LDAX B

136226 037 RAR Next bYte
t36227 002 STAX B

136230 013 DCX B

136231 012 LDAX B

736232 037 RAR Next byte
136233 002 STAX 3

L36234 311 RET Leave
136235 003 N0RD INX B No rnd requ'd; set
136236 003 INX B

L36237 OLZ LDAX B

t36240 3C 3 ,220 , 136 JMP SH F

L35243 043 SC INX H This code handles
136244 L76 MQV A,l'1 l'lantissa ovfl caused
L36?45 346,100 ANI 100Q BY round
136247 064 INR M

136250 206 ADD M

136251 346,100 ANI 1C0Q Ovfl o?
136253 302,220,070 JNZ ERR.OV

136256 053 DCX H Set to ret to mainline
136257 066 ,200 MV I t4 ,200Q
136267 076,200 14VI A,20CQ
136263 311 RET

. Patch area
t36277

A-6

,rUrOO 333,201 CMDIN IN 201Q Read status*This code determines when APU op complete and checks for errors
136302 147 MOV H,A Save A

136303 346,200 ANI 200Q Busy?
136305 302,300,136 JNZ CMDIN No

136310 174 MOV A,H Restore a
136311 376,000 CPI 000Q Em free?
136313 310 RZ Yes
136314 346,077 ANI 077Q 0n1y err bit.
136316 376,020 CPI 020Q Div by 0
i36320 312 ,161 ,070 JZ ERR. DD Yes
136323 376,010 CPI 010Q Invalid num?
136325 312,166,070 JZ ERR. IN Yes
136330 376,03C CPI 030Q 0vrflw?
136332 312,220,070 JZ ERR.0V Yes
136335 346,002 ANI 002Q 0vrf]w?
136337 302,220,070 JNZ ERR.0V Yes

L36342 174 MOV A,H Restore a
136343 346,004 ANI 004Q Undrflw?
136345 310 RZ No

136346 001,000,000 LXI 8,0 Yes, make 0
136351 120 MOV D,B
136352 130 MOV E,B
136353 041,066,040 LXI H,ACCX
136356 163 MOV 14, E Move i n 0
136357 043 INX H Nxt
136360 L62 MoV M,D

136361 043 INX H

136362 16i Mo\/ M,c
136363 043 INX H llxt
136364 160 Mov M,B
136365 341 POP H Simulate ret
136366 3C3,030,137 JMP EN Leave
137000 ooc FLAG Dts 000Q
137001 315,035,137 APU CALL NEGA Chk 2's compl
137004 315,066,137 CALL NFRM 0utput operands
137007 072,000,L37 LDA FLAG Chk for presence
L370LZ 376,000 CPI 000Q 0f cmd

137014 310 RZ No cmd, leave
1370i5 323,201 OUT 201Q 0utPut cmd

L37017 315 ,300,136 CALL Cl'lD I N l'la'i t to f i ni sh

13702? 315,115,137 CALL NFRA Read'in data result
137025 315,145,137 CALL NNGA Chk for 2's compl

A-7

137030 311 EN RET Thru APU op, leave
137035 003 NEGA INX B Bump to MSB

137036 003 INX B 0f mantissa
137037 072 LDAX B Get l4SB

137040 346,200 ANI 200Q Heath minus?
87A42 312,057 ,137 JZ PLUS No
1,37045 315,123,102 CALL FPNEG Cal I BASIC neg
137C50 003 iNX B To make pos
137051 012 LDAX B Now at exponent
137052 366,200 0R 200Q Make 951.1 neg
137C54 002 STAX B Put in accx
137055 013 DCX B

137056 311 RET Thru
L37057 003 PLUS INX B Handle pos case
137C60 OLz LDAX B

137061 346,177 ANI 177Q Conform to 9511
137063 002 STAX B

137064 013 DCX B Leave ptr at MSB

137065 3i1 RET Leave
137066 013 NFRM DCX B Get to LSB
*Upon entry to NFRM, BC po'ints to MSB in ACCX

t37067 013 DCX B

137070 012 LDAX B Get LSB in a
*Set to shft mantissa to conform to 9511
737C71 067 STC Set carry to 0
t37C7? 077 CMC

137073 A27 RAL Left shft LSB
137074 323,200 OUT 200Q Put LSB on 9511 stac
137076 003 INX B Next byte
137C77 07? LDAX B

137100 027 RAL Left shft
13710L 323,200 OUT 200Q Put on stack
137103 OO3 INX B MSB

137104 0t2 LDAX B

137105 027 RAL Left shft
137106 323,200 OUT 200Q MSB on stack
137110 003 INX B Now do exp
137i1L 012 LDAX B

737L12 323,200 OUT 200Q Exp on stack
137174 311 RET Leave
137115 333,200 NFRA IN 200Q Read result
137117 002 STAX B Have exp
*BC pai r points to exp address r'n ACCX

137120 333,200 IN 200Q Get MSB

137122 0i3 DCX B 0f mantissa
1371,23 002 STAX B Store in ACCX

L37124 013 DCX B Next to MSB

L37t25 333,200 IN 200Q

A-8

l37l?7 002 STAX B Store in accx
i37130 013 DCX B LSB
137131 333,200 IN 200Q
137133 002 STAX B ACCX

137L34 315,165,135 CALL R0UND Round off
L37L37 003 INX B Point to
137140 003 INX B Exp
137141 003 INX B

L37142 31i RET Leave
L37L45 07? NNGA LDAX B Get exp
*Assume BC points to exponent of mantissa
L37146 346,200 ANI 200Q Neg?
137150 3t2,174,737 JE PLS No

137153 012 LDAX B Get exp
t37154 346,177 ANi L77Q Turn off 9511 sign
137156 002 STAX B Store in accx
137157 346,100 ANI 100Q Neg exp
137161 302,170,137 JNE NNG Yes

137164 A12 LDAX B

137165 306,200 ADI 200Q Put into BASIC fmt
t37t67 002 STAX B

737L70 375,723,102 NNG CALL FPNEG Make neg
137173 311 RET Leave
137774 012 PLS LDAX B Get exp
t37175 346,1C0 ANI 100q Neg exo?
137177 30?,206,137 JNZ END Yes

137202 012 LDAX B No

137203 306,200 ADI 200Q Make BASIC fmt
137205 002 STAX B

137206 311 END RET Return to mainline
1.372tC WORK DS 4

A-9

BASIC 10.05.00 Replacements

MODULE LOC EXISTINC CCDE PATCH

ATAN 064163 305,072,07C 315,217,135,3C3,046,136
P'','lR C62003 315,015,10C 315,217,135,3C3,254,135
TA,,l C6400C 315 ,007 ,065 375 ,217 , 135 ,303 ,305 ,135
cos a63262 305,315,C07 315,217,135,393,321,135
S L'l 063254 021 ,336 , 111 315 ,217 , 135 ,3C3,335 , 135
LOG C62362 305,041,C70 315,217,135,3C3,351,135
EXP 062232 305,072,070 315 ,217,135,303,365,135
SQRT 0631i5 305,315,175 315,217,1.35,303,C01,136
FPDIV 103101 315,C36,104 315,217,135,353,333,111,136
Fpl4ul t02144 315,036,104 315,217,135,353,3C3,063,136
FpsuB 102007 315,C36,104 3L5,217,135,353,303,C15,136
FPADD 101201 315,036,104 375,217,135,353,303,137,136

Appendi x A1

042300
04230 1

04230?
042304
04?307
04231 1

0423t4
042315
0423t6

Thi s i ntemupt
has cornp'leted
the CPU

365 IRP
363
333 ,200
062,XXX,XXX
333,200
062,XXX,XXX
373
361
311

PUSH
DI
IN
STA
IN
STA
EI
POP

RET

PS'',.l

20oQ

200Q

PSt^l

Save status
Lock others out
Read MSB

Store it
Read LSB
Store i t
Uniock
Res tore
Leave

serv'ice rout'ine i nputs
the requested operation

a 16 bit result
and generated an

after the APU-H
i ntemupt to

Appendix B

040100
040103
040104
04010s
040107
0401 10
040111
040113
040114
0401 1 5
040117
040120
040121
040123
040125
040L27
040131
040133
040136
040 140
040141
040143
040144
040145
040146
040150
040 152

052,L52,040
353
03?
323,?oo
033
032
323,200
033
032
323,200
033
032
323,200
076,156
323,20L
333,201
346 ,200
302,127 ,040
333,200
022
333 ,200
023
022
311
000,000
000,000
151,040

LHLD O4O152A
XCHG

LDAX D

ouT 200Q
DCX D

LDAX Dour 200Q
DCX D

LDAX D

our 200Q
DCX D

LDAX D

OuT 200Q
MVI A,156Q
OUT 2O1Q

rN 201Q
ANr 200Q
JNZ IN
rN 200Q
STAX D

rN 200Q
INX D

STAX D

RET

DB O,O
DB O,O
DB 15iQ,O4OQ

Get op addr
Use de
Get I sb
0ut put
Get to msb
Get msb
0utput
Next op 1sb
Get lsb
0utput
Msb
Get msb

Get cmd
0utput
Now get status
Status thru?
No

Msb of result
Store
LSB of resul t
Store it
Lst oornd
2nd oprnd
Poi nter

SMUL

IN

This software performs a fjxed point
bers. The I east s i gn'if i cant byte of
the value in location 040152

mul ti p1 ication between 2 16 b'it num-
tle seconC number is pointed to bY

Appendi x C

